1 | n/a | /**************************************************************** |
---|
2 | n/a | * |
---|
3 | n/a | * The author of this software is David M. Gay. |
---|
4 | n/a | * |
---|
5 | n/a | * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. |
---|
6 | n/a | * |
---|
7 | n/a | * Permission to use, copy, modify, and distribute this software for any |
---|
8 | n/a | * purpose without fee is hereby granted, provided that this entire notice |
---|
9 | n/a | * is included in all copies of any software which is or includes a copy |
---|
10 | n/a | * or modification of this software and in all copies of the supporting |
---|
11 | n/a | * documentation for such software. |
---|
12 | n/a | * |
---|
13 | n/a | * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED |
---|
14 | n/a | * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY |
---|
15 | n/a | * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY |
---|
16 | n/a | * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. |
---|
17 | n/a | * |
---|
18 | n/a | ***************************************************************/ |
---|
19 | n/a | |
---|
20 | n/a | /**************************************************************** |
---|
21 | n/a | * This is dtoa.c by David M. Gay, downloaded from |
---|
22 | n/a | * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for |
---|
23 | n/a | * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith. |
---|
24 | n/a | * |
---|
25 | n/a | * Please remember to check http://www.netlib.org/fp regularly (and especially |
---|
26 | n/a | * before any Python release) for bugfixes and updates. |
---|
27 | n/a | * |
---|
28 | n/a | * The major modifications from Gay's original code are as follows: |
---|
29 | n/a | * |
---|
30 | n/a | * 0. The original code has been specialized to Python's needs by removing |
---|
31 | n/a | * many of the #ifdef'd sections. In particular, code to support VAX and |
---|
32 | n/a | * IBM floating-point formats, hex NaNs, hex floats, locale-aware |
---|
33 | n/a | * treatment of the decimal point, and setting of the inexact flag have |
---|
34 | n/a | * been removed. |
---|
35 | n/a | * |
---|
36 | n/a | * 1. We use PyMem_Malloc and PyMem_Free in place of malloc and free. |
---|
37 | n/a | * |
---|
38 | n/a | * 2. The public functions strtod, dtoa and freedtoa all now have |
---|
39 | n/a | * a _Py_dg_ prefix. |
---|
40 | n/a | * |
---|
41 | n/a | * 3. Instead of assuming that PyMem_Malloc always succeeds, we thread |
---|
42 | n/a | * PyMem_Malloc failures through the code. The functions |
---|
43 | n/a | * |
---|
44 | n/a | * Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b |
---|
45 | n/a | * |
---|
46 | n/a | * of return type *Bigint all return NULL to indicate a malloc failure. |
---|
47 | n/a | * Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on |
---|
48 | n/a | * failure. bigcomp now has return type int (it used to be void) and |
---|
49 | n/a | * returns -1 on failure and 0 otherwise. _Py_dg_dtoa returns NULL |
---|
50 | n/a | * on failure. _Py_dg_strtod indicates failure due to malloc failure |
---|
51 | n/a | * by returning -1.0, setting errno=ENOMEM and *se to s00. |
---|
52 | n/a | * |
---|
53 | n/a | * 4. The static variable dtoa_result has been removed. Callers of |
---|
54 | n/a | * _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free |
---|
55 | n/a | * the memory allocated by _Py_dg_dtoa. |
---|
56 | n/a | * |
---|
57 | n/a | * 5. The code has been reformatted to better fit with Python's |
---|
58 | n/a | * C style guide (PEP 7). |
---|
59 | n/a | * |
---|
60 | n/a | * 6. A bug in the memory allocation has been fixed: to avoid FREEing memory |
---|
61 | n/a | * that hasn't been MALLOC'ed, private_mem should only be used when k <= |
---|
62 | n/a | * Kmax. |
---|
63 | n/a | * |
---|
64 | n/a | * 7. _Py_dg_strtod has been modified so that it doesn't accept strings with |
---|
65 | n/a | * leading whitespace. |
---|
66 | n/a | * |
---|
67 | n/a | ***************************************************************/ |
---|
68 | n/a | |
---|
69 | n/a | /* Please send bug reports for the original dtoa.c code to David M. Gay (dmg |
---|
70 | n/a | * at acm dot org, with " at " changed at "@" and " dot " changed to "."). |
---|
71 | n/a | * Please report bugs for this modified version using the Python issue tracker |
---|
72 | n/a | * (http://bugs.python.org). */ |
---|
73 | n/a | |
---|
74 | n/a | /* On a machine with IEEE extended-precision registers, it is |
---|
75 | n/a | * necessary to specify double-precision (53-bit) rounding precision |
---|
76 | n/a | * before invoking strtod or dtoa. If the machine uses (the equivalent |
---|
77 | n/a | * of) Intel 80x87 arithmetic, the call |
---|
78 | n/a | * _control87(PC_53, MCW_PC); |
---|
79 | n/a | * does this with many compilers. Whether this or another call is |
---|
80 | n/a | * appropriate depends on the compiler; for this to work, it may be |
---|
81 | n/a | * necessary to #include "float.h" or another system-dependent header |
---|
82 | n/a | * file. |
---|
83 | n/a | */ |
---|
84 | n/a | |
---|
85 | n/a | /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. |
---|
86 | n/a | * |
---|
87 | n/a | * This strtod returns a nearest machine number to the input decimal |
---|
88 | n/a | * string (or sets errno to ERANGE). With IEEE arithmetic, ties are |
---|
89 | n/a | * broken by the IEEE round-even rule. Otherwise ties are broken by |
---|
90 | n/a | * biased rounding (add half and chop). |
---|
91 | n/a | * |
---|
92 | n/a | * Inspired loosely by William D. Clinger's paper "How to Read Floating |
---|
93 | n/a | * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. |
---|
94 | n/a | * |
---|
95 | n/a | * Modifications: |
---|
96 | n/a | * |
---|
97 | n/a | * 1. We only require IEEE, IBM, or VAX double-precision |
---|
98 | n/a | * arithmetic (not IEEE double-extended). |
---|
99 | n/a | * 2. We get by with floating-point arithmetic in a case that |
---|
100 | n/a | * Clinger missed -- when we're computing d * 10^n |
---|
101 | n/a | * for a small integer d and the integer n is not too |
---|
102 | n/a | * much larger than 22 (the maximum integer k for which |
---|
103 | n/a | * we can represent 10^k exactly), we may be able to |
---|
104 | n/a | * compute (d*10^k) * 10^(e-k) with just one roundoff. |
---|
105 | n/a | * 3. Rather than a bit-at-a-time adjustment of the binary |
---|
106 | n/a | * result in the hard case, we use floating-point |
---|
107 | n/a | * arithmetic to determine the adjustment to within |
---|
108 | n/a | * one bit; only in really hard cases do we need to |
---|
109 | n/a | * compute a second residual. |
---|
110 | n/a | * 4. Because of 3., we don't need a large table of powers of 10 |
---|
111 | n/a | * for ten-to-e (just some small tables, e.g. of 10^k |
---|
112 | n/a | * for 0 <= k <= 22). |
---|
113 | n/a | */ |
---|
114 | n/a | |
---|
115 | n/a | /* Linking of Python's #defines to Gay's #defines starts here. */ |
---|
116 | n/a | |
---|
117 | n/a | #include "Python.h" |
---|
118 | n/a | |
---|
119 | n/a | /* if PY_NO_SHORT_FLOAT_REPR is defined, then don't even try to compile |
---|
120 | n/a | the following code */ |
---|
121 | n/a | #ifndef PY_NO_SHORT_FLOAT_REPR |
---|
122 | n/a | |
---|
123 | n/a | #include "float.h" |
---|
124 | n/a | |
---|
125 | n/a | #define MALLOC PyMem_Malloc |
---|
126 | n/a | #define FREE PyMem_Free |
---|
127 | n/a | |
---|
128 | n/a | /* This code should also work for ARM mixed-endian format on little-endian |
---|
129 | n/a | machines, where doubles have byte order 45670123 (in increasing address |
---|
130 | n/a | order, 0 being the least significant byte). */ |
---|
131 | n/a | #ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754 |
---|
132 | n/a | # define IEEE_8087 |
---|
133 | n/a | #endif |
---|
134 | n/a | #if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) || \ |
---|
135 | n/a | defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754) |
---|
136 | n/a | # define IEEE_MC68k |
---|
137 | n/a | #endif |
---|
138 | n/a | #if defined(IEEE_8087) + defined(IEEE_MC68k) != 1 |
---|
139 | n/a | #error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined." |
---|
140 | n/a | #endif |
---|
141 | n/a | |
---|
142 | n/a | /* The code below assumes that the endianness of integers matches the |
---|
143 | n/a | endianness of the two 32-bit words of a double. Check this. */ |
---|
144 | n/a | #if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \ |
---|
145 | n/a | defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)) |
---|
146 | n/a | #error "doubles and ints have incompatible endianness" |
---|
147 | n/a | #endif |
---|
148 | n/a | |
---|
149 | n/a | #if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) |
---|
150 | n/a | #error "doubles and ints have incompatible endianness" |
---|
151 | n/a | #endif |
---|
152 | n/a | |
---|
153 | n/a | |
---|
154 | n/a | typedef uint32_t ULong; |
---|
155 | n/a | typedef int32_t Long; |
---|
156 | n/a | typedef uint64_t ULLong; |
---|
157 | n/a | |
---|
158 | n/a | #undef DEBUG |
---|
159 | n/a | #ifdef Py_DEBUG |
---|
160 | n/a | #define DEBUG |
---|
161 | n/a | #endif |
---|
162 | n/a | |
---|
163 | n/a | /* End Python #define linking */ |
---|
164 | n/a | |
---|
165 | n/a | #ifdef DEBUG |
---|
166 | n/a | #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} |
---|
167 | n/a | #endif |
---|
168 | n/a | |
---|
169 | n/a | #ifndef PRIVATE_MEM |
---|
170 | n/a | #define PRIVATE_MEM 2304 |
---|
171 | n/a | #endif |
---|
172 | n/a | #define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) |
---|
173 | n/a | static double private_mem[PRIVATE_mem], *pmem_next = private_mem; |
---|
174 | n/a | |
---|
175 | n/a | #ifdef __cplusplus |
---|
176 | n/a | extern "C" { |
---|
177 | n/a | #endif |
---|
178 | n/a | |
---|
179 | n/a | typedef union { double d; ULong L[2]; } U; |
---|
180 | n/a | |
---|
181 | n/a | #ifdef IEEE_8087 |
---|
182 | n/a | #define word0(x) (x)->L[1] |
---|
183 | n/a | #define word1(x) (x)->L[0] |
---|
184 | n/a | #else |
---|
185 | n/a | #define word0(x) (x)->L[0] |
---|
186 | n/a | #define word1(x) (x)->L[1] |
---|
187 | n/a | #endif |
---|
188 | n/a | #define dval(x) (x)->d |
---|
189 | n/a | |
---|
190 | n/a | #ifndef STRTOD_DIGLIM |
---|
191 | n/a | #define STRTOD_DIGLIM 40 |
---|
192 | n/a | #endif |
---|
193 | n/a | |
---|
194 | n/a | /* maximum permitted exponent value for strtod; exponents larger than |
---|
195 | n/a | MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP. MAX_ABS_EXP |
---|
196 | n/a | should fit into an int. */ |
---|
197 | n/a | #ifndef MAX_ABS_EXP |
---|
198 | n/a | #define MAX_ABS_EXP 1100000000U |
---|
199 | n/a | #endif |
---|
200 | n/a | /* Bound on length of pieces of input strings in _Py_dg_strtod; specifically, |
---|
201 | n/a | this is used to bound the total number of digits ignoring leading zeros and |
---|
202 | n/a | the number of digits that follow the decimal point. Ideally, MAX_DIGITS |
---|
203 | n/a | should satisfy MAX_DIGITS + 400 < MAX_ABS_EXP; that ensures that the |
---|
204 | n/a | exponent clipping in _Py_dg_strtod can't affect the value of the output. */ |
---|
205 | n/a | #ifndef MAX_DIGITS |
---|
206 | n/a | #define MAX_DIGITS 1000000000U |
---|
207 | n/a | #endif |
---|
208 | n/a | |
---|
209 | n/a | /* Guard against trying to use the above values on unusual platforms with ints |
---|
210 | n/a | * of width less than 32 bits. */ |
---|
211 | n/a | #if MAX_ABS_EXP > INT_MAX |
---|
212 | n/a | #error "MAX_ABS_EXP should fit in an int" |
---|
213 | n/a | #endif |
---|
214 | n/a | #if MAX_DIGITS > INT_MAX |
---|
215 | n/a | #error "MAX_DIGITS should fit in an int" |
---|
216 | n/a | #endif |
---|
217 | n/a | |
---|
218 | n/a | /* The following definition of Storeinc is appropriate for MIPS processors. |
---|
219 | n/a | * An alternative that might be better on some machines is |
---|
220 | n/a | * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) |
---|
221 | n/a | */ |
---|
222 | n/a | #if defined(IEEE_8087) |
---|
223 | n/a | #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ |
---|
224 | n/a | ((unsigned short *)a)[0] = (unsigned short)c, a++) |
---|
225 | n/a | #else |
---|
226 | n/a | #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ |
---|
227 | n/a | ((unsigned short *)a)[1] = (unsigned short)c, a++) |
---|
228 | n/a | #endif |
---|
229 | n/a | |
---|
230 | n/a | /* #define P DBL_MANT_DIG */ |
---|
231 | n/a | /* Ten_pmax = floor(P*log(2)/log(5)) */ |
---|
232 | n/a | /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ |
---|
233 | n/a | /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ |
---|
234 | n/a | /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ |
---|
235 | n/a | |
---|
236 | n/a | #define Exp_shift 20 |
---|
237 | n/a | #define Exp_shift1 20 |
---|
238 | n/a | #define Exp_msk1 0x100000 |
---|
239 | n/a | #define Exp_msk11 0x100000 |
---|
240 | n/a | #define Exp_mask 0x7ff00000 |
---|
241 | n/a | #define P 53 |
---|
242 | n/a | #define Nbits 53 |
---|
243 | n/a | #define Bias 1023 |
---|
244 | n/a | #define Emax 1023 |
---|
245 | n/a | #define Emin (-1022) |
---|
246 | n/a | #define Etiny (-1074) /* smallest denormal is 2**Etiny */ |
---|
247 | n/a | #define Exp_1 0x3ff00000 |
---|
248 | n/a | #define Exp_11 0x3ff00000 |
---|
249 | n/a | #define Ebits 11 |
---|
250 | n/a | #define Frac_mask 0xfffff |
---|
251 | n/a | #define Frac_mask1 0xfffff |
---|
252 | n/a | #define Ten_pmax 22 |
---|
253 | n/a | #define Bletch 0x10 |
---|
254 | n/a | #define Bndry_mask 0xfffff |
---|
255 | n/a | #define Bndry_mask1 0xfffff |
---|
256 | n/a | #define Sign_bit 0x80000000 |
---|
257 | n/a | #define Log2P 1 |
---|
258 | n/a | #define Tiny0 0 |
---|
259 | n/a | #define Tiny1 1 |
---|
260 | n/a | #define Quick_max 14 |
---|
261 | n/a | #define Int_max 14 |
---|
262 | n/a | |
---|
263 | n/a | #ifndef Flt_Rounds |
---|
264 | n/a | #ifdef FLT_ROUNDS |
---|
265 | n/a | #define Flt_Rounds FLT_ROUNDS |
---|
266 | n/a | #else |
---|
267 | n/a | #define Flt_Rounds 1 |
---|
268 | n/a | #endif |
---|
269 | n/a | #endif /*Flt_Rounds*/ |
---|
270 | n/a | |
---|
271 | n/a | #define Rounding Flt_Rounds |
---|
272 | n/a | |
---|
273 | n/a | #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) |
---|
274 | n/a | #define Big1 0xffffffff |
---|
275 | n/a | |
---|
276 | n/a | /* Standard NaN used by _Py_dg_stdnan. */ |
---|
277 | n/a | |
---|
278 | n/a | #define NAN_WORD0 0x7ff80000 |
---|
279 | n/a | #define NAN_WORD1 0 |
---|
280 | n/a | |
---|
281 | n/a | /* Bits of the representation of positive infinity. */ |
---|
282 | n/a | |
---|
283 | n/a | #define POSINF_WORD0 0x7ff00000 |
---|
284 | n/a | #define POSINF_WORD1 0 |
---|
285 | n/a | |
---|
286 | n/a | /* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */ |
---|
287 | n/a | |
---|
288 | n/a | typedef struct BCinfo BCinfo; |
---|
289 | n/a | struct |
---|
290 | n/a | BCinfo { |
---|
291 | n/a | int e0, nd, nd0, scale; |
---|
292 | n/a | }; |
---|
293 | n/a | |
---|
294 | n/a | #define FFFFFFFF 0xffffffffUL |
---|
295 | n/a | |
---|
296 | n/a | #define Kmax 7 |
---|
297 | n/a | |
---|
298 | n/a | /* struct Bigint is used to represent arbitrary-precision integers. These |
---|
299 | n/a | integers are stored in sign-magnitude format, with the magnitude stored as |
---|
300 | n/a | an array of base 2**32 digits. Bigints are always normalized: if x is a |
---|
301 | n/a | Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero. |
---|
302 | n/a | |
---|
303 | n/a | The Bigint fields are as follows: |
---|
304 | n/a | |
---|
305 | n/a | - next is a header used by Balloc and Bfree to keep track of lists |
---|
306 | n/a | of freed Bigints; it's also used for the linked list of |
---|
307 | n/a | powers of 5 of the form 5**2**i used by pow5mult. |
---|
308 | n/a | - k indicates which pool this Bigint was allocated from |
---|
309 | n/a | - maxwds is the maximum number of words space was allocated for |
---|
310 | n/a | (usually maxwds == 2**k) |
---|
311 | n/a | - sign is 1 for negative Bigints, 0 for positive. The sign is unused |
---|
312 | n/a | (ignored on inputs, set to 0 on outputs) in almost all operations |
---|
313 | n/a | involving Bigints: a notable exception is the diff function, which |
---|
314 | n/a | ignores signs on inputs but sets the sign of the output correctly. |
---|
315 | n/a | - wds is the actual number of significant words |
---|
316 | n/a | - x contains the vector of words (digits) for this Bigint, from least |
---|
317 | n/a | significant (x[0]) to most significant (x[wds-1]). |
---|
318 | n/a | */ |
---|
319 | n/a | |
---|
320 | n/a | struct |
---|
321 | n/a | Bigint { |
---|
322 | n/a | struct Bigint *next; |
---|
323 | n/a | int k, maxwds, sign, wds; |
---|
324 | n/a | ULong x[1]; |
---|
325 | n/a | }; |
---|
326 | n/a | |
---|
327 | n/a | typedef struct Bigint Bigint; |
---|
328 | n/a | |
---|
329 | n/a | #ifndef Py_USING_MEMORY_DEBUGGER |
---|
330 | n/a | |
---|
331 | n/a | /* Memory management: memory is allocated from, and returned to, Kmax+1 pools |
---|
332 | n/a | of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds == |
---|
333 | n/a | 1 << k. These pools are maintained as linked lists, with freelist[k] |
---|
334 | n/a | pointing to the head of the list for pool k. |
---|
335 | n/a | |
---|
336 | n/a | On allocation, if there's no free slot in the appropriate pool, MALLOC is |
---|
337 | n/a | called to get more memory. This memory is not returned to the system until |
---|
338 | n/a | Python quits. There's also a private memory pool that's allocated from |
---|
339 | n/a | in preference to using MALLOC. |
---|
340 | n/a | |
---|
341 | n/a | For Bigints with more than (1 << Kmax) digits (which implies at least 1233 |
---|
342 | n/a | decimal digits), memory is directly allocated using MALLOC, and freed using |
---|
343 | n/a | FREE. |
---|
344 | n/a | |
---|
345 | n/a | XXX: it would be easy to bypass this memory-management system and |
---|
346 | n/a | translate each call to Balloc into a call to PyMem_Malloc, and each |
---|
347 | n/a | Bfree to PyMem_Free. Investigate whether this has any significant |
---|
348 | n/a | performance on impact. */ |
---|
349 | n/a | |
---|
350 | n/a | static Bigint *freelist[Kmax+1]; |
---|
351 | n/a | |
---|
352 | n/a | /* Allocate space for a Bigint with up to 1<<k digits */ |
---|
353 | n/a | |
---|
354 | n/a | static Bigint * |
---|
355 | n/a | Balloc(int k) |
---|
356 | n/a | { |
---|
357 | n/a | int x; |
---|
358 | n/a | Bigint *rv; |
---|
359 | n/a | unsigned int len; |
---|
360 | n/a | |
---|
361 | n/a | if (k <= Kmax && (rv = freelist[k])) |
---|
362 | n/a | freelist[k] = rv->next; |
---|
363 | n/a | else { |
---|
364 | n/a | x = 1 << k; |
---|
365 | n/a | len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) |
---|
366 | n/a | /sizeof(double); |
---|
367 | n/a | if (k <= Kmax && pmem_next - private_mem + len <= (Py_ssize_t)PRIVATE_mem) { |
---|
368 | n/a | rv = (Bigint*)pmem_next; |
---|
369 | n/a | pmem_next += len; |
---|
370 | n/a | } |
---|
371 | n/a | else { |
---|
372 | n/a | rv = (Bigint*)MALLOC(len*sizeof(double)); |
---|
373 | n/a | if (rv == NULL) |
---|
374 | n/a | return NULL; |
---|
375 | n/a | } |
---|
376 | n/a | rv->k = k; |
---|
377 | n/a | rv->maxwds = x; |
---|
378 | n/a | } |
---|
379 | n/a | rv->sign = rv->wds = 0; |
---|
380 | n/a | return rv; |
---|
381 | n/a | } |
---|
382 | n/a | |
---|
383 | n/a | /* Free a Bigint allocated with Balloc */ |
---|
384 | n/a | |
---|
385 | n/a | static void |
---|
386 | n/a | Bfree(Bigint *v) |
---|
387 | n/a | { |
---|
388 | n/a | if (v) { |
---|
389 | n/a | if (v->k > Kmax) |
---|
390 | n/a | FREE((void*)v); |
---|
391 | n/a | else { |
---|
392 | n/a | v->next = freelist[v->k]; |
---|
393 | n/a | freelist[v->k] = v; |
---|
394 | n/a | } |
---|
395 | n/a | } |
---|
396 | n/a | } |
---|
397 | n/a | |
---|
398 | n/a | #else |
---|
399 | n/a | |
---|
400 | n/a | /* Alternative versions of Balloc and Bfree that use PyMem_Malloc and |
---|
401 | n/a | PyMem_Free directly in place of the custom memory allocation scheme above. |
---|
402 | n/a | These are provided for the benefit of memory debugging tools like |
---|
403 | n/a | Valgrind. */ |
---|
404 | n/a | |
---|
405 | n/a | /* Allocate space for a Bigint with up to 1<<k digits */ |
---|
406 | n/a | |
---|
407 | n/a | static Bigint * |
---|
408 | n/a | Balloc(int k) |
---|
409 | n/a | { |
---|
410 | n/a | int x; |
---|
411 | n/a | Bigint *rv; |
---|
412 | n/a | unsigned int len; |
---|
413 | n/a | |
---|
414 | n/a | x = 1 << k; |
---|
415 | n/a | len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) |
---|
416 | n/a | /sizeof(double); |
---|
417 | n/a | |
---|
418 | n/a | rv = (Bigint*)MALLOC(len*sizeof(double)); |
---|
419 | n/a | if (rv == NULL) |
---|
420 | n/a | return NULL; |
---|
421 | n/a | |
---|
422 | n/a | rv->k = k; |
---|
423 | n/a | rv->maxwds = x; |
---|
424 | n/a | rv->sign = rv->wds = 0; |
---|
425 | n/a | return rv; |
---|
426 | n/a | } |
---|
427 | n/a | |
---|
428 | n/a | /* Free a Bigint allocated with Balloc */ |
---|
429 | n/a | |
---|
430 | n/a | static void |
---|
431 | n/a | Bfree(Bigint *v) |
---|
432 | n/a | { |
---|
433 | n/a | if (v) { |
---|
434 | n/a | FREE((void*)v); |
---|
435 | n/a | } |
---|
436 | n/a | } |
---|
437 | n/a | |
---|
438 | n/a | #endif /* Py_USING_MEMORY_DEBUGGER */ |
---|
439 | n/a | |
---|
440 | n/a | #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ |
---|
441 | n/a | y->wds*sizeof(Long) + 2*sizeof(int)) |
---|
442 | n/a | |
---|
443 | n/a | /* Multiply a Bigint b by m and add a. Either modifies b in place and returns |
---|
444 | n/a | a pointer to the modified b, or Bfrees b and returns a pointer to a copy. |
---|
445 | n/a | On failure, return NULL. In this case, b will have been already freed. */ |
---|
446 | n/a | |
---|
447 | n/a | static Bigint * |
---|
448 | n/a | multadd(Bigint *b, int m, int a) /* multiply by m and add a */ |
---|
449 | n/a | { |
---|
450 | n/a | int i, wds; |
---|
451 | n/a | ULong *x; |
---|
452 | n/a | ULLong carry, y; |
---|
453 | n/a | Bigint *b1; |
---|
454 | n/a | |
---|
455 | n/a | wds = b->wds; |
---|
456 | n/a | x = b->x; |
---|
457 | n/a | i = 0; |
---|
458 | n/a | carry = a; |
---|
459 | n/a | do { |
---|
460 | n/a | y = *x * (ULLong)m + carry; |
---|
461 | n/a | carry = y >> 32; |
---|
462 | n/a | *x++ = (ULong)(y & FFFFFFFF); |
---|
463 | n/a | } |
---|
464 | n/a | while(++i < wds); |
---|
465 | n/a | if (carry) { |
---|
466 | n/a | if (wds >= b->maxwds) { |
---|
467 | n/a | b1 = Balloc(b->k+1); |
---|
468 | n/a | if (b1 == NULL){ |
---|
469 | n/a | Bfree(b); |
---|
470 | n/a | return NULL; |
---|
471 | n/a | } |
---|
472 | n/a | Bcopy(b1, b); |
---|
473 | n/a | Bfree(b); |
---|
474 | n/a | b = b1; |
---|
475 | n/a | } |
---|
476 | n/a | b->x[wds++] = (ULong)carry; |
---|
477 | n/a | b->wds = wds; |
---|
478 | n/a | } |
---|
479 | n/a | return b; |
---|
480 | n/a | } |
---|
481 | n/a | |
---|
482 | n/a | /* convert a string s containing nd decimal digits (possibly containing a |
---|
483 | n/a | decimal separator at position nd0, which is ignored) to a Bigint. This |
---|
484 | n/a | function carries on where the parsing code in _Py_dg_strtod leaves off: on |
---|
485 | n/a | entry, y9 contains the result of converting the first 9 digits. Returns |
---|
486 | n/a | NULL on failure. */ |
---|
487 | n/a | |
---|
488 | n/a | static Bigint * |
---|
489 | n/a | s2b(const char *s, int nd0, int nd, ULong y9) |
---|
490 | n/a | { |
---|
491 | n/a | Bigint *b; |
---|
492 | n/a | int i, k; |
---|
493 | n/a | Long x, y; |
---|
494 | n/a | |
---|
495 | n/a | x = (nd + 8) / 9; |
---|
496 | n/a | for(k = 0, y = 1; x > y; y <<= 1, k++) ; |
---|
497 | n/a | b = Balloc(k); |
---|
498 | n/a | if (b == NULL) |
---|
499 | n/a | return NULL; |
---|
500 | n/a | b->x[0] = y9; |
---|
501 | n/a | b->wds = 1; |
---|
502 | n/a | |
---|
503 | n/a | if (nd <= 9) |
---|
504 | n/a | return b; |
---|
505 | n/a | |
---|
506 | n/a | s += 9; |
---|
507 | n/a | for (i = 9; i < nd0; i++) { |
---|
508 | n/a | b = multadd(b, 10, *s++ - '0'); |
---|
509 | n/a | if (b == NULL) |
---|
510 | n/a | return NULL; |
---|
511 | n/a | } |
---|
512 | n/a | s++; |
---|
513 | n/a | for(; i < nd; i++) { |
---|
514 | n/a | b = multadd(b, 10, *s++ - '0'); |
---|
515 | n/a | if (b == NULL) |
---|
516 | n/a | return NULL; |
---|
517 | n/a | } |
---|
518 | n/a | return b; |
---|
519 | n/a | } |
---|
520 | n/a | |
---|
521 | n/a | /* count leading 0 bits in the 32-bit integer x. */ |
---|
522 | n/a | |
---|
523 | n/a | static int |
---|
524 | n/a | hi0bits(ULong x) |
---|
525 | n/a | { |
---|
526 | n/a | int k = 0; |
---|
527 | n/a | |
---|
528 | n/a | if (!(x & 0xffff0000)) { |
---|
529 | n/a | k = 16; |
---|
530 | n/a | x <<= 16; |
---|
531 | n/a | } |
---|
532 | n/a | if (!(x & 0xff000000)) { |
---|
533 | n/a | k += 8; |
---|
534 | n/a | x <<= 8; |
---|
535 | n/a | } |
---|
536 | n/a | if (!(x & 0xf0000000)) { |
---|
537 | n/a | k += 4; |
---|
538 | n/a | x <<= 4; |
---|
539 | n/a | } |
---|
540 | n/a | if (!(x & 0xc0000000)) { |
---|
541 | n/a | k += 2; |
---|
542 | n/a | x <<= 2; |
---|
543 | n/a | } |
---|
544 | n/a | if (!(x & 0x80000000)) { |
---|
545 | n/a | k++; |
---|
546 | n/a | if (!(x & 0x40000000)) |
---|
547 | n/a | return 32; |
---|
548 | n/a | } |
---|
549 | n/a | return k; |
---|
550 | n/a | } |
---|
551 | n/a | |
---|
552 | n/a | /* count trailing 0 bits in the 32-bit integer y, and shift y right by that |
---|
553 | n/a | number of bits. */ |
---|
554 | n/a | |
---|
555 | n/a | static int |
---|
556 | n/a | lo0bits(ULong *y) |
---|
557 | n/a | { |
---|
558 | n/a | int k; |
---|
559 | n/a | ULong x = *y; |
---|
560 | n/a | |
---|
561 | n/a | if (x & 7) { |
---|
562 | n/a | if (x & 1) |
---|
563 | n/a | return 0; |
---|
564 | n/a | if (x & 2) { |
---|
565 | n/a | *y = x >> 1; |
---|
566 | n/a | return 1; |
---|
567 | n/a | } |
---|
568 | n/a | *y = x >> 2; |
---|
569 | n/a | return 2; |
---|
570 | n/a | } |
---|
571 | n/a | k = 0; |
---|
572 | n/a | if (!(x & 0xffff)) { |
---|
573 | n/a | k = 16; |
---|
574 | n/a | x >>= 16; |
---|
575 | n/a | } |
---|
576 | n/a | if (!(x & 0xff)) { |
---|
577 | n/a | k += 8; |
---|
578 | n/a | x >>= 8; |
---|
579 | n/a | } |
---|
580 | n/a | if (!(x & 0xf)) { |
---|
581 | n/a | k += 4; |
---|
582 | n/a | x >>= 4; |
---|
583 | n/a | } |
---|
584 | n/a | if (!(x & 0x3)) { |
---|
585 | n/a | k += 2; |
---|
586 | n/a | x >>= 2; |
---|
587 | n/a | } |
---|
588 | n/a | if (!(x & 1)) { |
---|
589 | n/a | k++; |
---|
590 | n/a | x >>= 1; |
---|
591 | n/a | if (!x) |
---|
592 | n/a | return 32; |
---|
593 | n/a | } |
---|
594 | n/a | *y = x; |
---|
595 | n/a | return k; |
---|
596 | n/a | } |
---|
597 | n/a | |
---|
598 | n/a | /* convert a small nonnegative integer to a Bigint */ |
---|
599 | n/a | |
---|
600 | n/a | static Bigint * |
---|
601 | n/a | i2b(int i) |
---|
602 | n/a | { |
---|
603 | n/a | Bigint *b; |
---|
604 | n/a | |
---|
605 | n/a | b = Balloc(1); |
---|
606 | n/a | if (b == NULL) |
---|
607 | n/a | return NULL; |
---|
608 | n/a | b->x[0] = i; |
---|
609 | n/a | b->wds = 1; |
---|
610 | n/a | return b; |
---|
611 | n/a | } |
---|
612 | n/a | |
---|
613 | n/a | /* multiply two Bigints. Returns a new Bigint, or NULL on failure. Ignores |
---|
614 | n/a | the signs of a and b. */ |
---|
615 | n/a | |
---|
616 | n/a | static Bigint * |
---|
617 | n/a | mult(Bigint *a, Bigint *b) |
---|
618 | n/a | { |
---|
619 | n/a | Bigint *c; |
---|
620 | n/a | int k, wa, wb, wc; |
---|
621 | n/a | ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; |
---|
622 | n/a | ULong y; |
---|
623 | n/a | ULLong carry, z; |
---|
624 | n/a | |
---|
625 | n/a | if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) { |
---|
626 | n/a | c = Balloc(0); |
---|
627 | n/a | if (c == NULL) |
---|
628 | n/a | return NULL; |
---|
629 | n/a | c->wds = 1; |
---|
630 | n/a | c->x[0] = 0; |
---|
631 | n/a | return c; |
---|
632 | n/a | } |
---|
633 | n/a | |
---|
634 | n/a | if (a->wds < b->wds) { |
---|
635 | n/a | c = a; |
---|
636 | n/a | a = b; |
---|
637 | n/a | b = c; |
---|
638 | n/a | } |
---|
639 | n/a | k = a->k; |
---|
640 | n/a | wa = a->wds; |
---|
641 | n/a | wb = b->wds; |
---|
642 | n/a | wc = wa + wb; |
---|
643 | n/a | if (wc > a->maxwds) |
---|
644 | n/a | k++; |
---|
645 | n/a | c = Balloc(k); |
---|
646 | n/a | if (c == NULL) |
---|
647 | n/a | return NULL; |
---|
648 | n/a | for(x = c->x, xa = x + wc; x < xa; x++) |
---|
649 | n/a | *x = 0; |
---|
650 | n/a | xa = a->x; |
---|
651 | n/a | xae = xa + wa; |
---|
652 | n/a | xb = b->x; |
---|
653 | n/a | xbe = xb + wb; |
---|
654 | n/a | xc0 = c->x; |
---|
655 | n/a | for(; xb < xbe; xc0++) { |
---|
656 | n/a | if ((y = *xb++)) { |
---|
657 | n/a | x = xa; |
---|
658 | n/a | xc = xc0; |
---|
659 | n/a | carry = 0; |
---|
660 | n/a | do { |
---|
661 | n/a | z = *x++ * (ULLong)y + *xc + carry; |
---|
662 | n/a | carry = z >> 32; |
---|
663 | n/a | *xc++ = (ULong)(z & FFFFFFFF); |
---|
664 | n/a | } |
---|
665 | n/a | while(x < xae); |
---|
666 | n/a | *xc = (ULong)carry; |
---|
667 | n/a | } |
---|
668 | n/a | } |
---|
669 | n/a | for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; |
---|
670 | n/a | c->wds = wc; |
---|
671 | n/a | return c; |
---|
672 | n/a | } |
---|
673 | n/a | |
---|
674 | n/a | #ifndef Py_USING_MEMORY_DEBUGGER |
---|
675 | n/a | |
---|
676 | n/a | /* p5s is a linked list of powers of 5 of the form 5**(2**i), i >= 2 */ |
---|
677 | n/a | |
---|
678 | n/a | static Bigint *p5s; |
---|
679 | n/a | |
---|
680 | n/a | /* multiply the Bigint b by 5**k. Returns a pointer to the result, or NULL on |
---|
681 | n/a | failure; if the returned pointer is distinct from b then the original |
---|
682 | n/a | Bigint b will have been Bfree'd. Ignores the sign of b. */ |
---|
683 | n/a | |
---|
684 | n/a | static Bigint * |
---|
685 | n/a | pow5mult(Bigint *b, int k) |
---|
686 | n/a | { |
---|
687 | n/a | Bigint *b1, *p5, *p51; |
---|
688 | n/a | int i; |
---|
689 | n/a | static const int p05[3] = { 5, 25, 125 }; |
---|
690 | n/a | |
---|
691 | n/a | if ((i = k & 3)) { |
---|
692 | n/a | b = multadd(b, p05[i-1], 0); |
---|
693 | n/a | if (b == NULL) |
---|
694 | n/a | return NULL; |
---|
695 | n/a | } |
---|
696 | n/a | |
---|
697 | n/a | if (!(k >>= 2)) |
---|
698 | n/a | return b; |
---|
699 | n/a | p5 = p5s; |
---|
700 | n/a | if (!p5) { |
---|
701 | n/a | /* first time */ |
---|
702 | n/a | p5 = i2b(625); |
---|
703 | n/a | if (p5 == NULL) { |
---|
704 | n/a | Bfree(b); |
---|
705 | n/a | return NULL; |
---|
706 | n/a | } |
---|
707 | n/a | p5s = p5; |
---|
708 | n/a | p5->next = 0; |
---|
709 | n/a | } |
---|
710 | n/a | for(;;) { |
---|
711 | n/a | if (k & 1) { |
---|
712 | n/a | b1 = mult(b, p5); |
---|
713 | n/a | Bfree(b); |
---|
714 | n/a | b = b1; |
---|
715 | n/a | if (b == NULL) |
---|
716 | n/a | return NULL; |
---|
717 | n/a | } |
---|
718 | n/a | if (!(k >>= 1)) |
---|
719 | n/a | break; |
---|
720 | n/a | p51 = p5->next; |
---|
721 | n/a | if (!p51) { |
---|
722 | n/a | p51 = mult(p5,p5); |
---|
723 | n/a | if (p51 == NULL) { |
---|
724 | n/a | Bfree(b); |
---|
725 | n/a | return NULL; |
---|
726 | n/a | } |
---|
727 | n/a | p51->next = 0; |
---|
728 | n/a | p5->next = p51; |
---|
729 | n/a | } |
---|
730 | n/a | p5 = p51; |
---|
731 | n/a | } |
---|
732 | n/a | return b; |
---|
733 | n/a | } |
---|
734 | n/a | |
---|
735 | n/a | #else |
---|
736 | n/a | |
---|
737 | n/a | /* Version of pow5mult that doesn't cache powers of 5. Provided for |
---|
738 | n/a | the benefit of memory debugging tools like Valgrind. */ |
---|
739 | n/a | |
---|
740 | n/a | static Bigint * |
---|
741 | n/a | pow5mult(Bigint *b, int k) |
---|
742 | n/a | { |
---|
743 | n/a | Bigint *b1, *p5, *p51; |
---|
744 | n/a | int i; |
---|
745 | n/a | static const int p05[3] = { 5, 25, 125 }; |
---|
746 | n/a | |
---|
747 | n/a | if ((i = k & 3)) { |
---|
748 | n/a | b = multadd(b, p05[i-1], 0); |
---|
749 | n/a | if (b == NULL) |
---|
750 | n/a | return NULL; |
---|
751 | n/a | } |
---|
752 | n/a | |
---|
753 | n/a | if (!(k >>= 2)) |
---|
754 | n/a | return b; |
---|
755 | n/a | p5 = i2b(625); |
---|
756 | n/a | if (p5 == NULL) { |
---|
757 | n/a | Bfree(b); |
---|
758 | n/a | return NULL; |
---|
759 | n/a | } |
---|
760 | n/a | |
---|
761 | n/a | for(;;) { |
---|
762 | n/a | if (k & 1) { |
---|
763 | n/a | b1 = mult(b, p5); |
---|
764 | n/a | Bfree(b); |
---|
765 | n/a | b = b1; |
---|
766 | n/a | if (b == NULL) { |
---|
767 | n/a | Bfree(p5); |
---|
768 | n/a | return NULL; |
---|
769 | n/a | } |
---|
770 | n/a | } |
---|
771 | n/a | if (!(k >>= 1)) |
---|
772 | n/a | break; |
---|
773 | n/a | p51 = mult(p5, p5); |
---|
774 | n/a | Bfree(p5); |
---|
775 | n/a | p5 = p51; |
---|
776 | n/a | if (p5 == NULL) { |
---|
777 | n/a | Bfree(b); |
---|
778 | n/a | return NULL; |
---|
779 | n/a | } |
---|
780 | n/a | } |
---|
781 | n/a | Bfree(p5); |
---|
782 | n/a | return b; |
---|
783 | n/a | } |
---|
784 | n/a | |
---|
785 | n/a | #endif /* Py_USING_MEMORY_DEBUGGER */ |
---|
786 | n/a | |
---|
787 | n/a | /* shift a Bigint b left by k bits. Return a pointer to the shifted result, |
---|
788 | n/a | or NULL on failure. If the returned pointer is distinct from b then the |
---|
789 | n/a | original b will have been Bfree'd. Ignores the sign of b. */ |
---|
790 | n/a | |
---|
791 | n/a | static Bigint * |
---|
792 | n/a | lshift(Bigint *b, int k) |
---|
793 | n/a | { |
---|
794 | n/a | int i, k1, n, n1; |
---|
795 | n/a | Bigint *b1; |
---|
796 | n/a | ULong *x, *x1, *xe, z; |
---|
797 | n/a | |
---|
798 | n/a | if (!k || (!b->x[0] && b->wds == 1)) |
---|
799 | n/a | return b; |
---|
800 | n/a | |
---|
801 | n/a | n = k >> 5; |
---|
802 | n/a | k1 = b->k; |
---|
803 | n/a | n1 = n + b->wds + 1; |
---|
804 | n/a | for(i = b->maxwds; n1 > i; i <<= 1) |
---|
805 | n/a | k1++; |
---|
806 | n/a | b1 = Balloc(k1); |
---|
807 | n/a | if (b1 == NULL) { |
---|
808 | n/a | Bfree(b); |
---|
809 | n/a | return NULL; |
---|
810 | n/a | } |
---|
811 | n/a | x1 = b1->x; |
---|
812 | n/a | for(i = 0; i < n; i++) |
---|
813 | n/a | *x1++ = 0; |
---|
814 | n/a | x = b->x; |
---|
815 | n/a | xe = x + b->wds; |
---|
816 | n/a | if (k &= 0x1f) { |
---|
817 | n/a | k1 = 32 - k; |
---|
818 | n/a | z = 0; |
---|
819 | n/a | do { |
---|
820 | n/a | *x1++ = *x << k | z; |
---|
821 | n/a | z = *x++ >> k1; |
---|
822 | n/a | } |
---|
823 | n/a | while(x < xe); |
---|
824 | n/a | if ((*x1 = z)) |
---|
825 | n/a | ++n1; |
---|
826 | n/a | } |
---|
827 | n/a | else do |
---|
828 | n/a | *x1++ = *x++; |
---|
829 | n/a | while(x < xe); |
---|
830 | n/a | b1->wds = n1 - 1; |
---|
831 | n/a | Bfree(b); |
---|
832 | n/a | return b1; |
---|
833 | n/a | } |
---|
834 | n/a | |
---|
835 | n/a | /* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and |
---|
836 | n/a | 1 if a > b. Ignores signs of a and b. */ |
---|
837 | n/a | |
---|
838 | n/a | static int |
---|
839 | n/a | cmp(Bigint *a, Bigint *b) |
---|
840 | n/a | { |
---|
841 | n/a | ULong *xa, *xa0, *xb, *xb0; |
---|
842 | n/a | int i, j; |
---|
843 | n/a | |
---|
844 | n/a | i = a->wds; |
---|
845 | n/a | j = b->wds; |
---|
846 | n/a | #ifdef DEBUG |
---|
847 | n/a | if (i > 1 && !a->x[i-1]) |
---|
848 | n/a | Bug("cmp called with a->x[a->wds-1] == 0"); |
---|
849 | n/a | if (j > 1 && !b->x[j-1]) |
---|
850 | n/a | Bug("cmp called with b->x[b->wds-1] == 0"); |
---|
851 | n/a | #endif |
---|
852 | n/a | if (i -= j) |
---|
853 | n/a | return i; |
---|
854 | n/a | xa0 = a->x; |
---|
855 | n/a | xa = xa0 + j; |
---|
856 | n/a | xb0 = b->x; |
---|
857 | n/a | xb = xb0 + j; |
---|
858 | n/a | for(;;) { |
---|
859 | n/a | if (*--xa != *--xb) |
---|
860 | n/a | return *xa < *xb ? -1 : 1; |
---|
861 | n/a | if (xa <= xa0) |
---|
862 | n/a | break; |
---|
863 | n/a | } |
---|
864 | n/a | return 0; |
---|
865 | n/a | } |
---|
866 | n/a | |
---|
867 | n/a | /* Take the difference of Bigints a and b, returning a new Bigint. Returns |
---|
868 | n/a | NULL on failure. The signs of a and b are ignored, but the sign of the |
---|
869 | n/a | result is set appropriately. */ |
---|
870 | n/a | |
---|
871 | n/a | static Bigint * |
---|
872 | n/a | diff(Bigint *a, Bigint *b) |
---|
873 | n/a | { |
---|
874 | n/a | Bigint *c; |
---|
875 | n/a | int i, wa, wb; |
---|
876 | n/a | ULong *xa, *xae, *xb, *xbe, *xc; |
---|
877 | n/a | ULLong borrow, y; |
---|
878 | n/a | |
---|
879 | n/a | i = cmp(a,b); |
---|
880 | n/a | if (!i) { |
---|
881 | n/a | c = Balloc(0); |
---|
882 | n/a | if (c == NULL) |
---|
883 | n/a | return NULL; |
---|
884 | n/a | c->wds = 1; |
---|
885 | n/a | c->x[0] = 0; |
---|
886 | n/a | return c; |
---|
887 | n/a | } |
---|
888 | n/a | if (i < 0) { |
---|
889 | n/a | c = a; |
---|
890 | n/a | a = b; |
---|
891 | n/a | b = c; |
---|
892 | n/a | i = 1; |
---|
893 | n/a | } |
---|
894 | n/a | else |
---|
895 | n/a | i = 0; |
---|
896 | n/a | c = Balloc(a->k); |
---|
897 | n/a | if (c == NULL) |
---|
898 | n/a | return NULL; |
---|
899 | n/a | c->sign = i; |
---|
900 | n/a | wa = a->wds; |
---|
901 | n/a | xa = a->x; |
---|
902 | n/a | xae = xa + wa; |
---|
903 | n/a | wb = b->wds; |
---|
904 | n/a | xb = b->x; |
---|
905 | n/a | xbe = xb + wb; |
---|
906 | n/a | xc = c->x; |
---|
907 | n/a | borrow = 0; |
---|
908 | n/a | do { |
---|
909 | n/a | y = (ULLong)*xa++ - *xb++ - borrow; |
---|
910 | n/a | borrow = y >> 32 & (ULong)1; |
---|
911 | n/a | *xc++ = (ULong)(y & FFFFFFFF); |
---|
912 | n/a | } |
---|
913 | n/a | while(xb < xbe); |
---|
914 | n/a | while(xa < xae) { |
---|
915 | n/a | y = *xa++ - borrow; |
---|
916 | n/a | borrow = y >> 32 & (ULong)1; |
---|
917 | n/a | *xc++ = (ULong)(y & FFFFFFFF); |
---|
918 | n/a | } |
---|
919 | n/a | while(!*--xc) |
---|
920 | n/a | wa--; |
---|
921 | n/a | c->wds = wa; |
---|
922 | n/a | return c; |
---|
923 | n/a | } |
---|
924 | n/a | |
---|
925 | n/a | /* Given a positive normal double x, return the difference between x and the |
---|
926 | n/a | next double up. Doesn't give correct results for subnormals. */ |
---|
927 | n/a | |
---|
928 | n/a | static double |
---|
929 | n/a | ulp(U *x) |
---|
930 | n/a | { |
---|
931 | n/a | Long L; |
---|
932 | n/a | U u; |
---|
933 | n/a | |
---|
934 | n/a | L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; |
---|
935 | n/a | word0(&u) = L; |
---|
936 | n/a | word1(&u) = 0; |
---|
937 | n/a | return dval(&u); |
---|
938 | n/a | } |
---|
939 | n/a | |
---|
940 | n/a | /* Convert a Bigint to a double plus an exponent */ |
---|
941 | n/a | |
---|
942 | n/a | static double |
---|
943 | n/a | b2d(Bigint *a, int *e) |
---|
944 | n/a | { |
---|
945 | n/a | ULong *xa, *xa0, w, y, z; |
---|
946 | n/a | int k; |
---|
947 | n/a | U d; |
---|
948 | n/a | |
---|
949 | n/a | xa0 = a->x; |
---|
950 | n/a | xa = xa0 + a->wds; |
---|
951 | n/a | y = *--xa; |
---|
952 | n/a | #ifdef DEBUG |
---|
953 | n/a | if (!y) Bug("zero y in b2d"); |
---|
954 | n/a | #endif |
---|
955 | n/a | k = hi0bits(y); |
---|
956 | n/a | *e = 32 - k; |
---|
957 | n/a | if (k < Ebits) { |
---|
958 | n/a | word0(&d) = Exp_1 | y >> (Ebits - k); |
---|
959 | n/a | w = xa > xa0 ? *--xa : 0; |
---|
960 | n/a | word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k); |
---|
961 | n/a | goto ret_d; |
---|
962 | n/a | } |
---|
963 | n/a | z = xa > xa0 ? *--xa : 0; |
---|
964 | n/a | if (k -= Ebits) { |
---|
965 | n/a | word0(&d) = Exp_1 | y << k | z >> (32 - k); |
---|
966 | n/a | y = xa > xa0 ? *--xa : 0; |
---|
967 | n/a | word1(&d) = z << k | y >> (32 - k); |
---|
968 | n/a | } |
---|
969 | n/a | else { |
---|
970 | n/a | word0(&d) = Exp_1 | y; |
---|
971 | n/a | word1(&d) = z; |
---|
972 | n/a | } |
---|
973 | n/a | ret_d: |
---|
974 | n/a | return dval(&d); |
---|
975 | n/a | } |
---|
976 | n/a | |
---|
977 | n/a | /* Convert a scaled double to a Bigint plus an exponent. Similar to d2b, |
---|
978 | n/a | except that it accepts the scale parameter used in _Py_dg_strtod (which |
---|
979 | n/a | should be either 0 or 2*P), and the normalization for the return value is |
---|
980 | n/a | different (see below). On input, d should be finite and nonnegative, and d |
---|
981 | n/a | / 2**scale should be exactly representable as an IEEE 754 double. |
---|
982 | n/a | |
---|
983 | n/a | Returns a Bigint b and an integer e such that |
---|
984 | n/a | |
---|
985 | n/a | dval(d) / 2**scale = b * 2**e. |
---|
986 | n/a | |
---|
987 | n/a | Unlike d2b, b is not necessarily odd: b and e are normalized so |
---|
988 | n/a | that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P |
---|
989 | n/a | and e == Etiny. This applies equally to an input of 0.0: in that |
---|
990 | n/a | case the return values are b = 0 and e = Etiny. |
---|
991 | n/a | |
---|
992 | n/a | The above normalization ensures that for all possible inputs d, |
---|
993 | n/a | 2**e gives ulp(d/2**scale). |
---|
994 | n/a | |
---|
995 | n/a | Returns NULL on failure. |
---|
996 | n/a | */ |
---|
997 | n/a | |
---|
998 | n/a | static Bigint * |
---|
999 | n/a | sd2b(U *d, int scale, int *e) |
---|
1000 | n/a | { |
---|
1001 | n/a | Bigint *b; |
---|
1002 | n/a | |
---|
1003 | n/a | b = Balloc(1); |
---|
1004 | n/a | if (b == NULL) |
---|
1005 | n/a | return NULL; |
---|
1006 | n/a | |
---|
1007 | n/a | /* First construct b and e assuming that scale == 0. */ |
---|
1008 | n/a | b->wds = 2; |
---|
1009 | n/a | b->x[0] = word1(d); |
---|
1010 | n/a | b->x[1] = word0(d) & Frac_mask; |
---|
1011 | n/a | *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift); |
---|
1012 | n/a | if (*e < Etiny) |
---|
1013 | n/a | *e = Etiny; |
---|
1014 | n/a | else |
---|
1015 | n/a | b->x[1] |= Exp_msk1; |
---|
1016 | n/a | |
---|
1017 | n/a | /* Now adjust for scale, provided that b != 0. */ |
---|
1018 | n/a | if (scale && (b->x[0] || b->x[1])) { |
---|
1019 | n/a | *e -= scale; |
---|
1020 | n/a | if (*e < Etiny) { |
---|
1021 | n/a | scale = Etiny - *e; |
---|
1022 | n/a | *e = Etiny; |
---|
1023 | n/a | /* We can't shift more than P-1 bits without shifting out a 1. */ |
---|
1024 | n/a | assert(0 < scale && scale <= P - 1); |
---|
1025 | n/a | if (scale >= 32) { |
---|
1026 | n/a | /* The bits shifted out should all be zero. */ |
---|
1027 | n/a | assert(b->x[0] == 0); |
---|
1028 | n/a | b->x[0] = b->x[1]; |
---|
1029 | n/a | b->x[1] = 0; |
---|
1030 | n/a | scale -= 32; |
---|
1031 | n/a | } |
---|
1032 | n/a | if (scale) { |
---|
1033 | n/a | /* The bits shifted out should all be zero. */ |
---|
1034 | n/a | assert(b->x[0] << (32 - scale) == 0); |
---|
1035 | n/a | b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale)); |
---|
1036 | n/a | b->x[1] >>= scale; |
---|
1037 | n/a | } |
---|
1038 | n/a | } |
---|
1039 | n/a | } |
---|
1040 | n/a | /* Ensure b is normalized. */ |
---|
1041 | n/a | if (!b->x[1]) |
---|
1042 | n/a | b->wds = 1; |
---|
1043 | n/a | |
---|
1044 | n/a | return b; |
---|
1045 | n/a | } |
---|
1046 | n/a | |
---|
1047 | n/a | /* Convert a double to a Bigint plus an exponent. Return NULL on failure. |
---|
1048 | n/a | |
---|
1049 | n/a | Given a finite nonzero double d, return an odd Bigint b and exponent *e |
---|
1050 | n/a | such that fabs(d) = b * 2**e. On return, *bbits gives the number of |
---|
1051 | n/a | significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits). |
---|
1052 | n/a | |
---|
1053 | n/a | If d is zero, then b == 0, *e == -1010, *bbits = 0. |
---|
1054 | n/a | */ |
---|
1055 | n/a | |
---|
1056 | n/a | static Bigint * |
---|
1057 | n/a | d2b(U *d, int *e, int *bits) |
---|
1058 | n/a | { |
---|
1059 | n/a | Bigint *b; |
---|
1060 | n/a | int de, k; |
---|
1061 | n/a | ULong *x, y, z; |
---|
1062 | n/a | int i; |
---|
1063 | n/a | |
---|
1064 | n/a | b = Balloc(1); |
---|
1065 | n/a | if (b == NULL) |
---|
1066 | n/a | return NULL; |
---|
1067 | n/a | x = b->x; |
---|
1068 | n/a | |
---|
1069 | n/a | z = word0(d) & Frac_mask; |
---|
1070 | n/a | word0(d) &= 0x7fffffff; /* clear sign bit, which we ignore */ |
---|
1071 | n/a | if ((de = (int)(word0(d) >> Exp_shift))) |
---|
1072 | n/a | z |= Exp_msk1; |
---|
1073 | n/a | if ((y = word1(d))) { |
---|
1074 | n/a | if ((k = lo0bits(&y))) { |
---|
1075 | n/a | x[0] = y | z << (32 - k); |
---|
1076 | n/a | z >>= k; |
---|
1077 | n/a | } |
---|
1078 | n/a | else |
---|
1079 | n/a | x[0] = y; |
---|
1080 | n/a | i = |
---|
1081 | n/a | b->wds = (x[1] = z) ? 2 : 1; |
---|
1082 | n/a | } |
---|
1083 | n/a | else { |
---|
1084 | n/a | k = lo0bits(&z); |
---|
1085 | n/a | x[0] = z; |
---|
1086 | n/a | i = |
---|
1087 | n/a | b->wds = 1; |
---|
1088 | n/a | k += 32; |
---|
1089 | n/a | } |
---|
1090 | n/a | if (de) { |
---|
1091 | n/a | *e = de - Bias - (P-1) + k; |
---|
1092 | n/a | *bits = P - k; |
---|
1093 | n/a | } |
---|
1094 | n/a | else { |
---|
1095 | n/a | *e = de - Bias - (P-1) + 1 + k; |
---|
1096 | n/a | *bits = 32*i - hi0bits(x[i-1]); |
---|
1097 | n/a | } |
---|
1098 | n/a | return b; |
---|
1099 | n/a | } |
---|
1100 | n/a | |
---|
1101 | n/a | /* Compute the ratio of two Bigints, as a double. The result may have an |
---|
1102 | n/a | error of up to 2.5 ulps. */ |
---|
1103 | n/a | |
---|
1104 | n/a | static double |
---|
1105 | n/a | ratio(Bigint *a, Bigint *b) |
---|
1106 | n/a | { |
---|
1107 | n/a | U da, db; |
---|
1108 | n/a | int k, ka, kb; |
---|
1109 | n/a | |
---|
1110 | n/a | dval(&da) = b2d(a, &ka); |
---|
1111 | n/a | dval(&db) = b2d(b, &kb); |
---|
1112 | n/a | k = ka - kb + 32*(a->wds - b->wds); |
---|
1113 | n/a | if (k > 0) |
---|
1114 | n/a | word0(&da) += k*Exp_msk1; |
---|
1115 | n/a | else { |
---|
1116 | n/a | k = -k; |
---|
1117 | n/a | word0(&db) += k*Exp_msk1; |
---|
1118 | n/a | } |
---|
1119 | n/a | return dval(&da) / dval(&db); |
---|
1120 | n/a | } |
---|
1121 | n/a | |
---|
1122 | n/a | static const double |
---|
1123 | n/a | tens[] = { |
---|
1124 | n/a | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, |
---|
1125 | n/a | 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, |
---|
1126 | n/a | 1e20, 1e21, 1e22 |
---|
1127 | n/a | }; |
---|
1128 | n/a | |
---|
1129 | n/a | static const double |
---|
1130 | n/a | bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; |
---|
1131 | n/a | static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, |
---|
1132 | n/a | 9007199254740992.*9007199254740992.e-256 |
---|
1133 | n/a | /* = 2^106 * 1e-256 */ |
---|
1134 | n/a | }; |
---|
1135 | n/a | /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ |
---|
1136 | n/a | /* flag unnecessarily. It leads to a song and dance at the end of strtod. */ |
---|
1137 | n/a | #define Scale_Bit 0x10 |
---|
1138 | n/a | #define n_bigtens 5 |
---|
1139 | n/a | |
---|
1140 | n/a | #define ULbits 32 |
---|
1141 | n/a | #define kshift 5 |
---|
1142 | n/a | #define kmask 31 |
---|
1143 | n/a | |
---|
1144 | n/a | |
---|
1145 | n/a | static int |
---|
1146 | n/a | dshift(Bigint *b, int p2) |
---|
1147 | n/a | { |
---|
1148 | n/a | int rv = hi0bits(b->x[b->wds-1]) - 4; |
---|
1149 | n/a | if (p2 > 0) |
---|
1150 | n/a | rv -= p2; |
---|
1151 | n/a | return rv & kmask; |
---|
1152 | n/a | } |
---|
1153 | n/a | |
---|
1154 | n/a | /* special case of Bigint division. The quotient is always in the range 0 <= |
---|
1155 | n/a | quotient < 10, and on entry the divisor S is normalized so that its top 4 |
---|
1156 | n/a | bits (28--31) are zero and bit 27 is set. */ |
---|
1157 | n/a | |
---|
1158 | n/a | static int |
---|
1159 | n/a | quorem(Bigint *b, Bigint *S) |
---|
1160 | n/a | { |
---|
1161 | n/a | int n; |
---|
1162 | n/a | ULong *bx, *bxe, q, *sx, *sxe; |
---|
1163 | n/a | ULLong borrow, carry, y, ys; |
---|
1164 | n/a | |
---|
1165 | n/a | n = S->wds; |
---|
1166 | n/a | #ifdef DEBUG |
---|
1167 | n/a | /*debug*/ if (b->wds > n) |
---|
1168 | n/a | /*debug*/ Bug("oversize b in quorem"); |
---|
1169 | n/a | #endif |
---|
1170 | n/a | if (b->wds < n) |
---|
1171 | n/a | return 0; |
---|
1172 | n/a | sx = S->x; |
---|
1173 | n/a | sxe = sx + --n; |
---|
1174 | n/a | bx = b->x; |
---|
1175 | n/a | bxe = bx + n; |
---|
1176 | n/a | q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ |
---|
1177 | n/a | #ifdef DEBUG |
---|
1178 | n/a | /*debug*/ if (q > 9) |
---|
1179 | n/a | /*debug*/ Bug("oversized quotient in quorem"); |
---|
1180 | n/a | #endif |
---|
1181 | n/a | if (q) { |
---|
1182 | n/a | borrow = 0; |
---|
1183 | n/a | carry = 0; |
---|
1184 | n/a | do { |
---|
1185 | n/a | ys = *sx++ * (ULLong)q + carry; |
---|
1186 | n/a | carry = ys >> 32; |
---|
1187 | n/a | y = *bx - (ys & FFFFFFFF) - borrow; |
---|
1188 | n/a | borrow = y >> 32 & (ULong)1; |
---|
1189 | n/a | *bx++ = (ULong)(y & FFFFFFFF); |
---|
1190 | n/a | } |
---|
1191 | n/a | while(sx <= sxe); |
---|
1192 | n/a | if (!*bxe) { |
---|
1193 | n/a | bx = b->x; |
---|
1194 | n/a | while(--bxe > bx && !*bxe) |
---|
1195 | n/a | --n; |
---|
1196 | n/a | b->wds = n; |
---|
1197 | n/a | } |
---|
1198 | n/a | } |
---|
1199 | n/a | if (cmp(b, S) >= 0) { |
---|
1200 | n/a | q++; |
---|
1201 | n/a | borrow = 0; |
---|
1202 | n/a | carry = 0; |
---|
1203 | n/a | bx = b->x; |
---|
1204 | n/a | sx = S->x; |
---|
1205 | n/a | do { |
---|
1206 | n/a | ys = *sx++ + carry; |
---|
1207 | n/a | carry = ys >> 32; |
---|
1208 | n/a | y = *bx - (ys & FFFFFFFF) - borrow; |
---|
1209 | n/a | borrow = y >> 32 & (ULong)1; |
---|
1210 | n/a | *bx++ = (ULong)(y & FFFFFFFF); |
---|
1211 | n/a | } |
---|
1212 | n/a | while(sx <= sxe); |
---|
1213 | n/a | bx = b->x; |
---|
1214 | n/a | bxe = bx + n; |
---|
1215 | n/a | if (!*bxe) { |
---|
1216 | n/a | while(--bxe > bx && !*bxe) |
---|
1217 | n/a | --n; |
---|
1218 | n/a | b->wds = n; |
---|
1219 | n/a | } |
---|
1220 | n/a | } |
---|
1221 | n/a | return q; |
---|
1222 | n/a | } |
---|
1223 | n/a | |
---|
1224 | n/a | /* sulp(x) is a version of ulp(x) that takes bc.scale into account. |
---|
1225 | n/a | |
---|
1226 | n/a | Assuming that x is finite and nonnegative (positive zero is fine |
---|
1227 | n/a | here) and x / 2^bc.scale is exactly representable as a double, |
---|
1228 | n/a | sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */ |
---|
1229 | n/a | |
---|
1230 | n/a | static double |
---|
1231 | n/a | sulp(U *x, BCinfo *bc) |
---|
1232 | n/a | { |
---|
1233 | n/a | U u; |
---|
1234 | n/a | |
---|
1235 | n/a | if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) { |
---|
1236 | n/a | /* rv/2^bc->scale is subnormal */ |
---|
1237 | n/a | word0(&u) = (P+2)*Exp_msk1; |
---|
1238 | n/a | word1(&u) = 0; |
---|
1239 | n/a | return u.d; |
---|
1240 | n/a | } |
---|
1241 | n/a | else { |
---|
1242 | n/a | assert(word0(x) || word1(x)); /* x != 0.0 */ |
---|
1243 | n/a | return ulp(x); |
---|
1244 | n/a | } |
---|
1245 | n/a | } |
---|
1246 | n/a | |
---|
1247 | n/a | /* The bigcomp function handles some hard cases for strtod, for inputs |
---|
1248 | n/a | with more than STRTOD_DIGLIM digits. It's called once an initial |
---|
1249 | n/a | estimate for the double corresponding to the input string has |
---|
1250 | n/a | already been obtained by the code in _Py_dg_strtod. |
---|
1251 | n/a | |
---|
1252 | n/a | The bigcomp function is only called after _Py_dg_strtod has found a |
---|
1253 | n/a | double value rv such that either rv or rv + 1ulp represents the |
---|
1254 | n/a | correctly rounded value corresponding to the original string. It |
---|
1255 | n/a | determines which of these two values is the correct one by |
---|
1256 | n/a | computing the decimal digits of rv + 0.5ulp and comparing them with |
---|
1257 | n/a | the corresponding digits of s0. |
---|
1258 | n/a | |
---|
1259 | n/a | In the following, write dv for the absolute value of the number represented |
---|
1260 | n/a | by the input string. |
---|
1261 | n/a | |
---|
1262 | n/a | Inputs: |
---|
1263 | n/a | |
---|
1264 | n/a | s0 points to the first significant digit of the input string. |
---|
1265 | n/a | |
---|
1266 | n/a | rv is a (possibly scaled) estimate for the closest double value to the |
---|
1267 | n/a | value represented by the original input to _Py_dg_strtod. If |
---|
1268 | n/a | bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to |
---|
1269 | n/a | the input value. |
---|
1270 | n/a | |
---|
1271 | n/a | bc is a struct containing information gathered during the parsing and |
---|
1272 | n/a | estimation steps of _Py_dg_strtod. Description of fields follows: |
---|
1273 | n/a | |
---|
1274 | n/a | bc->e0 gives the exponent of the input value, such that dv = (integer |
---|
1275 | n/a | given by the bd->nd digits of s0) * 10**e0 |
---|
1276 | n/a | |
---|
1277 | n/a | bc->nd gives the total number of significant digits of s0. It will |
---|
1278 | n/a | be at least 1. |
---|
1279 | n/a | |
---|
1280 | n/a | bc->nd0 gives the number of significant digits of s0 before the |
---|
1281 | n/a | decimal separator. If there's no decimal separator, bc->nd0 == |
---|
1282 | n/a | bc->nd. |
---|
1283 | n/a | |
---|
1284 | n/a | bc->scale is the value used to scale rv to avoid doing arithmetic with |
---|
1285 | n/a | subnormal values. It's either 0 or 2*P (=106). |
---|
1286 | n/a | |
---|
1287 | n/a | Outputs: |
---|
1288 | n/a | |
---|
1289 | n/a | On successful exit, rv/2^(bc->scale) is the closest double to dv. |
---|
1290 | n/a | |
---|
1291 | n/a | Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */ |
---|
1292 | n/a | |
---|
1293 | n/a | static int |
---|
1294 | n/a | bigcomp(U *rv, const char *s0, BCinfo *bc) |
---|
1295 | n/a | { |
---|
1296 | n/a | Bigint *b, *d; |
---|
1297 | n/a | int b2, d2, dd, i, nd, nd0, odd, p2, p5; |
---|
1298 | n/a | |
---|
1299 | n/a | nd = bc->nd; |
---|
1300 | n/a | nd0 = bc->nd0; |
---|
1301 | n/a | p5 = nd + bc->e0; |
---|
1302 | n/a | b = sd2b(rv, bc->scale, &p2); |
---|
1303 | n/a | if (b == NULL) |
---|
1304 | n/a | return -1; |
---|
1305 | n/a | |
---|
1306 | n/a | /* record whether the lsb of rv/2^(bc->scale) is odd: in the exact halfway |
---|
1307 | n/a | case, this is used for round to even. */ |
---|
1308 | n/a | odd = b->x[0] & 1; |
---|
1309 | n/a | |
---|
1310 | n/a | /* left shift b by 1 bit and or a 1 into the least significant bit; |
---|
1311 | n/a | this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */ |
---|
1312 | n/a | b = lshift(b, 1); |
---|
1313 | n/a | if (b == NULL) |
---|
1314 | n/a | return -1; |
---|
1315 | n/a | b->x[0] |= 1; |
---|
1316 | n/a | p2--; |
---|
1317 | n/a | |
---|
1318 | n/a | p2 -= p5; |
---|
1319 | n/a | d = i2b(1); |
---|
1320 | n/a | if (d == NULL) { |
---|
1321 | n/a | Bfree(b); |
---|
1322 | n/a | return -1; |
---|
1323 | n/a | } |
---|
1324 | n/a | /* Arrange for convenient computation of quotients: |
---|
1325 | n/a | * shift left if necessary so divisor has 4 leading 0 bits. |
---|
1326 | n/a | */ |
---|
1327 | n/a | if (p5 > 0) { |
---|
1328 | n/a | d = pow5mult(d, p5); |
---|
1329 | n/a | if (d == NULL) { |
---|
1330 | n/a | Bfree(b); |
---|
1331 | n/a | return -1; |
---|
1332 | n/a | } |
---|
1333 | n/a | } |
---|
1334 | n/a | else if (p5 < 0) { |
---|
1335 | n/a | b = pow5mult(b, -p5); |
---|
1336 | n/a | if (b == NULL) { |
---|
1337 | n/a | Bfree(d); |
---|
1338 | n/a | return -1; |
---|
1339 | n/a | } |
---|
1340 | n/a | } |
---|
1341 | n/a | if (p2 > 0) { |
---|
1342 | n/a | b2 = p2; |
---|
1343 | n/a | d2 = 0; |
---|
1344 | n/a | } |
---|
1345 | n/a | else { |
---|
1346 | n/a | b2 = 0; |
---|
1347 | n/a | d2 = -p2; |
---|
1348 | n/a | } |
---|
1349 | n/a | i = dshift(d, d2); |
---|
1350 | n/a | if ((b2 += i) > 0) { |
---|
1351 | n/a | b = lshift(b, b2); |
---|
1352 | n/a | if (b == NULL) { |
---|
1353 | n/a | Bfree(d); |
---|
1354 | n/a | return -1; |
---|
1355 | n/a | } |
---|
1356 | n/a | } |
---|
1357 | n/a | if ((d2 += i) > 0) { |
---|
1358 | n/a | d = lshift(d, d2); |
---|
1359 | n/a | if (d == NULL) { |
---|
1360 | n/a | Bfree(b); |
---|
1361 | n/a | return -1; |
---|
1362 | n/a | } |
---|
1363 | n/a | } |
---|
1364 | n/a | |
---|
1365 | n/a | /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 == |
---|
1366 | n/a | * b/d, or s0 > b/d. Here the digits of s0 are thought of as representing |
---|
1367 | n/a | * a number in the range [0.1, 1). */ |
---|
1368 | n/a | if (cmp(b, d) >= 0) |
---|
1369 | n/a | /* b/d >= 1 */ |
---|
1370 | n/a | dd = -1; |
---|
1371 | n/a | else { |
---|
1372 | n/a | i = 0; |
---|
1373 | n/a | for(;;) { |
---|
1374 | n/a | b = multadd(b, 10, 0); |
---|
1375 | n/a | if (b == NULL) { |
---|
1376 | n/a | Bfree(d); |
---|
1377 | n/a | return -1; |
---|
1378 | n/a | } |
---|
1379 | n/a | dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d); |
---|
1380 | n/a | i++; |
---|
1381 | n/a | |
---|
1382 | n/a | if (dd) |
---|
1383 | n/a | break; |
---|
1384 | n/a | if (!b->x[0] && b->wds == 1) { |
---|
1385 | n/a | /* b/d == 0 */ |
---|
1386 | n/a | dd = i < nd; |
---|
1387 | n/a | break; |
---|
1388 | n/a | } |
---|
1389 | n/a | if (!(i < nd)) { |
---|
1390 | n/a | /* b/d != 0, but digits of s0 exhausted */ |
---|
1391 | n/a | dd = -1; |
---|
1392 | n/a | break; |
---|
1393 | n/a | } |
---|
1394 | n/a | } |
---|
1395 | n/a | } |
---|
1396 | n/a | Bfree(b); |
---|
1397 | n/a | Bfree(d); |
---|
1398 | n/a | if (dd > 0 || (dd == 0 && odd)) |
---|
1399 | n/a | dval(rv) += sulp(rv, bc); |
---|
1400 | n/a | return 0; |
---|
1401 | n/a | } |
---|
1402 | n/a | |
---|
1403 | n/a | /* Return a 'standard' NaN value. |
---|
1404 | n/a | |
---|
1405 | n/a | There are exactly two quiet NaNs that don't arise by 'quieting' signaling |
---|
1406 | n/a | NaNs (see IEEE 754-2008, section 6.2.1). If sign == 0, return the one whose |
---|
1407 | n/a | sign bit is cleared. Otherwise, return the one whose sign bit is set. |
---|
1408 | n/a | */ |
---|
1409 | n/a | |
---|
1410 | n/a | double |
---|
1411 | n/a | _Py_dg_stdnan(int sign) |
---|
1412 | n/a | { |
---|
1413 | n/a | U rv; |
---|
1414 | n/a | word0(&rv) = NAN_WORD0; |
---|
1415 | n/a | word1(&rv) = NAN_WORD1; |
---|
1416 | n/a | if (sign) |
---|
1417 | n/a | word0(&rv) |= Sign_bit; |
---|
1418 | n/a | return dval(&rv); |
---|
1419 | n/a | } |
---|
1420 | n/a | |
---|
1421 | n/a | /* Return positive or negative infinity, according to the given sign (0 for |
---|
1422 | n/a | * positive infinity, 1 for negative infinity). */ |
---|
1423 | n/a | |
---|
1424 | n/a | double |
---|
1425 | n/a | _Py_dg_infinity(int sign) |
---|
1426 | n/a | { |
---|
1427 | n/a | U rv; |
---|
1428 | n/a | word0(&rv) = POSINF_WORD0; |
---|
1429 | n/a | word1(&rv) = POSINF_WORD1; |
---|
1430 | n/a | return sign ? -dval(&rv) : dval(&rv); |
---|
1431 | n/a | } |
---|
1432 | n/a | |
---|
1433 | n/a | double |
---|
1434 | n/a | _Py_dg_strtod(const char *s00, char **se) |
---|
1435 | n/a | { |
---|
1436 | n/a | int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error; |
---|
1437 | n/a | int esign, i, j, k, lz, nd, nd0, odd, sign; |
---|
1438 | n/a | const char *s, *s0, *s1; |
---|
1439 | n/a | double aadj, aadj1; |
---|
1440 | n/a | U aadj2, adj, rv, rv0; |
---|
1441 | n/a | ULong y, z, abs_exp; |
---|
1442 | n/a | Long L; |
---|
1443 | n/a | BCinfo bc; |
---|
1444 | n/a | Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; |
---|
1445 | n/a | size_t ndigits, fraclen; |
---|
1446 | n/a | |
---|
1447 | n/a | dval(&rv) = 0.; |
---|
1448 | n/a | |
---|
1449 | n/a | /* Start parsing. */ |
---|
1450 | n/a | c = *(s = s00); |
---|
1451 | n/a | |
---|
1452 | n/a | /* Parse optional sign, if present. */ |
---|
1453 | n/a | sign = 0; |
---|
1454 | n/a | switch (c) { |
---|
1455 | n/a | case '-': |
---|
1456 | n/a | sign = 1; |
---|
1457 | n/a | /* no break */ |
---|
1458 | n/a | case '+': |
---|
1459 | n/a | c = *++s; |
---|
1460 | n/a | } |
---|
1461 | n/a | |
---|
1462 | n/a | /* Skip leading zeros: lz is true iff there were leading zeros. */ |
---|
1463 | n/a | s1 = s; |
---|
1464 | n/a | while (c == '0') |
---|
1465 | n/a | c = *++s; |
---|
1466 | n/a | lz = s != s1; |
---|
1467 | n/a | |
---|
1468 | n/a | /* Point s0 at the first nonzero digit (if any). fraclen will be the |
---|
1469 | n/a | number of digits between the decimal point and the end of the |
---|
1470 | n/a | digit string. ndigits will be the total number of digits ignoring |
---|
1471 | n/a | leading zeros. */ |
---|
1472 | n/a | s0 = s1 = s; |
---|
1473 | n/a | while ('0' <= c && c <= '9') |
---|
1474 | n/a | c = *++s; |
---|
1475 | n/a | ndigits = s - s1; |
---|
1476 | n/a | fraclen = 0; |
---|
1477 | n/a | |
---|
1478 | n/a | /* Parse decimal point and following digits. */ |
---|
1479 | n/a | if (c == '.') { |
---|
1480 | n/a | c = *++s; |
---|
1481 | n/a | if (!ndigits) { |
---|
1482 | n/a | s1 = s; |
---|
1483 | n/a | while (c == '0') |
---|
1484 | n/a | c = *++s; |
---|
1485 | n/a | lz = lz || s != s1; |
---|
1486 | n/a | fraclen += (s - s1); |
---|
1487 | n/a | s0 = s; |
---|
1488 | n/a | } |
---|
1489 | n/a | s1 = s; |
---|
1490 | n/a | while ('0' <= c && c <= '9') |
---|
1491 | n/a | c = *++s; |
---|
1492 | n/a | ndigits += s - s1; |
---|
1493 | n/a | fraclen += s - s1; |
---|
1494 | n/a | } |
---|
1495 | n/a | |
---|
1496 | n/a | /* Now lz is true if and only if there were leading zero digits, and |
---|
1497 | n/a | ndigits gives the total number of digits ignoring leading zeros. A |
---|
1498 | n/a | valid input must have at least one digit. */ |
---|
1499 | n/a | if (!ndigits && !lz) { |
---|
1500 | n/a | if (se) |
---|
1501 | n/a | *se = (char *)s00; |
---|
1502 | n/a | goto parse_error; |
---|
1503 | n/a | } |
---|
1504 | n/a | |
---|
1505 | n/a | /* Range check ndigits and fraclen to make sure that they, and values |
---|
1506 | n/a | computed with them, can safely fit in an int. */ |
---|
1507 | n/a | if (ndigits > MAX_DIGITS || fraclen > MAX_DIGITS) { |
---|
1508 | n/a | if (se) |
---|
1509 | n/a | *se = (char *)s00; |
---|
1510 | n/a | goto parse_error; |
---|
1511 | n/a | } |
---|
1512 | n/a | nd = (int)ndigits; |
---|
1513 | n/a | nd0 = (int)ndigits - (int)fraclen; |
---|
1514 | n/a | |
---|
1515 | n/a | /* Parse exponent. */ |
---|
1516 | n/a | e = 0; |
---|
1517 | n/a | if (c == 'e' || c == 'E') { |
---|
1518 | n/a | s00 = s; |
---|
1519 | n/a | c = *++s; |
---|
1520 | n/a | |
---|
1521 | n/a | /* Exponent sign. */ |
---|
1522 | n/a | esign = 0; |
---|
1523 | n/a | switch (c) { |
---|
1524 | n/a | case '-': |
---|
1525 | n/a | esign = 1; |
---|
1526 | n/a | /* no break */ |
---|
1527 | n/a | case '+': |
---|
1528 | n/a | c = *++s; |
---|
1529 | n/a | } |
---|
1530 | n/a | |
---|
1531 | n/a | /* Skip zeros. lz is true iff there are leading zeros. */ |
---|
1532 | n/a | s1 = s; |
---|
1533 | n/a | while (c == '0') |
---|
1534 | n/a | c = *++s; |
---|
1535 | n/a | lz = s != s1; |
---|
1536 | n/a | |
---|
1537 | n/a | /* Get absolute value of the exponent. */ |
---|
1538 | n/a | s1 = s; |
---|
1539 | n/a | abs_exp = 0; |
---|
1540 | n/a | while ('0' <= c && c <= '9') { |
---|
1541 | n/a | abs_exp = 10*abs_exp + (c - '0'); |
---|
1542 | n/a | c = *++s; |
---|
1543 | n/a | } |
---|
1544 | n/a | |
---|
1545 | n/a | /* abs_exp will be correct modulo 2**32. But 10**9 < 2**32, so if |
---|
1546 | n/a | there are at most 9 significant exponent digits then overflow is |
---|
1547 | n/a | impossible. */ |
---|
1548 | n/a | if (s - s1 > 9 || abs_exp > MAX_ABS_EXP) |
---|
1549 | n/a | e = (int)MAX_ABS_EXP; |
---|
1550 | n/a | else |
---|
1551 | n/a | e = (int)abs_exp; |
---|
1552 | n/a | if (esign) |
---|
1553 | n/a | e = -e; |
---|
1554 | n/a | |
---|
1555 | n/a | /* A valid exponent must have at least one digit. */ |
---|
1556 | n/a | if (s == s1 && !lz) |
---|
1557 | n/a | s = s00; |
---|
1558 | n/a | } |
---|
1559 | n/a | |
---|
1560 | n/a | /* Adjust exponent to take into account position of the point. */ |
---|
1561 | n/a | e -= nd - nd0; |
---|
1562 | n/a | if (nd0 <= 0) |
---|
1563 | n/a | nd0 = nd; |
---|
1564 | n/a | |
---|
1565 | n/a | /* Finished parsing. Set se to indicate how far we parsed */ |
---|
1566 | n/a | if (se) |
---|
1567 | n/a | *se = (char *)s; |
---|
1568 | n/a | |
---|
1569 | n/a | /* If all digits were zero, exit with return value +-0.0. Otherwise, |
---|
1570 | n/a | strip trailing zeros: scan back until we hit a nonzero digit. */ |
---|
1571 | n/a | if (!nd) |
---|
1572 | n/a | goto ret; |
---|
1573 | n/a | for (i = nd; i > 0; ) { |
---|
1574 | n/a | --i; |
---|
1575 | n/a | if (s0[i < nd0 ? i : i+1] != '0') { |
---|
1576 | n/a | ++i; |
---|
1577 | n/a | break; |
---|
1578 | n/a | } |
---|
1579 | n/a | } |
---|
1580 | n/a | e += nd - i; |
---|
1581 | n/a | nd = i; |
---|
1582 | n/a | if (nd0 > nd) |
---|
1583 | n/a | nd0 = nd; |
---|
1584 | n/a | |
---|
1585 | n/a | /* Summary of parsing results. After parsing, and dealing with zero |
---|
1586 | n/a | * inputs, we have values s0, nd0, nd, e, sign, where: |
---|
1587 | n/a | * |
---|
1588 | n/a | * - s0 points to the first significant digit of the input string |
---|
1589 | n/a | * |
---|
1590 | n/a | * - nd is the total number of significant digits (here, and |
---|
1591 | n/a | * below, 'significant digits' means the set of digits of the |
---|
1592 | n/a | * significand of the input that remain after ignoring leading |
---|
1593 | n/a | * and trailing zeros). |
---|
1594 | n/a | * |
---|
1595 | n/a | * - nd0 indicates the position of the decimal point, if present; it |
---|
1596 | n/a | * satisfies 1 <= nd0 <= nd. The nd significant digits are in |
---|
1597 | n/a | * s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice |
---|
1598 | n/a | * notation. (If nd0 < nd, then s0[nd0] contains a '.' character; if |
---|
1599 | n/a | * nd0 == nd, then s0[nd0] could be any non-digit character.) |
---|
1600 | n/a | * |
---|
1601 | n/a | * - e is the adjusted exponent: the absolute value of the number |
---|
1602 | n/a | * represented by the original input string is n * 10**e, where |
---|
1603 | n/a | * n is the integer represented by the concatenation of |
---|
1604 | n/a | * s0[0:nd0] and s0[nd0+1:nd+1] |
---|
1605 | n/a | * |
---|
1606 | n/a | * - sign gives the sign of the input: 1 for negative, 0 for positive |
---|
1607 | n/a | * |
---|
1608 | n/a | * - the first and last significant digits are nonzero |
---|
1609 | n/a | */ |
---|
1610 | n/a | |
---|
1611 | n/a | /* put first DBL_DIG+1 digits into integer y and z. |
---|
1612 | n/a | * |
---|
1613 | n/a | * - y contains the value represented by the first min(9, nd) |
---|
1614 | n/a | * significant digits |
---|
1615 | n/a | * |
---|
1616 | n/a | * - if nd > 9, z contains the value represented by significant digits |
---|
1617 | n/a | * with indices in [9, min(16, nd)). So y * 10**(min(16, nd) - 9) + z |
---|
1618 | n/a | * gives the value represented by the first min(16, nd) sig. digits. |
---|
1619 | n/a | */ |
---|
1620 | n/a | |
---|
1621 | n/a | bc.e0 = e1 = e; |
---|
1622 | n/a | y = z = 0; |
---|
1623 | n/a | for (i = 0; i < nd; i++) { |
---|
1624 | n/a | if (i < 9) |
---|
1625 | n/a | y = 10*y + s0[i < nd0 ? i : i+1] - '0'; |
---|
1626 | n/a | else if (i < DBL_DIG+1) |
---|
1627 | n/a | z = 10*z + s0[i < nd0 ? i : i+1] - '0'; |
---|
1628 | n/a | else |
---|
1629 | n/a | break; |
---|
1630 | n/a | } |
---|
1631 | n/a | |
---|
1632 | n/a | k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; |
---|
1633 | n/a | dval(&rv) = y; |
---|
1634 | n/a | if (k > 9) { |
---|
1635 | n/a | dval(&rv) = tens[k - 9] * dval(&rv) + z; |
---|
1636 | n/a | } |
---|
1637 | n/a | bd0 = 0; |
---|
1638 | n/a | if (nd <= DBL_DIG |
---|
1639 | n/a | && Flt_Rounds == 1 |
---|
1640 | n/a | ) { |
---|
1641 | n/a | if (!e) |
---|
1642 | n/a | goto ret; |
---|
1643 | n/a | if (e > 0) { |
---|
1644 | n/a | if (e <= Ten_pmax) { |
---|
1645 | n/a | dval(&rv) *= tens[e]; |
---|
1646 | n/a | goto ret; |
---|
1647 | n/a | } |
---|
1648 | n/a | i = DBL_DIG - nd; |
---|
1649 | n/a | if (e <= Ten_pmax + i) { |
---|
1650 | n/a | /* A fancier test would sometimes let us do |
---|
1651 | n/a | * this for larger i values. |
---|
1652 | n/a | */ |
---|
1653 | n/a | e -= i; |
---|
1654 | n/a | dval(&rv) *= tens[i]; |
---|
1655 | n/a | dval(&rv) *= tens[e]; |
---|
1656 | n/a | goto ret; |
---|
1657 | n/a | } |
---|
1658 | n/a | } |
---|
1659 | n/a | else if (e >= -Ten_pmax) { |
---|
1660 | n/a | dval(&rv) /= tens[-e]; |
---|
1661 | n/a | goto ret; |
---|
1662 | n/a | } |
---|
1663 | n/a | } |
---|
1664 | n/a | e1 += nd - k; |
---|
1665 | n/a | |
---|
1666 | n/a | bc.scale = 0; |
---|
1667 | n/a | |
---|
1668 | n/a | /* Get starting approximation = rv * 10**e1 */ |
---|
1669 | n/a | |
---|
1670 | n/a | if (e1 > 0) { |
---|
1671 | n/a | if ((i = e1 & 15)) |
---|
1672 | n/a | dval(&rv) *= tens[i]; |
---|
1673 | n/a | if (e1 &= ~15) { |
---|
1674 | n/a | if (e1 > DBL_MAX_10_EXP) |
---|
1675 | n/a | goto ovfl; |
---|
1676 | n/a | e1 >>= 4; |
---|
1677 | n/a | for(j = 0; e1 > 1; j++, e1 >>= 1) |
---|
1678 | n/a | if (e1 & 1) |
---|
1679 | n/a | dval(&rv) *= bigtens[j]; |
---|
1680 | n/a | /* The last multiplication could overflow. */ |
---|
1681 | n/a | word0(&rv) -= P*Exp_msk1; |
---|
1682 | n/a | dval(&rv) *= bigtens[j]; |
---|
1683 | n/a | if ((z = word0(&rv) & Exp_mask) |
---|
1684 | n/a | > Exp_msk1*(DBL_MAX_EXP+Bias-P)) |
---|
1685 | n/a | goto ovfl; |
---|
1686 | n/a | if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { |
---|
1687 | n/a | /* set to largest number */ |
---|
1688 | n/a | /* (Can't trust DBL_MAX) */ |
---|
1689 | n/a | word0(&rv) = Big0; |
---|
1690 | n/a | word1(&rv) = Big1; |
---|
1691 | n/a | } |
---|
1692 | n/a | else |
---|
1693 | n/a | word0(&rv) += P*Exp_msk1; |
---|
1694 | n/a | } |
---|
1695 | n/a | } |
---|
1696 | n/a | else if (e1 < 0) { |
---|
1697 | n/a | /* The input decimal value lies in [10**e1, 10**(e1+16)). |
---|
1698 | n/a | |
---|
1699 | n/a | If e1 <= -512, underflow immediately. |
---|
1700 | n/a | If e1 <= -256, set bc.scale to 2*P. |
---|
1701 | n/a | |
---|
1702 | n/a | So for input value < 1e-256, bc.scale is always set; |
---|
1703 | n/a | for input value >= 1e-240, bc.scale is never set. |
---|
1704 | n/a | For input values in [1e-256, 1e-240), bc.scale may or may |
---|
1705 | n/a | not be set. */ |
---|
1706 | n/a | |
---|
1707 | n/a | e1 = -e1; |
---|
1708 | n/a | if ((i = e1 & 15)) |
---|
1709 | n/a | dval(&rv) /= tens[i]; |
---|
1710 | n/a | if (e1 >>= 4) { |
---|
1711 | n/a | if (e1 >= 1 << n_bigtens) |
---|
1712 | n/a | goto undfl; |
---|
1713 | n/a | if (e1 & Scale_Bit) |
---|
1714 | n/a | bc.scale = 2*P; |
---|
1715 | n/a | for(j = 0; e1 > 0; j++, e1 >>= 1) |
---|
1716 | n/a | if (e1 & 1) |
---|
1717 | n/a | dval(&rv) *= tinytens[j]; |
---|
1718 | n/a | if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask) |
---|
1719 | n/a | >> Exp_shift)) > 0) { |
---|
1720 | n/a | /* scaled rv is denormal; clear j low bits */ |
---|
1721 | n/a | if (j >= 32) { |
---|
1722 | n/a | word1(&rv) = 0; |
---|
1723 | n/a | if (j >= 53) |
---|
1724 | n/a | word0(&rv) = (P+2)*Exp_msk1; |
---|
1725 | n/a | else |
---|
1726 | n/a | word0(&rv) &= 0xffffffff << (j-32); |
---|
1727 | n/a | } |
---|
1728 | n/a | else |
---|
1729 | n/a | word1(&rv) &= 0xffffffff << j; |
---|
1730 | n/a | } |
---|
1731 | n/a | if (!dval(&rv)) |
---|
1732 | n/a | goto undfl; |
---|
1733 | n/a | } |
---|
1734 | n/a | } |
---|
1735 | n/a | |
---|
1736 | n/a | /* Now the hard part -- adjusting rv to the correct value.*/ |
---|
1737 | n/a | |
---|
1738 | n/a | /* Put digits into bd: true value = bd * 10^e */ |
---|
1739 | n/a | |
---|
1740 | n/a | bc.nd = nd; |
---|
1741 | n/a | bc.nd0 = nd0; /* Only needed if nd > STRTOD_DIGLIM, but done here */ |
---|
1742 | n/a | /* to silence an erroneous warning about bc.nd0 */ |
---|
1743 | n/a | /* possibly not being initialized. */ |
---|
1744 | n/a | if (nd > STRTOD_DIGLIM) { |
---|
1745 | n/a | /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */ |
---|
1746 | n/a | /* minimum number of decimal digits to distinguish double values */ |
---|
1747 | n/a | /* in IEEE arithmetic. */ |
---|
1748 | n/a | |
---|
1749 | n/a | /* Truncate input to 18 significant digits, then discard any trailing |
---|
1750 | n/a | zeros on the result by updating nd, nd0, e and y suitably. (There's |
---|
1751 | n/a | no need to update z; it's not reused beyond this point.) */ |
---|
1752 | n/a | for (i = 18; i > 0; ) { |
---|
1753 | n/a | /* scan back until we hit a nonzero digit. significant digit 'i' |
---|
1754 | n/a | is s0[i] if i < nd0, s0[i+1] if i >= nd0. */ |
---|
1755 | n/a | --i; |
---|
1756 | n/a | if (s0[i < nd0 ? i : i+1] != '0') { |
---|
1757 | n/a | ++i; |
---|
1758 | n/a | break; |
---|
1759 | n/a | } |
---|
1760 | n/a | } |
---|
1761 | n/a | e += nd - i; |
---|
1762 | n/a | nd = i; |
---|
1763 | n/a | if (nd0 > nd) |
---|
1764 | n/a | nd0 = nd; |
---|
1765 | n/a | if (nd < 9) { /* must recompute y */ |
---|
1766 | n/a | y = 0; |
---|
1767 | n/a | for(i = 0; i < nd0; ++i) |
---|
1768 | n/a | y = 10*y + s0[i] - '0'; |
---|
1769 | n/a | for(; i < nd; ++i) |
---|
1770 | n/a | y = 10*y + s0[i+1] - '0'; |
---|
1771 | n/a | } |
---|
1772 | n/a | } |
---|
1773 | n/a | bd0 = s2b(s0, nd0, nd, y); |
---|
1774 | n/a | if (bd0 == NULL) |
---|
1775 | n/a | goto failed_malloc; |
---|
1776 | n/a | |
---|
1777 | n/a | /* Notation for the comments below. Write: |
---|
1778 | n/a | |
---|
1779 | n/a | - dv for the absolute value of the number represented by the original |
---|
1780 | n/a | decimal input string. |
---|
1781 | n/a | |
---|
1782 | n/a | - if we've truncated dv, write tdv for the truncated value. |
---|
1783 | n/a | Otherwise, set tdv == dv. |
---|
1784 | n/a | |
---|
1785 | n/a | - srv for the quantity rv/2^bc.scale; so srv is the current binary |
---|
1786 | n/a | approximation to tdv (and dv). It should be exactly representable |
---|
1787 | n/a | in an IEEE 754 double. |
---|
1788 | n/a | */ |
---|
1789 | n/a | |
---|
1790 | n/a | for(;;) { |
---|
1791 | n/a | |
---|
1792 | n/a | /* This is the main correction loop for _Py_dg_strtod. |
---|
1793 | n/a | |
---|
1794 | n/a | We've got a decimal value tdv, and a floating-point approximation |
---|
1795 | n/a | srv=rv/2^bc.scale to tdv. The aim is to determine whether srv is |
---|
1796 | n/a | close enough (i.e., within 0.5 ulps) to tdv, and to compute a new |
---|
1797 | n/a | approximation if not. |
---|
1798 | n/a | |
---|
1799 | n/a | To determine whether srv is close enough to tdv, compute integers |
---|
1800 | n/a | bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv) |
---|
1801 | n/a | respectively, and then use integer arithmetic to determine whether |
---|
1802 | n/a | |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv). |
---|
1803 | n/a | */ |
---|
1804 | n/a | |
---|
1805 | n/a | bd = Balloc(bd0->k); |
---|
1806 | n/a | if (bd == NULL) { |
---|
1807 | n/a | Bfree(bd0); |
---|
1808 | n/a | goto failed_malloc; |
---|
1809 | n/a | } |
---|
1810 | n/a | Bcopy(bd, bd0); |
---|
1811 | n/a | bb = sd2b(&rv, bc.scale, &bbe); /* srv = bb * 2^bbe */ |
---|
1812 | n/a | if (bb == NULL) { |
---|
1813 | n/a | Bfree(bd); |
---|
1814 | n/a | Bfree(bd0); |
---|
1815 | n/a | goto failed_malloc; |
---|
1816 | n/a | } |
---|
1817 | n/a | /* Record whether lsb of bb is odd, in case we need this |
---|
1818 | n/a | for the round-to-even step later. */ |
---|
1819 | n/a | odd = bb->x[0] & 1; |
---|
1820 | n/a | |
---|
1821 | n/a | /* tdv = bd * 10**e; srv = bb * 2**bbe */ |
---|
1822 | n/a | bs = i2b(1); |
---|
1823 | n/a | if (bs == NULL) { |
---|
1824 | n/a | Bfree(bb); |
---|
1825 | n/a | Bfree(bd); |
---|
1826 | n/a | Bfree(bd0); |
---|
1827 | n/a | goto failed_malloc; |
---|
1828 | n/a | } |
---|
1829 | n/a | |
---|
1830 | n/a | if (e >= 0) { |
---|
1831 | n/a | bb2 = bb5 = 0; |
---|
1832 | n/a | bd2 = bd5 = e; |
---|
1833 | n/a | } |
---|
1834 | n/a | else { |
---|
1835 | n/a | bb2 = bb5 = -e; |
---|
1836 | n/a | bd2 = bd5 = 0; |
---|
1837 | n/a | } |
---|
1838 | n/a | if (bbe >= 0) |
---|
1839 | n/a | bb2 += bbe; |
---|
1840 | n/a | else |
---|
1841 | n/a | bd2 -= bbe; |
---|
1842 | n/a | bs2 = bb2; |
---|
1843 | n/a | bb2++; |
---|
1844 | n/a | bd2++; |
---|
1845 | n/a | |
---|
1846 | n/a | /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1, |
---|
1847 | n/a | and bs == 1, so: |
---|
1848 | n/a | |
---|
1849 | n/a | tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5) |
---|
1850 | n/a | srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2) |
---|
1851 | n/a | 0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2) |
---|
1852 | n/a | |
---|
1853 | n/a | It follows that: |
---|
1854 | n/a | |
---|
1855 | n/a | M * tdv = bd * 2**bd2 * 5**bd5 |
---|
1856 | n/a | M * srv = bb * 2**bb2 * 5**bb5 |
---|
1857 | n/a | M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5 |
---|
1858 | n/a | |
---|
1859 | n/a | for some constant M. (Actually, M == 2**(bb2 - bbe) * 5**bb5, but |
---|
1860 | n/a | this fact is not needed below.) |
---|
1861 | n/a | */ |
---|
1862 | n/a | |
---|
1863 | n/a | /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */ |
---|
1864 | n/a | i = bb2 < bd2 ? bb2 : bd2; |
---|
1865 | n/a | if (i > bs2) |
---|
1866 | n/a | i = bs2; |
---|
1867 | n/a | if (i > 0) { |
---|
1868 | n/a | bb2 -= i; |
---|
1869 | n/a | bd2 -= i; |
---|
1870 | n/a | bs2 -= i; |
---|
1871 | n/a | } |
---|
1872 | n/a | |
---|
1873 | n/a | /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */ |
---|
1874 | n/a | if (bb5 > 0) { |
---|
1875 | n/a | bs = pow5mult(bs, bb5); |
---|
1876 | n/a | if (bs == NULL) { |
---|
1877 | n/a | Bfree(bb); |
---|
1878 | n/a | Bfree(bd); |
---|
1879 | n/a | Bfree(bd0); |
---|
1880 | n/a | goto failed_malloc; |
---|
1881 | n/a | } |
---|
1882 | n/a | bb1 = mult(bs, bb); |
---|
1883 | n/a | Bfree(bb); |
---|
1884 | n/a | bb = bb1; |
---|
1885 | n/a | if (bb == NULL) { |
---|
1886 | n/a | Bfree(bs); |
---|
1887 | n/a | Bfree(bd); |
---|
1888 | n/a | Bfree(bd0); |
---|
1889 | n/a | goto failed_malloc; |
---|
1890 | n/a | } |
---|
1891 | n/a | } |
---|
1892 | n/a | if (bb2 > 0) { |
---|
1893 | n/a | bb = lshift(bb, bb2); |
---|
1894 | n/a | if (bb == NULL) { |
---|
1895 | n/a | Bfree(bs); |
---|
1896 | n/a | Bfree(bd); |
---|
1897 | n/a | Bfree(bd0); |
---|
1898 | n/a | goto failed_malloc; |
---|
1899 | n/a | } |
---|
1900 | n/a | } |
---|
1901 | n/a | if (bd5 > 0) { |
---|
1902 | n/a | bd = pow5mult(bd, bd5); |
---|
1903 | n/a | if (bd == NULL) { |
---|
1904 | n/a | Bfree(bb); |
---|
1905 | n/a | Bfree(bs); |
---|
1906 | n/a | Bfree(bd0); |
---|
1907 | n/a | goto failed_malloc; |
---|
1908 | n/a | } |
---|
1909 | n/a | } |
---|
1910 | n/a | if (bd2 > 0) { |
---|
1911 | n/a | bd = lshift(bd, bd2); |
---|
1912 | n/a | if (bd == NULL) { |
---|
1913 | n/a | Bfree(bb); |
---|
1914 | n/a | Bfree(bs); |
---|
1915 | n/a | Bfree(bd0); |
---|
1916 | n/a | goto failed_malloc; |
---|
1917 | n/a | } |
---|
1918 | n/a | } |
---|
1919 | n/a | if (bs2 > 0) { |
---|
1920 | n/a | bs = lshift(bs, bs2); |
---|
1921 | n/a | if (bs == NULL) { |
---|
1922 | n/a | Bfree(bb); |
---|
1923 | n/a | Bfree(bd); |
---|
1924 | n/a | Bfree(bd0); |
---|
1925 | n/a | goto failed_malloc; |
---|
1926 | n/a | } |
---|
1927 | n/a | } |
---|
1928 | n/a | |
---|
1929 | n/a | /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv), |
---|
1930 | n/a | respectively. Compute the difference |tdv - srv|, and compare |
---|
1931 | n/a | with 0.5 ulp(srv). */ |
---|
1932 | n/a | |
---|
1933 | n/a | delta = diff(bb, bd); |
---|
1934 | n/a | if (delta == NULL) { |
---|
1935 | n/a | Bfree(bb); |
---|
1936 | n/a | Bfree(bs); |
---|
1937 | n/a | Bfree(bd); |
---|
1938 | n/a | Bfree(bd0); |
---|
1939 | n/a | goto failed_malloc; |
---|
1940 | n/a | } |
---|
1941 | n/a | dsign = delta->sign; |
---|
1942 | n/a | delta->sign = 0; |
---|
1943 | n/a | i = cmp(delta, bs); |
---|
1944 | n/a | if (bc.nd > nd && i <= 0) { |
---|
1945 | n/a | if (dsign) |
---|
1946 | n/a | break; /* Must use bigcomp(). */ |
---|
1947 | n/a | |
---|
1948 | n/a | /* Here rv overestimates the truncated decimal value by at most |
---|
1949 | n/a | 0.5 ulp(rv). Hence rv either overestimates the true decimal |
---|
1950 | n/a | value by <= 0.5 ulp(rv), or underestimates it by some small |
---|
1951 | n/a | amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of |
---|
1952 | n/a | the true decimal value, so it's possible to exit. |
---|
1953 | n/a | |
---|
1954 | n/a | Exception: if scaled rv is a normal exact power of 2, but not |
---|
1955 | n/a | DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the |
---|
1956 | n/a | next double, so the correctly rounded result is either rv - 0.5 |
---|
1957 | n/a | ulp(rv) or rv; in this case, use bigcomp to distinguish. */ |
---|
1958 | n/a | |
---|
1959 | n/a | if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) { |
---|
1960 | n/a | /* rv can't be 0, since it's an overestimate for some |
---|
1961 | n/a | nonzero value. So rv is a normal power of 2. */ |
---|
1962 | n/a | j = (int)(word0(&rv) & Exp_mask) >> Exp_shift; |
---|
1963 | n/a | /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if |
---|
1964 | n/a | rv / 2^bc.scale >= 2^-1021. */ |
---|
1965 | n/a | if (j - bc.scale >= 2) { |
---|
1966 | n/a | dval(&rv) -= 0.5 * sulp(&rv, &bc); |
---|
1967 | n/a | break; /* Use bigcomp. */ |
---|
1968 | n/a | } |
---|
1969 | n/a | } |
---|
1970 | n/a | |
---|
1971 | n/a | { |
---|
1972 | n/a | bc.nd = nd; |
---|
1973 | n/a | i = -1; /* Discarded digits make delta smaller. */ |
---|
1974 | n/a | } |
---|
1975 | n/a | } |
---|
1976 | n/a | |
---|
1977 | n/a | if (i < 0) { |
---|
1978 | n/a | /* Error is less than half an ulp -- check for |
---|
1979 | n/a | * special case of mantissa a power of two. |
---|
1980 | n/a | */ |
---|
1981 | n/a | if (dsign || word1(&rv) || word0(&rv) & Bndry_mask |
---|
1982 | n/a | || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1 |
---|
1983 | n/a | ) { |
---|
1984 | n/a | break; |
---|
1985 | n/a | } |
---|
1986 | n/a | if (!delta->x[0] && delta->wds <= 1) { |
---|
1987 | n/a | /* exact result */ |
---|
1988 | n/a | break; |
---|
1989 | n/a | } |
---|
1990 | n/a | delta = lshift(delta,Log2P); |
---|
1991 | n/a | if (delta == NULL) { |
---|
1992 | n/a | Bfree(bb); |
---|
1993 | n/a | Bfree(bs); |
---|
1994 | n/a | Bfree(bd); |
---|
1995 | n/a | Bfree(bd0); |
---|
1996 | n/a | goto failed_malloc; |
---|
1997 | n/a | } |
---|
1998 | n/a | if (cmp(delta, bs) > 0) |
---|
1999 | n/a | goto drop_down; |
---|
2000 | n/a | break; |
---|
2001 | n/a | } |
---|
2002 | n/a | if (i == 0) { |
---|
2003 | n/a | /* exactly half-way between */ |
---|
2004 | n/a | if (dsign) { |
---|
2005 | n/a | if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 |
---|
2006 | n/a | && word1(&rv) == ( |
---|
2007 | n/a | (bc.scale && |
---|
2008 | n/a | (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ? |
---|
2009 | n/a | (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : |
---|
2010 | n/a | 0xffffffff)) { |
---|
2011 | n/a | /*boundary case -- increment exponent*/ |
---|
2012 | n/a | word0(&rv) = (word0(&rv) & Exp_mask) |
---|
2013 | n/a | + Exp_msk1 |
---|
2014 | n/a | ; |
---|
2015 | n/a | word1(&rv) = 0; |
---|
2016 | n/a | /* dsign = 0; */ |
---|
2017 | n/a | break; |
---|
2018 | n/a | } |
---|
2019 | n/a | } |
---|
2020 | n/a | else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { |
---|
2021 | n/a | drop_down: |
---|
2022 | n/a | /* boundary case -- decrement exponent */ |
---|
2023 | n/a | if (bc.scale) { |
---|
2024 | n/a | L = word0(&rv) & Exp_mask; |
---|
2025 | n/a | if (L <= (2*P+1)*Exp_msk1) { |
---|
2026 | n/a | if (L > (P+2)*Exp_msk1) |
---|
2027 | n/a | /* round even ==> */ |
---|
2028 | n/a | /* accept rv */ |
---|
2029 | n/a | break; |
---|
2030 | n/a | /* rv = smallest denormal */ |
---|
2031 | n/a | if (bc.nd > nd) |
---|
2032 | n/a | break; |
---|
2033 | n/a | goto undfl; |
---|
2034 | n/a | } |
---|
2035 | n/a | } |
---|
2036 | n/a | L = (word0(&rv) & Exp_mask) - Exp_msk1; |
---|
2037 | n/a | word0(&rv) = L | Bndry_mask1; |
---|
2038 | n/a | word1(&rv) = 0xffffffff; |
---|
2039 | n/a | break; |
---|
2040 | n/a | } |
---|
2041 | n/a | if (!odd) |
---|
2042 | n/a | break; |
---|
2043 | n/a | if (dsign) |
---|
2044 | n/a | dval(&rv) += sulp(&rv, &bc); |
---|
2045 | n/a | else { |
---|
2046 | n/a | dval(&rv) -= sulp(&rv, &bc); |
---|
2047 | n/a | if (!dval(&rv)) { |
---|
2048 | n/a | if (bc.nd >nd) |
---|
2049 | n/a | break; |
---|
2050 | n/a | goto undfl; |
---|
2051 | n/a | } |
---|
2052 | n/a | } |
---|
2053 | n/a | /* dsign = 1 - dsign; */ |
---|
2054 | n/a | break; |
---|
2055 | n/a | } |
---|
2056 | n/a | if ((aadj = ratio(delta, bs)) <= 2.) { |
---|
2057 | n/a | if (dsign) |
---|
2058 | n/a | aadj = aadj1 = 1.; |
---|
2059 | n/a | else if (word1(&rv) || word0(&rv) & Bndry_mask) { |
---|
2060 | n/a | if (word1(&rv) == Tiny1 && !word0(&rv)) { |
---|
2061 | n/a | if (bc.nd >nd) |
---|
2062 | n/a | break; |
---|
2063 | n/a | goto undfl; |
---|
2064 | n/a | } |
---|
2065 | n/a | aadj = 1.; |
---|
2066 | n/a | aadj1 = -1.; |
---|
2067 | n/a | } |
---|
2068 | n/a | else { |
---|
2069 | n/a | /* special case -- power of FLT_RADIX to be */ |
---|
2070 | n/a | /* rounded down... */ |
---|
2071 | n/a | |
---|
2072 | n/a | if (aadj < 2./FLT_RADIX) |
---|
2073 | n/a | aadj = 1./FLT_RADIX; |
---|
2074 | n/a | else |
---|
2075 | n/a | aadj *= 0.5; |
---|
2076 | n/a | aadj1 = -aadj; |
---|
2077 | n/a | } |
---|
2078 | n/a | } |
---|
2079 | n/a | else { |
---|
2080 | n/a | aadj *= 0.5; |
---|
2081 | n/a | aadj1 = dsign ? aadj : -aadj; |
---|
2082 | n/a | if (Flt_Rounds == 0) |
---|
2083 | n/a | aadj1 += 0.5; |
---|
2084 | n/a | } |
---|
2085 | n/a | y = word0(&rv) & Exp_mask; |
---|
2086 | n/a | |
---|
2087 | n/a | /* Check for overflow */ |
---|
2088 | n/a | |
---|
2089 | n/a | if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { |
---|
2090 | n/a | dval(&rv0) = dval(&rv); |
---|
2091 | n/a | word0(&rv) -= P*Exp_msk1; |
---|
2092 | n/a | adj.d = aadj1 * ulp(&rv); |
---|
2093 | n/a | dval(&rv) += adj.d; |
---|
2094 | n/a | if ((word0(&rv) & Exp_mask) >= |
---|
2095 | n/a | Exp_msk1*(DBL_MAX_EXP+Bias-P)) { |
---|
2096 | n/a | if (word0(&rv0) == Big0 && word1(&rv0) == Big1) { |
---|
2097 | n/a | Bfree(bb); |
---|
2098 | n/a | Bfree(bd); |
---|
2099 | n/a | Bfree(bs); |
---|
2100 | n/a | Bfree(bd0); |
---|
2101 | n/a | Bfree(delta); |
---|
2102 | n/a | goto ovfl; |
---|
2103 | n/a | } |
---|
2104 | n/a | word0(&rv) = Big0; |
---|
2105 | n/a | word1(&rv) = Big1; |
---|
2106 | n/a | goto cont; |
---|
2107 | n/a | } |
---|
2108 | n/a | else |
---|
2109 | n/a | word0(&rv) += P*Exp_msk1; |
---|
2110 | n/a | } |
---|
2111 | n/a | else { |
---|
2112 | n/a | if (bc.scale && y <= 2*P*Exp_msk1) { |
---|
2113 | n/a | if (aadj <= 0x7fffffff) { |
---|
2114 | n/a | if ((z = (ULong)aadj) <= 0) |
---|
2115 | n/a | z = 1; |
---|
2116 | n/a | aadj = z; |
---|
2117 | n/a | aadj1 = dsign ? aadj : -aadj; |
---|
2118 | n/a | } |
---|
2119 | n/a | dval(&aadj2) = aadj1; |
---|
2120 | n/a | word0(&aadj2) += (2*P+1)*Exp_msk1 - y; |
---|
2121 | n/a | aadj1 = dval(&aadj2); |
---|
2122 | n/a | } |
---|
2123 | n/a | adj.d = aadj1 * ulp(&rv); |
---|
2124 | n/a | dval(&rv) += adj.d; |
---|
2125 | n/a | } |
---|
2126 | n/a | z = word0(&rv) & Exp_mask; |
---|
2127 | n/a | if (bc.nd == nd) { |
---|
2128 | n/a | if (!bc.scale) |
---|
2129 | n/a | if (y == z) { |
---|
2130 | n/a | /* Can we stop now? */ |
---|
2131 | n/a | L = (Long)aadj; |
---|
2132 | n/a | aadj -= L; |
---|
2133 | n/a | /* The tolerances below are conservative. */ |
---|
2134 | n/a | if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) { |
---|
2135 | n/a | if (aadj < .4999999 || aadj > .5000001) |
---|
2136 | n/a | break; |
---|
2137 | n/a | } |
---|
2138 | n/a | else if (aadj < .4999999/FLT_RADIX) |
---|
2139 | n/a | break; |
---|
2140 | n/a | } |
---|
2141 | n/a | } |
---|
2142 | n/a | cont: |
---|
2143 | n/a | Bfree(bb); |
---|
2144 | n/a | Bfree(bd); |
---|
2145 | n/a | Bfree(bs); |
---|
2146 | n/a | Bfree(delta); |
---|
2147 | n/a | } |
---|
2148 | n/a | Bfree(bb); |
---|
2149 | n/a | Bfree(bd); |
---|
2150 | n/a | Bfree(bs); |
---|
2151 | n/a | Bfree(bd0); |
---|
2152 | n/a | Bfree(delta); |
---|
2153 | n/a | if (bc.nd > nd) { |
---|
2154 | n/a | error = bigcomp(&rv, s0, &bc); |
---|
2155 | n/a | if (error) |
---|
2156 | n/a | goto failed_malloc; |
---|
2157 | n/a | } |
---|
2158 | n/a | |
---|
2159 | n/a | if (bc.scale) { |
---|
2160 | n/a | word0(&rv0) = Exp_1 - 2*P*Exp_msk1; |
---|
2161 | n/a | word1(&rv0) = 0; |
---|
2162 | n/a | dval(&rv) *= dval(&rv0); |
---|
2163 | n/a | } |
---|
2164 | n/a | |
---|
2165 | n/a | ret: |
---|
2166 | n/a | return sign ? -dval(&rv) : dval(&rv); |
---|
2167 | n/a | |
---|
2168 | n/a | parse_error: |
---|
2169 | n/a | return 0.0; |
---|
2170 | n/a | |
---|
2171 | n/a | failed_malloc: |
---|
2172 | n/a | errno = ENOMEM; |
---|
2173 | n/a | return -1.0; |
---|
2174 | n/a | |
---|
2175 | n/a | undfl: |
---|
2176 | n/a | return sign ? -0.0 : 0.0; |
---|
2177 | n/a | |
---|
2178 | n/a | ovfl: |
---|
2179 | n/a | errno = ERANGE; |
---|
2180 | n/a | /* Can't trust HUGE_VAL */ |
---|
2181 | n/a | word0(&rv) = Exp_mask; |
---|
2182 | n/a | word1(&rv) = 0; |
---|
2183 | n/a | return sign ? -dval(&rv) : dval(&rv); |
---|
2184 | n/a | |
---|
2185 | n/a | } |
---|
2186 | n/a | |
---|
2187 | n/a | static char * |
---|
2188 | n/a | rv_alloc(int i) |
---|
2189 | n/a | { |
---|
2190 | n/a | int j, k, *r; |
---|
2191 | n/a | |
---|
2192 | n/a | j = sizeof(ULong); |
---|
2193 | n/a | for(k = 0; |
---|
2194 | n/a | sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i; |
---|
2195 | n/a | j <<= 1) |
---|
2196 | n/a | k++; |
---|
2197 | n/a | r = (int*)Balloc(k); |
---|
2198 | n/a | if (r == NULL) |
---|
2199 | n/a | return NULL; |
---|
2200 | n/a | *r = k; |
---|
2201 | n/a | return (char *)(r+1); |
---|
2202 | n/a | } |
---|
2203 | n/a | |
---|
2204 | n/a | static char * |
---|
2205 | n/a | nrv_alloc(const char *s, char **rve, int n) |
---|
2206 | n/a | { |
---|
2207 | n/a | char *rv, *t; |
---|
2208 | n/a | |
---|
2209 | n/a | rv = rv_alloc(n); |
---|
2210 | n/a | if (rv == NULL) |
---|
2211 | n/a | return NULL; |
---|
2212 | n/a | t = rv; |
---|
2213 | n/a | while((*t = *s++)) t++; |
---|
2214 | n/a | if (rve) |
---|
2215 | n/a | *rve = t; |
---|
2216 | n/a | return rv; |
---|
2217 | n/a | } |
---|
2218 | n/a | |
---|
2219 | n/a | /* freedtoa(s) must be used to free values s returned by dtoa |
---|
2220 | n/a | * when MULTIPLE_THREADS is #defined. It should be used in all cases, |
---|
2221 | n/a | * but for consistency with earlier versions of dtoa, it is optional |
---|
2222 | n/a | * when MULTIPLE_THREADS is not defined. |
---|
2223 | n/a | */ |
---|
2224 | n/a | |
---|
2225 | n/a | void |
---|
2226 | n/a | _Py_dg_freedtoa(char *s) |
---|
2227 | n/a | { |
---|
2228 | n/a | Bigint *b = (Bigint *)((int *)s - 1); |
---|
2229 | n/a | b->maxwds = 1 << (b->k = *(int*)b); |
---|
2230 | n/a | Bfree(b); |
---|
2231 | n/a | } |
---|
2232 | n/a | |
---|
2233 | n/a | /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. |
---|
2234 | n/a | * |
---|
2235 | n/a | * Inspired by "How to Print Floating-Point Numbers Accurately" by |
---|
2236 | n/a | * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. |
---|
2237 | n/a | * |
---|
2238 | n/a | * Modifications: |
---|
2239 | n/a | * 1. Rather than iterating, we use a simple numeric overestimate |
---|
2240 | n/a | * to determine k = floor(log10(d)). We scale relevant |
---|
2241 | n/a | * quantities using O(log2(k)) rather than O(k) multiplications. |
---|
2242 | n/a | * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't |
---|
2243 | n/a | * try to generate digits strictly left to right. Instead, we |
---|
2244 | n/a | * compute with fewer bits and propagate the carry if necessary |
---|
2245 | n/a | * when rounding the final digit up. This is often faster. |
---|
2246 | n/a | * 3. Under the assumption that input will be rounded nearest, |
---|
2247 | n/a | * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. |
---|
2248 | n/a | * That is, we allow equality in stopping tests when the |
---|
2249 | n/a | * round-nearest rule will give the same floating-point value |
---|
2250 | n/a | * as would satisfaction of the stopping test with strict |
---|
2251 | n/a | * inequality. |
---|
2252 | n/a | * 4. We remove common factors of powers of 2 from relevant |
---|
2253 | n/a | * quantities. |
---|
2254 | n/a | * 5. When converting floating-point integers less than 1e16, |
---|
2255 | n/a | * we use floating-point arithmetic rather than resorting |
---|
2256 | n/a | * to multiple-precision integers. |
---|
2257 | n/a | * 6. When asked to produce fewer than 15 digits, we first try |
---|
2258 | n/a | * to get by with floating-point arithmetic; we resort to |
---|
2259 | n/a | * multiple-precision integer arithmetic only if we cannot |
---|
2260 | n/a | * guarantee that the floating-point calculation has given |
---|
2261 | n/a | * the correctly rounded result. For k requested digits and |
---|
2262 | n/a | * "uniformly" distributed input, the probability is |
---|
2263 | n/a | * something like 10^(k-15) that we must resort to the Long |
---|
2264 | n/a | * calculation. |
---|
2265 | n/a | */ |
---|
2266 | n/a | |
---|
2267 | n/a | /* Additional notes (METD): (1) returns NULL on failure. (2) to avoid memory |
---|
2268 | n/a | leakage, a successful call to _Py_dg_dtoa should always be matched by a |
---|
2269 | n/a | call to _Py_dg_freedtoa. */ |
---|
2270 | n/a | |
---|
2271 | n/a | char * |
---|
2272 | n/a | _Py_dg_dtoa(double dd, int mode, int ndigits, |
---|
2273 | n/a | int *decpt, int *sign, char **rve) |
---|
2274 | n/a | { |
---|
2275 | n/a | /* Arguments ndigits, decpt, sign are similar to those |
---|
2276 | n/a | of ecvt and fcvt; trailing zeros are suppressed from |
---|
2277 | n/a | the returned string. If not null, *rve is set to point |
---|
2278 | n/a | to the end of the return value. If d is +-Infinity or NaN, |
---|
2279 | n/a | then *decpt is set to 9999. |
---|
2280 | n/a | |
---|
2281 | n/a | mode: |
---|
2282 | n/a | 0 ==> shortest string that yields d when read in |
---|
2283 | n/a | and rounded to nearest. |
---|
2284 | n/a | 1 ==> like 0, but with Steele & White stopping rule; |
---|
2285 | n/a | e.g. with IEEE P754 arithmetic , mode 0 gives |
---|
2286 | n/a | 1e23 whereas mode 1 gives 9.999999999999999e22. |
---|
2287 | n/a | 2 ==> max(1,ndigits) significant digits. This gives a |
---|
2288 | n/a | return value similar to that of ecvt, except |
---|
2289 | n/a | that trailing zeros are suppressed. |
---|
2290 | n/a | 3 ==> through ndigits past the decimal point. This |
---|
2291 | n/a | gives a return value similar to that from fcvt, |
---|
2292 | n/a | except that trailing zeros are suppressed, and |
---|
2293 | n/a | ndigits can be negative. |
---|
2294 | n/a | 4,5 ==> similar to 2 and 3, respectively, but (in |
---|
2295 | n/a | round-nearest mode) with the tests of mode 0 to |
---|
2296 | n/a | possibly return a shorter string that rounds to d. |
---|
2297 | n/a | With IEEE arithmetic and compilation with |
---|
2298 | n/a | -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same |
---|
2299 | n/a | as modes 2 and 3 when FLT_ROUNDS != 1. |
---|
2300 | n/a | 6-9 ==> Debugging modes similar to mode - 4: don't try |
---|
2301 | n/a | fast floating-point estimate (if applicable). |
---|
2302 | n/a | |
---|
2303 | n/a | Values of mode other than 0-9 are treated as mode 0. |
---|
2304 | n/a | |
---|
2305 | n/a | Sufficient space is allocated to the return value |
---|
2306 | n/a | to hold the suppressed trailing zeros. |
---|
2307 | n/a | */ |
---|
2308 | n/a | |
---|
2309 | n/a | int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, |
---|
2310 | n/a | j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, |
---|
2311 | n/a | spec_case, try_quick; |
---|
2312 | n/a | Long L; |
---|
2313 | n/a | int denorm; |
---|
2314 | n/a | ULong x; |
---|
2315 | n/a | Bigint *b, *b1, *delta, *mlo, *mhi, *S; |
---|
2316 | n/a | U d2, eps, u; |
---|
2317 | n/a | double ds; |
---|
2318 | n/a | char *s, *s0; |
---|
2319 | n/a | |
---|
2320 | n/a | /* set pointers to NULL, to silence gcc compiler warnings and make |
---|
2321 | n/a | cleanup easier on error */ |
---|
2322 | n/a | mlo = mhi = S = 0; |
---|
2323 | n/a | s0 = 0; |
---|
2324 | n/a | |
---|
2325 | n/a | u.d = dd; |
---|
2326 | n/a | if (word0(&u) & Sign_bit) { |
---|
2327 | n/a | /* set sign for everything, including 0's and NaNs */ |
---|
2328 | n/a | *sign = 1; |
---|
2329 | n/a | word0(&u) &= ~Sign_bit; /* clear sign bit */ |
---|
2330 | n/a | } |
---|
2331 | n/a | else |
---|
2332 | n/a | *sign = 0; |
---|
2333 | n/a | |
---|
2334 | n/a | /* quick return for Infinities, NaNs and zeros */ |
---|
2335 | n/a | if ((word0(&u) & Exp_mask) == Exp_mask) |
---|
2336 | n/a | { |
---|
2337 | n/a | /* Infinity or NaN */ |
---|
2338 | n/a | *decpt = 9999; |
---|
2339 | n/a | if (!word1(&u) && !(word0(&u) & 0xfffff)) |
---|
2340 | n/a | return nrv_alloc("Infinity", rve, 8); |
---|
2341 | n/a | return nrv_alloc("NaN", rve, 3); |
---|
2342 | n/a | } |
---|
2343 | n/a | if (!dval(&u)) { |
---|
2344 | n/a | *decpt = 1; |
---|
2345 | n/a | return nrv_alloc("0", rve, 1); |
---|
2346 | n/a | } |
---|
2347 | n/a | |
---|
2348 | n/a | /* compute k = floor(log10(d)). The computation may leave k |
---|
2349 | n/a | one too large, but should never leave k too small. */ |
---|
2350 | n/a | b = d2b(&u, &be, &bbits); |
---|
2351 | n/a | if (b == NULL) |
---|
2352 | n/a | goto failed_malloc; |
---|
2353 | n/a | if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) { |
---|
2354 | n/a | dval(&d2) = dval(&u); |
---|
2355 | n/a | word0(&d2) &= Frac_mask1; |
---|
2356 | n/a | word0(&d2) |= Exp_11; |
---|
2357 | n/a | |
---|
2358 | n/a | /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 |
---|
2359 | n/a | * log10(x) = log(x) / log(10) |
---|
2360 | n/a | * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) |
---|
2361 | n/a | * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) |
---|
2362 | n/a | * |
---|
2363 | n/a | * This suggests computing an approximation k to log10(d) by |
---|
2364 | n/a | * |
---|
2365 | n/a | * k = (i - Bias)*0.301029995663981 |
---|
2366 | n/a | * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); |
---|
2367 | n/a | * |
---|
2368 | n/a | * We want k to be too large rather than too small. |
---|
2369 | n/a | * The error in the first-order Taylor series approximation |
---|
2370 | n/a | * is in our favor, so we just round up the constant enough |
---|
2371 | n/a | * to compensate for any error in the multiplication of |
---|
2372 | n/a | * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, |
---|
2373 | n/a | * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, |
---|
2374 | n/a | * adding 1e-13 to the constant term more than suffices. |
---|
2375 | n/a | * Hence we adjust the constant term to 0.1760912590558. |
---|
2376 | n/a | * (We could get a more accurate k by invoking log10, |
---|
2377 | n/a | * but this is probably not worthwhile.) |
---|
2378 | n/a | */ |
---|
2379 | n/a | |
---|
2380 | n/a | i -= Bias; |
---|
2381 | n/a | denorm = 0; |
---|
2382 | n/a | } |
---|
2383 | n/a | else { |
---|
2384 | n/a | /* d is denormalized */ |
---|
2385 | n/a | |
---|
2386 | n/a | i = bbits + be + (Bias + (P-1) - 1); |
---|
2387 | n/a | x = i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32) |
---|
2388 | n/a | : word1(&u) << (32 - i); |
---|
2389 | n/a | dval(&d2) = x; |
---|
2390 | n/a | word0(&d2) -= 31*Exp_msk1; /* adjust exponent */ |
---|
2391 | n/a | i -= (Bias + (P-1) - 1) + 1; |
---|
2392 | n/a | denorm = 1; |
---|
2393 | n/a | } |
---|
2394 | n/a | ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + |
---|
2395 | n/a | i*0.301029995663981; |
---|
2396 | n/a | k = (int)ds; |
---|
2397 | n/a | if (ds < 0. && ds != k) |
---|
2398 | n/a | k--; /* want k = floor(ds) */ |
---|
2399 | n/a | k_check = 1; |
---|
2400 | n/a | if (k >= 0 && k <= Ten_pmax) { |
---|
2401 | n/a | if (dval(&u) < tens[k]) |
---|
2402 | n/a | k--; |
---|
2403 | n/a | k_check = 0; |
---|
2404 | n/a | } |
---|
2405 | n/a | j = bbits - i - 1; |
---|
2406 | n/a | if (j >= 0) { |
---|
2407 | n/a | b2 = 0; |
---|
2408 | n/a | s2 = j; |
---|
2409 | n/a | } |
---|
2410 | n/a | else { |
---|
2411 | n/a | b2 = -j; |
---|
2412 | n/a | s2 = 0; |
---|
2413 | n/a | } |
---|
2414 | n/a | if (k >= 0) { |
---|
2415 | n/a | b5 = 0; |
---|
2416 | n/a | s5 = k; |
---|
2417 | n/a | s2 += k; |
---|
2418 | n/a | } |
---|
2419 | n/a | else { |
---|
2420 | n/a | b2 -= k; |
---|
2421 | n/a | b5 = -k; |
---|
2422 | n/a | s5 = 0; |
---|
2423 | n/a | } |
---|
2424 | n/a | if (mode < 0 || mode > 9) |
---|
2425 | n/a | mode = 0; |
---|
2426 | n/a | |
---|
2427 | n/a | try_quick = 1; |
---|
2428 | n/a | |
---|
2429 | n/a | if (mode > 5) { |
---|
2430 | n/a | mode -= 4; |
---|
2431 | n/a | try_quick = 0; |
---|
2432 | n/a | } |
---|
2433 | n/a | leftright = 1; |
---|
2434 | n/a | ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */ |
---|
2435 | n/a | /* silence erroneous "gcc -Wall" warning. */ |
---|
2436 | n/a | switch(mode) { |
---|
2437 | n/a | case 0: |
---|
2438 | n/a | case 1: |
---|
2439 | n/a | i = 18; |
---|
2440 | n/a | ndigits = 0; |
---|
2441 | n/a | break; |
---|
2442 | n/a | case 2: |
---|
2443 | n/a | leftright = 0; |
---|
2444 | n/a | /* no break */ |
---|
2445 | n/a | case 4: |
---|
2446 | n/a | if (ndigits <= 0) |
---|
2447 | n/a | ndigits = 1; |
---|
2448 | n/a | ilim = ilim1 = i = ndigits; |
---|
2449 | n/a | break; |
---|
2450 | n/a | case 3: |
---|
2451 | n/a | leftright = 0; |
---|
2452 | n/a | /* no break */ |
---|
2453 | n/a | case 5: |
---|
2454 | n/a | i = ndigits + k + 1; |
---|
2455 | n/a | ilim = i; |
---|
2456 | n/a | ilim1 = i - 1; |
---|
2457 | n/a | if (i <= 0) |
---|
2458 | n/a | i = 1; |
---|
2459 | n/a | } |
---|
2460 | n/a | s0 = rv_alloc(i); |
---|
2461 | n/a | if (s0 == NULL) |
---|
2462 | n/a | goto failed_malloc; |
---|
2463 | n/a | s = s0; |
---|
2464 | n/a | |
---|
2465 | n/a | |
---|
2466 | n/a | if (ilim >= 0 && ilim <= Quick_max && try_quick) { |
---|
2467 | n/a | |
---|
2468 | n/a | /* Try to get by with floating-point arithmetic. */ |
---|
2469 | n/a | |
---|
2470 | n/a | i = 0; |
---|
2471 | n/a | dval(&d2) = dval(&u); |
---|
2472 | n/a | k0 = k; |
---|
2473 | n/a | ilim0 = ilim; |
---|
2474 | n/a | ieps = 2; /* conservative */ |
---|
2475 | n/a | if (k > 0) { |
---|
2476 | n/a | ds = tens[k&0xf]; |
---|
2477 | n/a | j = k >> 4; |
---|
2478 | n/a | if (j & Bletch) { |
---|
2479 | n/a | /* prevent overflows */ |
---|
2480 | n/a | j &= Bletch - 1; |
---|
2481 | n/a | dval(&u) /= bigtens[n_bigtens-1]; |
---|
2482 | n/a | ieps++; |
---|
2483 | n/a | } |
---|
2484 | n/a | for(; j; j >>= 1, i++) |
---|
2485 | n/a | if (j & 1) { |
---|
2486 | n/a | ieps++; |
---|
2487 | n/a | ds *= bigtens[i]; |
---|
2488 | n/a | } |
---|
2489 | n/a | dval(&u) /= ds; |
---|
2490 | n/a | } |
---|
2491 | n/a | else if ((j1 = -k)) { |
---|
2492 | n/a | dval(&u) *= tens[j1 & 0xf]; |
---|
2493 | n/a | for(j = j1 >> 4; j; j >>= 1, i++) |
---|
2494 | n/a | if (j & 1) { |
---|
2495 | n/a | ieps++; |
---|
2496 | n/a | dval(&u) *= bigtens[i]; |
---|
2497 | n/a | } |
---|
2498 | n/a | } |
---|
2499 | n/a | if (k_check && dval(&u) < 1. && ilim > 0) { |
---|
2500 | n/a | if (ilim1 <= 0) |
---|
2501 | n/a | goto fast_failed; |
---|
2502 | n/a | ilim = ilim1; |
---|
2503 | n/a | k--; |
---|
2504 | n/a | dval(&u) *= 10.; |
---|
2505 | n/a | ieps++; |
---|
2506 | n/a | } |
---|
2507 | n/a | dval(&eps) = ieps*dval(&u) + 7.; |
---|
2508 | n/a | word0(&eps) -= (P-1)*Exp_msk1; |
---|
2509 | n/a | if (ilim == 0) { |
---|
2510 | n/a | S = mhi = 0; |
---|
2511 | n/a | dval(&u) -= 5.; |
---|
2512 | n/a | if (dval(&u) > dval(&eps)) |
---|
2513 | n/a | goto one_digit; |
---|
2514 | n/a | if (dval(&u) < -dval(&eps)) |
---|
2515 | n/a | goto no_digits; |
---|
2516 | n/a | goto fast_failed; |
---|
2517 | n/a | } |
---|
2518 | n/a | if (leftright) { |
---|
2519 | n/a | /* Use Steele & White method of only |
---|
2520 | n/a | * generating digits needed. |
---|
2521 | n/a | */ |
---|
2522 | n/a | dval(&eps) = 0.5/tens[ilim-1] - dval(&eps); |
---|
2523 | n/a | for(i = 0;;) { |
---|
2524 | n/a | L = (Long)dval(&u); |
---|
2525 | n/a | dval(&u) -= L; |
---|
2526 | n/a | *s++ = '0' + (int)L; |
---|
2527 | n/a | if (dval(&u) < dval(&eps)) |
---|
2528 | n/a | goto ret1; |
---|
2529 | n/a | if (1. - dval(&u) < dval(&eps)) |
---|
2530 | n/a | goto bump_up; |
---|
2531 | n/a | if (++i >= ilim) |
---|
2532 | n/a | break; |
---|
2533 | n/a | dval(&eps) *= 10.; |
---|
2534 | n/a | dval(&u) *= 10.; |
---|
2535 | n/a | } |
---|
2536 | n/a | } |
---|
2537 | n/a | else { |
---|
2538 | n/a | /* Generate ilim digits, then fix them up. */ |
---|
2539 | n/a | dval(&eps) *= tens[ilim-1]; |
---|
2540 | n/a | for(i = 1;; i++, dval(&u) *= 10.) { |
---|
2541 | n/a | L = (Long)(dval(&u)); |
---|
2542 | n/a | if (!(dval(&u) -= L)) |
---|
2543 | n/a | ilim = i; |
---|
2544 | n/a | *s++ = '0' + (int)L; |
---|
2545 | n/a | if (i == ilim) { |
---|
2546 | n/a | if (dval(&u) > 0.5 + dval(&eps)) |
---|
2547 | n/a | goto bump_up; |
---|
2548 | n/a | else if (dval(&u) < 0.5 - dval(&eps)) { |
---|
2549 | n/a | while(*--s == '0'); |
---|
2550 | n/a | s++; |
---|
2551 | n/a | goto ret1; |
---|
2552 | n/a | } |
---|
2553 | n/a | break; |
---|
2554 | n/a | } |
---|
2555 | n/a | } |
---|
2556 | n/a | } |
---|
2557 | n/a | fast_failed: |
---|
2558 | n/a | s = s0; |
---|
2559 | n/a | dval(&u) = dval(&d2); |
---|
2560 | n/a | k = k0; |
---|
2561 | n/a | ilim = ilim0; |
---|
2562 | n/a | } |
---|
2563 | n/a | |
---|
2564 | n/a | /* Do we have a "small" integer? */ |
---|
2565 | n/a | |
---|
2566 | n/a | if (be >= 0 && k <= Int_max) { |
---|
2567 | n/a | /* Yes. */ |
---|
2568 | n/a | ds = tens[k]; |
---|
2569 | n/a | if (ndigits < 0 && ilim <= 0) { |
---|
2570 | n/a | S = mhi = 0; |
---|
2571 | n/a | if (ilim < 0 || dval(&u) <= 5*ds) |
---|
2572 | n/a | goto no_digits; |
---|
2573 | n/a | goto one_digit; |
---|
2574 | n/a | } |
---|
2575 | n/a | for(i = 1;; i++, dval(&u) *= 10.) { |
---|
2576 | n/a | L = (Long)(dval(&u) / ds); |
---|
2577 | n/a | dval(&u) -= L*ds; |
---|
2578 | n/a | *s++ = '0' + (int)L; |
---|
2579 | n/a | if (!dval(&u)) { |
---|
2580 | n/a | break; |
---|
2581 | n/a | } |
---|
2582 | n/a | if (i == ilim) { |
---|
2583 | n/a | dval(&u) += dval(&u); |
---|
2584 | n/a | if (dval(&u) > ds || (dval(&u) == ds && L & 1)) { |
---|
2585 | n/a | bump_up: |
---|
2586 | n/a | while(*--s == '9') |
---|
2587 | n/a | if (s == s0) { |
---|
2588 | n/a | k++; |
---|
2589 | n/a | *s = '0'; |
---|
2590 | n/a | break; |
---|
2591 | n/a | } |
---|
2592 | n/a | ++*s++; |
---|
2593 | n/a | } |
---|
2594 | n/a | break; |
---|
2595 | n/a | } |
---|
2596 | n/a | } |
---|
2597 | n/a | goto ret1; |
---|
2598 | n/a | } |
---|
2599 | n/a | |
---|
2600 | n/a | m2 = b2; |
---|
2601 | n/a | m5 = b5; |
---|
2602 | n/a | if (leftright) { |
---|
2603 | n/a | i = |
---|
2604 | n/a | denorm ? be + (Bias + (P-1) - 1 + 1) : |
---|
2605 | n/a | 1 + P - bbits; |
---|
2606 | n/a | b2 += i; |
---|
2607 | n/a | s2 += i; |
---|
2608 | n/a | mhi = i2b(1); |
---|
2609 | n/a | if (mhi == NULL) |
---|
2610 | n/a | goto failed_malloc; |
---|
2611 | n/a | } |
---|
2612 | n/a | if (m2 > 0 && s2 > 0) { |
---|
2613 | n/a | i = m2 < s2 ? m2 : s2; |
---|
2614 | n/a | b2 -= i; |
---|
2615 | n/a | m2 -= i; |
---|
2616 | n/a | s2 -= i; |
---|
2617 | n/a | } |
---|
2618 | n/a | if (b5 > 0) { |
---|
2619 | n/a | if (leftright) { |
---|
2620 | n/a | if (m5 > 0) { |
---|
2621 | n/a | mhi = pow5mult(mhi, m5); |
---|
2622 | n/a | if (mhi == NULL) |
---|
2623 | n/a | goto failed_malloc; |
---|
2624 | n/a | b1 = mult(mhi, b); |
---|
2625 | n/a | Bfree(b); |
---|
2626 | n/a | b = b1; |
---|
2627 | n/a | if (b == NULL) |
---|
2628 | n/a | goto failed_malloc; |
---|
2629 | n/a | } |
---|
2630 | n/a | if ((j = b5 - m5)) { |
---|
2631 | n/a | b = pow5mult(b, j); |
---|
2632 | n/a | if (b == NULL) |
---|
2633 | n/a | goto failed_malloc; |
---|
2634 | n/a | } |
---|
2635 | n/a | } |
---|
2636 | n/a | else { |
---|
2637 | n/a | b = pow5mult(b, b5); |
---|
2638 | n/a | if (b == NULL) |
---|
2639 | n/a | goto failed_malloc; |
---|
2640 | n/a | } |
---|
2641 | n/a | } |
---|
2642 | n/a | S = i2b(1); |
---|
2643 | n/a | if (S == NULL) |
---|
2644 | n/a | goto failed_malloc; |
---|
2645 | n/a | if (s5 > 0) { |
---|
2646 | n/a | S = pow5mult(S, s5); |
---|
2647 | n/a | if (S == NULL) |
---|
2648 | n/a | goto failed_malloc; |
---|
2649 | n/a | } |
---|
2650 | n/a | |
---|
2651 | n/a | /* Check for special case that d is a normalized power of 2. */ |
---|
2652 | n/a | |
---|
2653 | n/a | spec_case = 0; |
---|
2654 | n/a | if ((mode < 2 || leftright) |
---|
2655 | n/a | ) { |
---|
2656 | n/a | if (!word1(&u) && !(word0(&u) & Bndry_mask) |
---|
2657 | n/a | && word0(&u) & (Exp_mask & ~Exp_msk1) |
---|
2658 | n/a | ) { |
---|
2659 | n/a | /* The special case */ |
---|
2660 | n/a | b2 += Log2P; |
---|
2661 | n/a | s2 += Log2P; |
---|
2662 | n/a | spec_case = 1; |
---|
2663 | n/a | } |
---|
2664 | n/a | } |
---|
2665 | n/a | |
---|
2666 | n/a | /* Arrange for convenient computation of quotients: |
---|
2667 | n/a | * shift left if necessary so divisor has 4 leading 0 bits. |
---|
2668 | n/a | * |
---|
2669 | n/a | * Perhaps we should just compute leading 28 bits of S once |
---|
2670 | n/a | * and for all and pass them and a shift to quorem, so it |
---|
2671 | n/a | * can do shifts and ors to compute the numerator for q. |
---|
2672 | n/a | */ |
---|
2673 | n/a | #define iInc 28 |
---|
2674 | n/a | i = dshift(S, s2); |
---|
2675 | n/a | b2 += i; |
---|
2676 | n/a | m2 += i; |
---|
2677 | n/a | s2 += i; |
---|
2678 | n/a | if (b2 > 0) { |
---|
2679 | n/a | b = lshift(b, b2); |
---|
2680 | n/a | if (b == NULL) |
---|
2681 | n/a | goto failed_malloc; |
---|
2682 | n/a | } |
---|
2683 | n/a | if (s2 > 0) { |
---|
2684 | n/a | S = lshift(S, s2); |
---|
2685 | n/a | if (S == NULL) |
---|
2686 | n/a | goto failed_malloc; |
---|
2687 | n/a | } |
---|
2688 | n/a | if (k_check) { |
---|
2689 | n/a | if (cmp(b,S) < 0) { |
---|
2690 | n/a | k--; |
---|
2691 | n/a | b = multadd(b, 10, 0); /* we botched the k estimate */ |
---|
2692 | n/a | if (b == NULL) |
---|
2693 | n/a | goto failed_malloc; |
---|
2694 | n/a | if (leftright) { |
---|
2695 | n/a | mhi = multadd(mhi, 10, 0); |
---|
2696 | n/a | if (mhi == NULL) |
---|
2697 | n/a | goto failed_malloc; |
---|
2698 | n/a | } |
---|
2699 | n/a | ilim = ilim1; |
---|
2700 | n/a | } |
---|
2701 | n/a | } |
---|
2702 | n/a | if (ilim <= 0 && (mode == 3 || mode == 5)) { |
---|
2703 | n/a | if (ilim < 0) { |
---|
2704 | n/a | /* no digits, fcvt style */ |
---|
2705 | n/a | no_digits: |
---|
2706 | n/a | k = -1 - ndigits; |
---|
2707 | n/a | goto ret; |
---|
2708 | n/a | } |
---|
2709 | n/a | else { |
---|
2710 | n/a | S = multadd(S, 5, 0); |
---|
2711 | n/a | if (S == NULL) |
---|
2712 | n/a | goto failed_malloc; |
---|
2713 | n/a | if (cmp(b, S) <= 0) |
---|
2714 | n/a | goto no_digits; |
---|
2715 | n/a | } |
---|
2716 | n/a | one_digit: |
---|
2717 | n/a | *s++ = '1'; |
---|
2718 | n/a | k++; |
---|
2719 | n/a | goto ret; |
---|
2720 | n/a | } |
---|
2721 | n/a | if (leftright) { |
---|
2722 | n/a | if (m2 > 0) { |
---|
2723 | n/a | mhi = lshift(mhi, m2); |
---|
2724 | n/a | if (mhi == NULL) |
---|
2725 | n/a | goto failed_malloc; |
---|
2726 | n/a | } |
---|
2727 | n/a | |
---|
2728 | n/a | /* Compute mlo -- check for special case |
---|
2729 | n/a | * that d is a normalized power of 2. |
---|
2730 | n/a | */ |
---|
2731 | n/a | |
---|
2732 | n/a | mlo = mhi; |
---|
2733 | n/a | if (spec_case) { |
---|
2734 | n/a | mhi = Balloc(mhi->k); |
---|
2735 | n/a | if (mhi == NULL) |
---|
2736 | n/a | goto failed_malloc; |
---|
2737 | n/a | Bcopy(mhi, mlo); |
---|
2738 | n/a | mhi = lshift(mhi, Log2P); |
---|
2739 | n/a | if (mhi == NULL) |
---|
2740 | n/a | goto failed_malloc; |
---|
2741 | n/a | } |
---|
2742 | n/a | |
---|
2743 | n/a | for(i = 1;;i++) { |
---|
2744 | n/a | dig = quorem(b,S) + '0'; |
---|
2745 | n/a | /* Do we yet have the shortest decimal string |
---|
2746 | n/a | * that will round to d? |
---|
2747 | n/a | */ |
---|
2748 | n/a | j = cmp(b, mlo); |
---|
2749 | n/a | delta = diff(S, mhi); |
---|
2750 | n/a | if (delta == NULL) |
---|
2751 | n/a | goto failed_malloc; |
---|
2752 | n/a | j1 = delta->sign ? 1 : cmp(b, delta); |
---|
2753 | n/a | Bfree(delta); |
---|
2754 | n/a | if (j1 == 0 && mode != 1 && !(word1(&u) & 1) |
---|
2755 | n/a | ) { |
---|
2756 | n/a | if (dig == '9') |
---|
2757 | n/a | goto round_9_up; |
---|
2758 | n/a | if (j > 0) |
---|
2759 | n/a | dig++; |
---|
2760 | n/a | *s++ = dig; |
---|
2761 | n/a | goto ret; |
---|
2762 | n/a | } |
---|
2763 | n/a | if (j < 0 || (j == 0 && mode != 1 |
---|
2764 | n/a | && !(word1(&u) & 1) |
---|
2765 | n/a | )) { |
---|
2766 | n/a | if (!b->x[0] && b->wds <= 1) { |
---|
2767 | n/a | goto accept_dig; |
---|
2768 | n/a | } |
---|
2769 | n/a | if (j1 > 0) { |
---|
2770 | n/a | b = lshift(b, 1); |
---|
2771 | n/a | if (b == NULL) |
---|
2772 | n/a | goto failed_malloc; |
---|
2773 | n/a | j1 = cmp(b, S); |
---|
2774 | n/a | if ((j1 > 0 || (j1 == 0 && dig & 1)) |
---|
2775 | n/a | && dig++ == '9') |
---|
2776 | n/a | goto round_9_up; |
---|
2777 | n/a | } |
---|
2778 | n/a | accept_dig: |
---|
2779 | n/a | *s++ = dig; |
---|
2780 | n/a | goto ret; |
---|
2781 | n/a | } |
---|
2782 | n/a | if (j1 > 0) { |
---|
2783 | n/a | if (dig == '9') { /* possible if i == 1 */ |
---|
2784 | n/a | round_9_up: |
---|
2785 | n/a | *s++ = '9'; |
---|
2786 | n/a | goto roundoff; |
---|
2787 | n/a | } |
---|
2788 | n/a | *s++ = dig + 1; |
---|
2789 | n/a | goto ret; |
---|
2790 | n/a | } |
---|
2791 | n/a | *s++ = dig; |
---|
2792 | n/a | if (i == ilim) |
---|
2793 | n/a | break; |
---|
2794 | n/a | b = multadd(b, 10, 0); |
---|
2795 | n/a | if (b == NULL) |
---|
2796 | n/a | goto failed_malloc; |
---|
2797 | n/a | if (mlo == mhi) { |
---|
2798 | n/a | mlo = mhi = multadd(mhi, 10, 0); |
---|
2799 | n/a | if (mlo == NULL) |
---|
2800 | n/a | goto failed_malloc; |
---|
2801 | n/a | } |
---|
2802 | n/a | else { |
---|
2803 | n/a | mlo = multadd(mlo, 10, 0); |
---|
2804 | n/a | if (mlo == NULL) |
---|
2805 | n/a | goto failed_malloc; |
---|
2806 | n/a | mhi = multadd(mhi, 10, 0); |
---|
2807 | n/a | if (mhi == NULL) |
---|
2808 | n/a | goto failed_malloc; |
---|
2809 | n/a | } |
---|
2810 | n/a | } |
---|
2811 | n/a | } |
---|
2812 | n/a | else |
---|
2813 | n/a | for(i = 1;; i++) { |
---|
2814 | n/a | *s++ = dig = quorem(b,S) + '0'; |
---|
2815 | n/a | if (!b->x[0] && b->wds <= 1) { |
---|
2816 | n/a | goto ret; |
---|
2817 | n/a | } |
---|
2818 | n/a | if (i >= ilim) |
---|
2819 | n/a | break; |
---|
2820 | n/a | b = multadd(b, 10, 0); |
---|
2821 | n/a | if (b == NULL) |
---|
2822 | n/a | goto failed_malloc; |
---|
2823 | n/a | } |
---|
2824 | n/a | |
---|
2825 | n/a | /* Round off last digit */ |
---|
2826 | n/a | |
---|
2827 | n/a | b = lshift(b, 1); |
---|
2828 | n/a | if (b == NULL) |
---|
2829 | n/a | goto failed_malloc; |
---|
2830 | n/a | j = cmp(b, S); |
---|
2831 | n/a | if (j > 0 || (j == 0 && dig & 1)) { |
---|
2832 | n/a | roundoff: |
---|
2833 | n/a | while(*--s == '9') |
---|
2834 | n/a | if (s == s0) { |
---|
2835 | n/a | k++; |
---|
2836 | n/a | *s++ = '1'; |
---|
2837 | n/a | goto ret; |
---|
2838 | n/a | } |
---|
2839 | n/a | ++*s++; |
---|
2840 | n/a | } |
---|
2841 | n/a | else { |
---|
2842 | n/a | while(*--s == '0'); |
---|
2843 | n/a | s++; |
---|
2844 | n/a | } |
---|
2845 | n/a | ret: |
---|
2846 | n/a | Bfree(S); |
---|
2847 | n/a | if (mhi) { |
---|
2848 | n/a | if (mlo && mlo != mhi) |
---|
2849 | n/a | Bfree(mlo); |
---|
2850 | n/a | Bfree(mhi); |
---|
2851 | n/a | } |
---|
2852 | n/a | ret1: |
---|
2853 | n/a | Bfree(b); |
---|
2854 | n/a | *s = 0; |
---|
2855 | n/a | *decpt = k + 1; |
---|
2856 | n/a | if (rve) |
---|
2857 | n/a | *rve = s; |
---|
2858 | n/a | return s0; |
---|
2859 | n/a | failed_malloc: |
---|
2860 | n/a | if (S) |
---|
2861 | n/a | Bfree(S); |
---|
2862 | n/a | if (mlo && mlo != mhi) |
---|
2863 | n/a | Bfree(mlo); |
---|
2864 | n/a | if (mhi) |
---|
2865 | n/a | Bfree(mhi); |
---|
2866 | n/a | if (b) |
---|
2867 | n/a | Bfree(b); |
---|
2868 | n/a | if (s0) |
---|
2869 | n/a | _Py_dg_freedtoa(s0); |
---|
2870 | n/a | return NULL; |
---|
2871 | n/a | } |
---|
2872 | n/a | #ifdef __cplusplus |
---|
2873 | n/a | } |
---|
2874 | n/a | #endif |
---|
2875 | n/a | |
---|
2876 | n/a | #endif /* PY_NO_SHORT_FLOAT_REPR */ |
---|