1 | n/a | #!/usr/bin/env python3 |
---|
2 | n/a | |
---|
3 | n/a | """ |
---|
4 | n/a | N queens problem. |
---|
5 | n/a | |
---|
6 | n/a | The (well-known) problem is due to Niklaus Wirth. |
---|
7 | n/a | |
---|
8 | n/a | This solution is inspired by Dijkstra (Structured Programming). It is |
---|
9 | n/a | a classic recursive backtracking approach. |
---|
10 | n/a | """ |
---|
11 | n/a | |
---|
12 | n/a | N = 8 # Default; command line overrides |
---|
13 | n/a | |
---|
14 | n/a | class Queens: |
---|
15 | n/a | |
---|
16 | n/a | def __init__(self, n=N): |
---|
17 | n/a | self.n = n |
---|
18 | n/a | self.reset() |
---|
19 | n/a | |
---|
20 | n/a | def reset(self): |
---|
21 | n/a | n = self.n |
---|
22 | n/a | self.y = [None] * n # Where is the queen in column x |
---|
23 | n/a | self.row = [0] * n # Is row[y] safe? |
---|
24 | n/a | self.up = [0] * (2*n-1) # Is upward diagonal[x-y] safe? |
---|
25 | n/a | self.down = [0] * (2*n-1) # Is downward diagonal[x+y] safe? |
---|
26 | n/a | self.nfound = 0 # Instrumentation |
---|
27 | n/a | |
---|
28 | n/a | def solve(self, x=0): # Recursive solver |
---|
29 | n/a | for y in range(self.n): |
---|
30 | n/a | if self.safe(x, y): |
---|
31 | n/a | self.place(x, y) |
---|
32 | n/a | if x+1 == self.n: |
---|
33 | n/a | self.display() |
---|
34 | n/a | else: |
---|
35 | n/a | self.solve(x+1) |
---|
36 | n/a | self.remove(x, y) |
---|
37 | n/a | |
---|
38 | n/a | def safe(self, x, y): |
---|
39 | n/a | return not self.row[y] and not self.up[x-y] and not self.down[x+y] |
---|
40 | n/a | |
---|
41 | n/a | def place(self, x, y): |
---|
42 | n/a | self.y[x] = y |
---|
43 | n/a | self.row[y] = 1 |
---|
44 | n/a | self.up[x-y] = 1 |
---|
45 | n/a | self.down[x+y] = 1 |
---|
46 | n/a | |
---|
47 | n/a | def remove(self, x, y): |
---|
48 | n/a | self.y[x] = None |
---|
49 | n/a | self.row[y] = 0 |
---|
50 | n/a | self.up[x-y] = 0 |
---|
51 | n/a | self.down[x+y] = 0 |
---|
52 | n/a | |
---|
53 | n/a | silent = 0 # If true, count solutions only |
---|
54 | n/a | |
---|
55 | n/a | def display(self): |
---|
56 | n/a | self.nfound = self.nfound + 1 |
---|
57 | n/a | if self.silent: |
---|
58 | n/a | return |
---|
59 | n/a | print('+-' + '--'*self.n + '+') |
---|
60 | n/a | for y in range(self.n-1, -1, -1): |
---|
61 | n/a | print('|', end=' ') |
---|
62 | n/a | for x in range(self.n): |
---|
63 | n/a | if self.y[x] == y: |
---|
64 | n/a | print("Q", end=' ') |
---|
65 | n/a | else: |
---|
66 | n/a | print(".", end=' ') |
---|
67 | n/a | print('|') |
---|
68 | n/a | print('+-' + '--'*self.n + '+') |
---|
69 | n/a | |
---|
70 | n/a | def main(): |
---|
71 | n/a | import sys |
---|
72 | n/a | silent = 0 |
---|
73 | n/a | n = N |
---|
74 | n/a | if sys.argv[1:2] == ['-n']: |
---|
75 | n/a | silent = 1 |
---|
76 | n/a | del sys.argv[1] |
---|
77 | n/a | if sys.argv[1:]: |
---|
78 | n/a | n = int(sys.argv[1]) |
---|
79 | n/a | q = Queens(n) |
---|
80 | n/a | q.silent = silent |
---|
81 | n/a | q.solve() |
---|
82 | n/a | print("Found", q.nfound, "solutions.") |
---|
83 | n/a | |
---|
84 | n/a | if __name__ == "__main__": |
---|
85 | n/a | main() |
---|