1 | n/a | /* Set of hash utility functions to help maintaining the invariant that |
---|
2 | n/a | if a==b then hash(a)==hash(b) |
---|
3 | n/a | |
---|
4 | n/a | All the utility functions (_Py_Hash*()) return "-1" to signify an error. |
---|
5 | n/a | */ |
---|
6 | n/a | #include "Python.h" |
---|
7 | n/a | |
---|
8 | n/a | #ifdef __APPLE__ |
---|
9 | n/a | # include <libkern/OSByteOrder.h> |
---|
10 | n/a | #elif defined(HAVE_LE64TOH) && defined(HAVE_ENDIAN_H) |
---|
11 | n/a | # include <endian.h> |
---|
12 | n/a | #elif defined(HAVE_LE64TOH) && defined(HAVE_SYS_ENDIAN_H) |
---|
13 | n/a | # include <sys/endian.h> |
---|
14 | n/a | #endif |
---|
15 | n/a | |
---|
16 | n/a | #ifdef __cplusplus |
---|
17 | n/a | extern "C" { |
---|
18 | n/a | #endif |
---|
19 | n/a | |
---|
20 | n/a | _Py_HashSecret_t _Py_HashSecret; |
---|
21 | n/a | |
---|
22 | n/a | #if Py_HASH_ALGORITHM == Py_HASH_EXTERNAL |
---|
23 | n/a | extern PyHash_FuncDef PyHash_Func; |
---|
24 | n/a | #else |
---|
25 | n/a | static PyHash_FuncDef PyHash_Func; |
---|
26 | n/a | #endif |
---|
27 | n/a | |
---|
28 | n/a | /* Count _Py_HashBytes() calls */ |
---|
29 | n/a | #ifdef Py_HASH_STATS |
---|
30 | n/a | #define Py_HASH_STATS_MAX 32 |
---|
31 | n/a | static Py_ssize_t hashstats[Py_HASH_STATS_MAX + 1] = {0}; |
---|
32 | n/a | #endif |
---|
33 | n/a | |
---|
34 | n/a | /* For numeric types, the hash of a number x is based on the reduction |
---|
35 | n/a | of x modulo the prime P = 2**_PyHASH_BITS - 1. It's designed so that |
---|
36 | n/a | hash(x) == hash(y) whenever x and y are numerically equal, even if |
---|
37 | n/a | x and y have different types. |
---|
38 | n/a | |
---|
39 | n/a | A quick summary of the hashing strategy: |
---|
40 | n/a | |
---|
41 | n/a | (1) First define the 'reduction of x modulo P' for any rational |
---|
42 | n/a | number x; this is a standard extension of the usual notion of |
---|
43 | n/a | reduction modulo P for integers. If x == p/q (written in lowest |
---|
44 | n/a | terms), the reduction is interpreted as the reduction of p times |
---|
45 | n/a | the inverse of the reduction of q, all modulo P; if q is exactly |
---|
46 | n/a | divisible by P then define the reduction to be infinity. So we've |
---|
47 | n/a | got a well-defined map |
---|
48 | n/a | |
---|
49 | n/a | reduce : { rational numbers } -> { 0, 1, 2, ..., P-1, infinity }. |
---|
50 | n/a | |
---|
51 | n/a | (2) Now for a rational number x, define hash(x) by: |
---|
52 | n/a | |
---|
53 | n/a | reduce(x) if x >= 0 |
---|
54 | n/a | -reduce(-x) if x < 0 |
---|
55 | n/a | |
---|
56 | n/a | If the result of the reduction is infinity (this is impossible for |
---|
57 | n/a | integers, floats and Decimals) then use the predefined hash value |
---|
58 | n/a | _PyHASH_INF for x >= 0, or -_PyHASH_INF for x < 0, instead. |
---|
59 | n/a | _PyHASH_INF, -_PyHASH_INF and _PyHASH_NAN are also used for the |
---|
60 | n/a | hashes of float and Decimal infinities and nans. |
---|
61 | n/a | |
---|
62 | n/a | A selling point for the above strategy is that it makes it possible |
---|
63 | n/a | to compute hashes of decimal and binary floating-point numbers |
---|
64 | n/a | efficiently, even if the exponent of the binary or decimal number |
---|
65 | n/a | is large. The key point is that |
---|
66 | n/a | |
---|
67 | n/a | reduce(x * y) == reduce(x) * reduce(y) (modulo _PyHASH_MODULUS) |
---|
68 | n/a | |
---|
69 | n/a | provided that {reduce(x), reduce(y)} != {0, infinity}. The reduction of a |
---|
70 | n/a | binary or decimal float is never infinity, since the denominator is a power |
---|
71 | n/a | of 2 (for binary) or a divisor of a power of 10 (for decimal). So we have, |
---|
72 | n/a | for nonnegative x, |
---|
73 | n/a | |
---|
74 | n/a | reduce(x * 2**e) == reduce(x) * reduce(2**e) % _PyHASH_MODULUS |
---|
75 | n/a | |
---|
76 | n/a | reduce(x * 10**e) == reduce(x) * reduce(10**e) % _PyHASH_MODULUS |
---|
77 | n/a | |
---|
78 | n/a | and reduce(10**e) can be computed efficiently by the usual modular |
---|
79 | n/a | exponentiation algorithm. For reduce(2**e) it's even better: since |
---|
80 | n/a | P is of the form 2**n-1, reduce(2**e) is 2**(e mod n), and multiplication |
---|
81 | n/a | by 2**(e mod n) modulo 2**n-1 just amounts to a rotation of bits. |
---|
82 | n/a | |
---|
83 | n/a | */ |
---|
84 | n/a | |
---|
85 | n/a | Py_hash_t |
---|
86 | n/a | _Py_HashDouble(double v) |
---|
87 | n/a | { |
---|
88 | n/a | int e, sign; |
---|
89 | n/a | double m; |
---|
90 | n/a | Py_uhash_t x, y; |
---|
91 | n/a | |
---|
92 | n/a | if (!Py_IS_FINITE(v)) { |
---|
93 | n/a | if (Py_IS_INFINITY(v)) |
---|
94 | n/a | return v > 0 ? _PyHASH_INF : -_PyHASH_INF; |
---|
95 | n/a | else |
---|
96 | n/a | return _PyHASH_NAN; |
---|
97 | n/a | } |
---|
98 | n/a | |
---|
99 | n/a | m = frexp(v, &e); |
---|
100 | n/a | |
---|
101 | n/a | sign = 1; |
---|
102 | n/a | if (m < 0) { |
---|
103 | n/a | sign = -1; |
---|
104 | n/a | m = -m; |
---|
105 | n/a | } |
---|
106 | n/a | |
---|
107 | n/a | /* process 28 bits at a time; this should work well both for binary |
---|
108 | n/a | and hexadecimal floating point. */ |
---|
109 | n/a | x = 0; |
---|
110 | n/a | while (m) { |
---|
111 | n/a | x = ((x << 28) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - 28); |
---|
112 | n/a | m *= 268435456.0; /* 2**28 */ |
---|
113 | n/a | e -= 28; |
---|
114 | n/a | y = (Py_uhash_t)m; /* pull out integer part */ |
---|
115 | n/a | m -= y; |
---|
116 | n/a | x += y; |
---|
117 | n/a | if (x >= _PyHASH_MODULUS) |
---|
118 | n/a | x -= _PyHASH_MODULUS; |
---|
119 | n/a | } |
---|
120 | n/a | |
---|
121 | n/a | /* adjust for the exponent; first reduce it modulo _PyHASH_BITS */ |
---|
122 | n/a | e = e >= 0 ? e % _PyHASH_BITS : _PyHASH_BITS-1-((-1-e) % _PyHASH_BITS); |
---|
123 | n/a | x = ((x << e) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - e); |
---|
124 | n/a | |
---|
125 | n/a | x = x * sign; |
---|
126 | n/a | if (x == (Py_uhash_t)-1) |
---|
127 | n/a | x = (Py_uhash_t)-2; |
---|
128 | n/a | return (Py_hash_t)x; |
---|
129 | n/a | } |
---|
130 | n/a | |
---|
131 | n/a | Py_hash_t |
---|
132 | n/a | _Py_HashPointer(void *p) |
---|
133 | n/a | { |
---|
134 | n/a | Py_hash_t x; |
---|
135 | n/a | size_t y = (size_t)p; |
---|
136 | n/a | /* bottom 3 or 4 bits are likely to be 0; rotate y by 4 to avoid |
---|
137 | n/a | excessive hash collisions for dicts and sets */ |
---|
138 | n/a | y = (y >> 4) | (y << (8 * SIZEOF_VOID_P - 4)); |
---|
139 | n/a | x = (Py_hash_t)y; |
---|
140 | n/a | if (x == -1) |
---|
141 | n/a | x = -2; |
---|
142 | n/a | return x; |
---|
143 | n/a | } |
---|
144 | n/a | |
---|
145 | n/a | Py_hash_t |
---|
146 | n/a | _Py_HashBytes(const void *src, Py_ssize_t len) |
---|
147 | n/a | { |
---|
148 | n/a | Py_hash_t x; |
---|
149 | n/a | /* |
---|
150 | n/a | We make the hash of the empty string be 0, rather than using |
---|
151 | n/a | (prefix ^ suffix), since this slightly obfuscates the hash secret |
---|
152 | n/a | */ |
---|
153 | n/a | if (len == 0) { |
---|
154 | n/a | return 0; |
---|
155 | n/a | } |
---|
156 | n/a | |
---|
157 | n/a | #ifdef Py_HASH_STATS |
---|
158 | n/a | hashstats[(len <= Py_HASH_STATS_MAX) ? len : 0]++; |
---|
159 | n/a | #endif |
---|
160 | n/a | |
---|
161 | n/a | #if Py_HASH_CUTOFF > 0 |
---|
162 | n/a | if (len < Py_HASH_CUTOFF) { |
---|
163 | n/a | /* Optimize hashing of very small strings with inline DJBX33A. */ |
---|
164 | n/a | Py_uhash_t hash; |
---|
165 | n/a | const unsigned char *p = src; |
---|
166 | n/a | hash = 5381; /* DJBX33A starts with 5381 */ |
---|
167 | n/a | |
---|
168 | n/a | switch(len) { |
---|
169 | n/a | /* ((hash << 5) + hash) + *p == hash * 33 + *p */ |
---|
170 | n/a | case 7: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ |
---|
171 | n/a | case 6: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ |
---|
172 | n/a | case 5: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ |
---|
173 | n/a | case 4: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ |
---|
174 | n/a | case 3: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ |
---|
175 | n/a | case 2: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ |
---|
176 | n/a | case 1: hash = ((hash << 5) + hash) + *p++; break; |
---|
177 | n/a | default: |
---|
178 | n/a | assert(0); |
---|
179 | n/a | } |
---|
180 | n/a | hash ^= len; |
---|
181 | n/a | hash ^= (Py_uhash_t) _Py_HashSecret.djbx33a.suffix; |
---|
182 | n/a | x = (Py_hash_t)hash; |
---|
183 | n/a | } |
---|
184 | n/a | else |
---|
185 | n/a | #endif /* Py_HASH_CUTOFF */ |
---|
186 | n/a | x = PyHash_Func.hash(src, len); |
---|
187 | n/a | |
---|
188 | n/a | if (x == -1) |
---|
189 | n/a | return -2; |
---|
190 | n/a | return x; |
---|
191 | n/a | } |
---|
192 | n/a | |
---|
193 | n/a | void |
---|
194 | n/a | _PyHash_Fini(void) |
---|
195 | n/a | { |
---|
196 | n/a | #ifdef Py_HASH_STATS |
---|
197 | n/a | int i; |
---|
198 | n/a | Py_ssize_t total = 0; |
---|
199 | n/a | char *fmt = "%2i %8" PY_FORMAT_SIZE_T "d %8" PY_FORMAT_SIZE_T "d\n"; |
---|
200 | n/a | |
---|
201 | n/a | fprintf(stderr, "len calls total\n"); |
---|
202 | n/a | for (i = 1; i <= Py_HASH_STATS_MAX; i++) { |
---|
203 | n/a | total += hashstats[i]; |
---|
204 | n/a | fprintf(stderr, fmt, i, hashstats[i], total); |
---|
205 | n/a | } |
---|
206 | n/a | total += hashstats[0]; |
---|
207 | n/a | fprintf(stderr, "> %8" PY_FORMAT_SIZE_T "d %8" PY_FORMAT_SIZE_T "d\n", |
---|
208 | n/a | hashstats[0], total); |
---|
209 | n/a | #endif |
---|
210 | n/a | } |
---|
211 | n/a | |
---|
212 | n/a | PyHash_FuncDef * |
---|
213 | n/a | PyHash_GetFuncDef(void) |
---|
214 | n/a | { |
---|
215 | n/a | return &PyHash_Func; |
---|
216 | n/a | } |
---|
217 | n/a | |
---|
218 | n/a | /* Optimized memcpy() for Windows */ |
---|
219 | n/a | #ifdef _MSC_VER |
---|
220 | n/a | # if SIZEOF_PY_UHASH_T == 4 |
---|
221 | n/a | # define PY_UHASH_CPY(dst, src) do { \ |
---|
222 | n/a | dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; \ |
---|
223 | n/a | } while(0) |
---|
224 | n/a | # elif SIZEOF_PY_UHASH_T == 8 |
---|
225 | n/a | # define PY_UHASH_CPY(dst, src) do { \ |
---|
226 | n/a | dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; \ |
---|
227 | n/a | dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; \ |
---|
228 | n/a | } while(0) |
---|
229 | n/a | # else |
---|
230 | n/a | # error SIZEOF_PY_UHASH_T must be 4 or 8 |
---|
231 | n/a | # endif /* SIZEOF_PY_UHASH_T */ |
---|
232 | n/a | #else /* not Windows */ |
---|
233 | n/a | # define PY_UHASH_CPY(dst, src) memcpy(dst, src, SIZEOF_PY_UHASH_T) |
---|
234 | n/a | #endif /* _MSC_VER */ |
---|
235 | n/a | |
---|
236 | n/a | |
---|
237 | n/a | #if Py_HASH_ALGORITHM == Py_HASH_FNV |
---|
238 | n/a | /* ************************************************************************** |
---|
239 | n/a | * Modified Fowler-Noll-Vo (FNV) hash function |
---|
240 | n/a | */ |
---|
241 | n/a | static Py_hash_t |
---|
242 | n/a | fnv(const void *src, Py_ssize_t len) |
---|
243 | n/a | { |
---|
244 | n/a | const unsigned char *p = src; |
---|
245 | n/a | Py_uhash_t x; |
---|
246 | n/a | Py_ssize_t remainder, blocks; |
---|
247 | n/a | union { |
---|
248 | n/a | Py_uhash_t value; |
---|
249 | n/a | unsigned char bytes[SIZEOF_PY_UHASH_T]; |
---|
250 | n/a | } block; |
---|
251 | n/a | |
---|
252 | n/a | #ifdef Py_DEBUG |
---|
253 | n/a | assert(_Py_HashSecret_Initialized); |
---|
254 | n/a | #endif |
---|
255 | n/a | remainder = len % SIZEOF_PY_UHASH_T; |
---|
256 | n/a | if (remainder == 0) { |
---|
257 | n/a | /* Process at least one block byte by byte to reduce hash collisions |
---|
258 | n/a | * for strings with common prefixes. */ |
---|
259 | n/a | remainder = SIZEOF_PY_UHASH_T; |
---|
260 | n/a | } |
---|
261 | n/a | blocks = (len - remainder) / SIZEOF_PY_UHASH_T; |
---|
262 | n/a | |
---|
263 | n/a | x = (Py_uhash_t) _Py_HashSecret.fnv.prefix; |
---|
264 | n/a | x ^= (Py_uhash_t) *p << 7; |
---|
265 | n/a | while (blocks--) { |
---|
266 | n/a | PY_UHASH_CPY(block.bytes, p); |
---|
267 | n/a | x = (_PyHASH_MULTIPLIER * x) ^ block.value; |
---|
268 | n/a | p += SIZEOF_PY_UHASH_T; |
---|
269 | n/a | } |
---|
270 | n/a | /* add remainder */ |
---|
271 | n/a | for (; remainder > 0; remainder--) |
---|
272 | n/a | x = (_PyHASH_MULTIPLIER * x) ^ (Py_uhash_t) *p++; |
---|
273 | n/a | x ^= (Py_uhash_t) len; |
---|
274 | n/a | x ^= (Py_uhash_t) _Py_HashSecret.fnv.suffix; |
---|
275 | n/a | if (x == -1) { |
---|
276 | n/a | x = -2; |
---|
277 | n/a | } |
---|
278 | n/a | return x; |
---|
279 | n/a | } |
---|
280 | n/a | |
---|
281 | n/a | static PyHash_FuncDef PyHash_Func = {fnv, "fnv", 8 * SIZEOF_PY_HASH_T, |
---|
282 | n/a | 16 * SIZEOF_PY_HASH_T}; |
---|
283 | n/a | |
---|
284 | n/a | #endif /* Py_HASH_ALGORITHM == Py_HASH_FNV */ |
---|
285 | n/a | |
---|
286 | n/a | |
---|
287 | n/a | #if Py_HASH_ALGORITHM == Py_HASH_SIPHASH24 |
---|
288 | n/a | /* ************************************************************************** |
---|
289 | n/a | <MIT License> |
---|
290 | n/a | Copyright (c) 2013 Marek Majkowski <marek@popcount.org> |
---|
291 | n/a | |
---|
292 | n/a | Permission is hereby granted, free of charge, to any person obtaining a copy |
---|
293 | n/a | of this software and associated documentation files (the "Software"), to deal |
---|
294 | n/a | in the Software without restriction, including without limitation the rights |
---|
295 | n/a | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
---|
296 | n/a | copies of the Software, and to permit persons to whom the Software is |
---|
297 | n/a | furnished to do so, subject to the following conditions: |
---|
298 | n/a | |
---|
299 | n/a | The above copyright notice and this permission notice shall be included in |
---|
300 | n/a | all copies or substantial portions of the Software. |
---|
301 | n/a | |
---|
302 | n/a | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
---|
303 | n/a | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
---|
304 | n/a | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
---|
305 | n/a | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
---|
306 | n/a | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
---|
307 | n/a | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
---|
308 | n/a | THE SOFTWARE. |
---|
309 | n/a | </MIT License> |
---|
310 | n/a | |
---|
311 | n/a | Original location: |
---|
312 | n/a | https://github.com/majek/csiphash/ |
---|
313 | n/a | |
---|
314 | n/a | Solution inspired by code from: |
---|
315 | n/a | Samuel Neves (supercop/crypto_auth/siphash24/little) |
---|
316 | n/a | djb (supercop/crypto_auth/siphash24/little2) |
---|
317 | n/a | Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c) |
---|
318 | n/a | |
---|
319 | n/a | Modified for Python by Christian Heimes: |
---|
320 | n/a | - C89 / MSVC compatibility |
---|
321 | n/a | - _rotl64() on Windows |
---|
322 | n/a | - letoh64() fallback |
---|
323 | n/a | */ |
---|
324 | n/a | |
---|
325 | n/a | /* byte swap little endian to host endian |
---|
326 | n/a | * Endian conversion not only ensures that the hash function returns the same |
---|
327 | n/a | * value on all platforms. It is also required to for a good dispersion of |
---|
328 | n/a | * the hash values' least significant bits. |
---|
329 | n/a | */ |
---|
330 | n/a | #if PY_LITTLE_ENDIAN |
---|
331 | n/a | # define _le64toh(x) ((uint64_t)(x)) |
---|
332 | n/a | #elif defined(__APPLE__) |
---|
333 | n/a | # define _le64toh(x) OSSwapLittleToHostInt64(x) |
---|
334 | n/a | #elif defined(HAVE_LETOH64) |
---|
335 | n/a | # define _le64toh(x) le64toh(x) |
---|
336 | n/a | #else |
---|
337 | n/a | # define _le64toh(x) (((uint64_t)(x) << 56) | \ |
---|
338 | n/a | (((uint64_t)(x) << 40) & 0xff000000000000ULL) | \ |
---|
339 | n/a | (((uint64_t)(x) << 24) & 0xff0000000000ULL) | \ |
---|
340 | n/a | (((uint64_t)(x) << 8) & 0xff00000000ULL) | \ |
---|
341 | n/a | (((uint64_t)(x) >> 8) & 0xff000000ULL) | \ |
---|
342 | n/a | (((uint64_t)(x) >> 24) & 0xff0000ULL) | \ |
---|
343 | n/a | (((uint64_t)(x) >> 40) & 0xff00ULL) | \ |
---|
344 | n/a | ((uint64_t)(x) >> 56)) |
---|
345 | n/a | #endif |
---|
346 | n/a | |
---|
347 | n/a | |
---|
348 | n/a | #ifdef _MSC_VER |
---|
349 | n/a | # define ROTATE(x, b) _rotl64(x, b) |
---|
350 | n/a | #else |
---|
351 | n/a | # define ROTATE(x, b) (uint64_t)( ((x) << (b)) | ( (x) >> (64 - (b))) ) |
---|
352 | n/a | #endif |
---|
353 | n/a | |
---|
354 | n/a | #define HALF_ROUND(a,b,c,d,s,t) \ |
---|
355 | n/a | a += b; c += d; \ |
---|
356 | n/a | b = ROTATE(b, s) ^ a; \ |
---|
357 | n/a | d = ROTATE(d, t) ^ c; \ |
---|
358 | n/a | a = ROTATE(a, 32); |
---|
359 | n/a | |
---|
360 | n/a | #define DOUBLE_ROUND(v0,v1,v2,v3) \ |
---|
361 | n/a | HALF_ROUND(v0,v1,v2,v3,13,16); \ |
---|
362 | n/a | HALF_ROUND(v2,v1,v0,v3,17,21); \ |
---|
363 | n/a | HALF_ROUND(v0,v1,v2,v3,13,16); \ |
---|
364 | n/a | HALF_ROUND(v2,v1,v0,v3,17,21); |
---|
365 | n/a | |
---|
366 | n/a | |
---|
367 | n/a | static Py_hash_t |
---|
368 | n/a | siphash24(const void *src, Py_ssize_t src_sz) { |
---|
369 | n/a | uint64_t k0 = _le64toh(_Py_HashSecret.siphash.k0); |
---|
370 | n/a | uint64_t k1 = _le64toh(_Py_HashSecret.siphash.k1); |
---|
371 | n/a | uint64_t b = (uint64_t)src_sz << 56; |
---|
372 | n/a | const uint64_t *in = (uint64_t*)src; |
---|
373 | n/a | |
---|
374 | n/a | uint64_t v0 = k0 ^ 0x736f6d6570736575ULL; |
---|
375 | n/a | uint64_t v1 = k1 ^ 0x646f72616e646f6dULL; |
---|
376 | n/a | uint64_t v2 = k0 ^ 0x6c7967656e657261ULL; |
---|
377 | n/a | uint64_t v3 = k1 ^ 0x7465646279746573ULL; |
---|
378 | n/a | |
---|
379 | n/a | uint64_t t; |
---|
380 | n/a | uint8_t *pt; |
---|
381 | n/a | uint8_t *m; |
---|
382 | n/a | |
---|
383 | n/a | while (src_sz >= 8) { |
---|
384 | n/a | uint64_t mi = _le64toh(*in); |
---|
385 | n/a | in += 1; |
---|
386 | n/a | src_sz -= 8; |
---|
387 | n/a | v3 ^= mi; |
---|
388 | n/a | DOUBLE_ROUND(v0,v1,v2,v3); |
---|
389 | n/a | v0 ^= mi; |
---|
390 | n/a | } |
---|
391 | n/a | |
---|
392 | n/a | t = 0; |
---|
393 | n/a | pt = (uint8_t *)&t; |
---|
394 | n/a | m = (uint8_t *)in; |
---|
395 | n/a | switch (src_sz) { |
---|
396 | n/a | case 7: pt[6] = m[6]; |
---|
397 | n/a | case 6: pt[5] = m[5]; |
---|
398 | n/a | case 5: pt[4] = m[4]; |
---|
399 | n/a | case 4: memcpy(pt, m, sizeof(uint32_t)); break; |
---|
400 | n/a | case 3: pt[2] = m[2]; |
---|
401 | n/a | case 2: pt[1] = m[1]; |
---|
402 | n/a | case 1: pt[0] = m[0]; |
---|
403 | n/a | } |
---|
404 | n/a | b |= _le64toh(t); |
---|
405 | n/a | |
---|
406 | n/a | v3 ^= b; |
---|
407 | n/a | DOUBLE_ROUND(v0,v1,v2,v3); |
---|
408 | n/a | v0 ^= b; |
---|
409 | n/a | v2 ^= 0xff; |
---|
410 | n/a | DOUBLE_ROUND(v0,v1,v2,v3); |
---|
411 | n/a | DOUBLE_ROUND(v0,v1,v2,v3); |
---|
412 | n/a | |
---|
413 | n/a | /* modified */ |
---|
414 | n/a | t = (v0 ^ v1) ^ (v2 ^ v3); |
---|
415 | n/a | return (Py_hash_t)t; |
---|
416 | n/a | } |
---|
417 | n/a | |
---|
418 | n/a | static PyHash_FuncDef PyHash_Func = {siphash24, "siphash24", 64, 128}; |
---|
419 | n/a | |
---|
420 | n/a | #endif /* Py_HASH_ALGORITHM == Py_HASH_SIPHASH24 */ |
---|
421 | n/a | |
---|
422 | n/a | #ifdef __cplusplus |
---|
423 | n/a | } |
---|
424 | n/a | #endif |
---|