1 | n/a | #include "Python.h" |
---|
2 | n/a | |
---|
3 | n/a | #include <stdbool.h> |
---|
4 | n/a | |
---|
5 | n/a | |
---|
6 | n/a | /* Defined in tracemalloc.c */ |
---|
7 | n/a | extern void _PyMem_DumpTraceback(int fd, const void *ptr); |
---|
8 | n/a | |
---|
9 | n/a | |
---|
10 | n/a | /* Python's malloc wrappers (see pymem.h) */ |
---|
11 | n/a | |
---|
12 | n/a | #undef uint |
---|
13 | n/a | #define uint unsigned int /* assuming >= 16 bits */ |
---|
14 | n/a | |
---|
15 | n/a | /* Forward declaration */ |
---|
16 | n/a | static void* _PyMem_DebugRawMalloc(void *ctx, size_t size); |
---|
17 | n/a | static void* _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize); |
---|
18 | n/a | static void* _PyMem_DebugRawRealloc(void *ctx, void *ptr, size_t size); |
---|
19 | n/a | static void _PyMem_DebugRawFree(void *ctx, void *p); |
---|
20 | n/a | |
---|
21 | n/a | static void* _PyMem_DebugMalloc(void *ctx, size_t size); |
---|
22 | n/a | static void* _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize); |
---|
23 | n/a | static void* _PyMem_DebugRealloc(void *ctx, void *ptr, size_t size); |
---|
24 | n/a | static void _PyMem_DebugFree(void *ctx, void *p); |
---|
25 | n/a | |
---|
26 | n/a | static void _PyObject_DebugDumpAddress(const void *p); |
---|
27 | n/a | static void _PyMem_DebugCheckAddress(char api_id, const void *p); |
---|
28 | n/a | |
---|
29 | n/a | #if defined(__has_feature) /* Clang */ |
---|
30 | n/a | #if __has_feature(address_sanitizer) /* is ASAN enabled? */ |
---|
31 | n/a | #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS \ |
---|
32 | n/a | __attribute__((no_address_safety_analysis)) |
---|
33 | n/a | #else |
---|
34 | n/a | #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS |
---|
35 | n/a | #endif |
---|
36 | n/a | #else |
---|
37 | n/a | #if defined(__SANITIZE_ADDRESS__) /* GCC 4.8.x, is ASAN enabled? */ |
---|
38 | n/a | #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS \ |
---|
39 | n/a | __attribute__((no_address_safety_analysis)) |
---|
40 | n/a | #else |
---|
41 | n/a | #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS |
---|
42 | n/a | #endif |
---|
43 | n/a | #endif |
---|
44 | n/a | |
---|
45 | n/a | #ifdef WITH_PYMALLOC |
---|
46 | n/a | |
---|
47 | n/a | #ifdef MS_WINDOWS |
---|
48 | n/a | # include <windows.h> |
---|
49 | n/a | #elif defined(HAVE_MMAP) |
---|
50 | n/a | # include <sys/mman.h> |
---|
51 | n/a | # ifdef MAP_ANONYMOUS |
---|
52 | n/a | # define ARENAS_USE_MMAP |
---|
53 | n/a | # endif |
---|
54 | n/a | #endif |
---|
55 | n/a | |
---|
56 | n/a | /* Forward declaration */ |
---|
57 | n/a | static void* _PyObject_Malloc(void *ctx, size_t size); |
---|
58 | n/a | static void* _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize); |
---|
59 | n/a | static void _PyObject_Free(void *ctx, void *p); |
---|
60 | n/a | static void* _PyObject_Realloc(void *ctx, void *ptr, size_t size); |
---|
61 | n/a | #endif |
---|
62 | n/a | |
---|
63 | n/a | |
---|
64 | n/a | static void * |
---|
65 | n/a | _PyMem_RawMalloc(void *ctx, size_t size) |
---|
66 | n/a | { |
---|
67 | n/a | /* PyMem_RawMalloc(0) means malloc(1). Some systems would return NULL |
---|
68 | n/a | for malloc(0), which would be treated as an error. Some platforms would |
---|
69 | n/a | return a pointer with no memory behind it, which would break pymalloc. |
---|
70 | n/a | To solve these problems, allocate an extra byte. */ |
---|
71 | n/a | if (size == 0) |
---|
72 | n/a | size = 1; |
---|
73 | n/a | return malloc(size); |
---|
74 | n/a | } |
---|
75 | n/a | |
---|
76 | n/a | static void * |
---|
77 | n/a | _PyMem_RawCalloc(void *ctx, size_t nelem, size_t elsize) |
---|
78 | n/a | { |
---|
79 | n/a | /* PyMem_RawCalloc(0, 0) means calloc(1, 1). Some systems would return NULL |
---|
80 | n/a | for calloc(0, 0), which would be treated as an error. Some platforms |
---|
81 | n/a | would return a pointer with no memory behind it, which would break |
---|
82 | n/a | pymalloc. To solve these problems, allocate an extra byte. */ |
---|
83 | n/a | if (nelem == 0 || elsize == 0) { |
---|
84 | n/a | nelem = 1; |
---|
85 | n/a | elsize = 1; |
---|
86 | n/a | } |
---|
87 | n/a | return calloc(nelem, elsize); |
---|
88 | n/a | } |
---|
89 | n/a | |
---|
90 | n/a | static void * |
---|
91 | n/a | _PyMem_RawRealloc(void *ctx, void *ptr, size_t size) |
---|
92 | n/a | { |
---|
93 | n/a | if (size == 0) |
---|
94 | n/a | size = 1; |
---|
95 | n/a | return realloc(ptr, size); |
---|
96 | n/a | } |
---|
97 | n/a | |
---|
98 | n/a | static void |
---|
99 | n/a | _PyMem_RawFree(void *ctx, void *ptr) |
---|
100 | n/a | { |
---|
101 | n/a | free(ptr); |
---|
102 | n/a | } |
---|
103 | n/a | |
---|
104 | n/a | |
---|
105 | n/a | #ifdef MS_WINDOWS |
---|
106 | n/a | static void * |
---|
107 | n/a | _PyObject_ArenaVirtualAlloc(void *ctx, size_t size) |
---|
108 | n/a | { |
---|
109 | n/a | return VirtualAlloc(NULL, size, |
---|
110 | n/a | MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); |
---|
111 | n/a | } |
---|
112 | n/a | |
---|
113 | n/a | static void |
---|
114 | n/a | _PyObject_ArenaVirtualFree(void *ctx, void *ptr, size_t size) |
---|
115 | n/a | { |
---|
116 | n/a | VirtualFree(ptr, 0, MEM_RELEASE); |
---|
117 | n/a | } |
---|
118 | n/a | |
---|
119 | n/a | #elif defined(ARENAS_USE_MMAP) |
---|
120 | n/a | static void * |
---|
121 | n/a | _PyObject_ArenaMmap(void *ctx, size_t size) |
---|
122 | n/a | { |
---|
123 | n/a | void *ptr; |
---|
124 | n/a | ptr = mmap(NULL, size, PROT_READ|PROT_WRITE, |
---|
125 | n/a | MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); |
---|
126 | n/a | if (ptr == MAP_FAILED) |
---|
127 | n/a | return NULL; |
---|
128 | n/a | assert(ptr != NULL); |
---|
129 | n/a | return ptr; |
---|
130 | n/a | } |
---|
131 | n/a | |
---|
132 | n/a | static void |
---|
133 | n/a | _PyObject_ArenaMunmap(void *ctx, void *ptr, size_t size) |
---|
134 | n/a | { |
---|
135 | n/a | munmap(ptr, size); |
---|
136 | n/a | } |
---|
137 | n/a | |
---|
138 | n/a | #else |
---|
139 | n/a | static void * |
---|
140 | n/a | _PyObject_ArenaMalloc(void *ctx, size_t size) |
---|
141 | n/a | { |
---|
142 | n/a | return malloc(size); |
---|
143 | n/a | } |
---|
144 | n/a | |
---|
145 | n/a | static void |
---|
146 | n/a | _PyObject_ArenaFree(void *ctx, void *ptr, size_t size) |
---|
147 | n/a | { |
---|
148 | n/a | free(ptr); |
---|
149 | n/a | } |
---|
150 | n/a | #endif |
---|
151 | n/a | |
---|
152 | n/a | |
---|
153 | n/a | #define PYRAW_FUNCS _PyMem_RawMalloc, _PyMem_RawCalloc, _PyMem_RawRealloc, _PyMem_RawFree |
---|
154 | n/a | #ifdef WITH_PYMALLOC |
---|
155 | n/a | # define PYOBJ_FUNCS _PyObject_Malloc, _PyObject_Calloc, _PyObject_Realloc, _PyObject_Free |
---|
156 | n/a | #else |
---|
157 | n/a | # define PYOBJ_FUNCS PYRAW_FUNCS |
---|
158 | n/a | #endif |
---|
159 | n/a | #define PYMEM_FUNCS PYOBJ_FUNCS |
---|
160 | n/a | |
---|
161 | n/a | typedef struct { |
---|
162 | n/a | /* We tag each block with an API ID in order to tag API violations */ |
---|
163 | n/a | char api_id; |
---|
164 | n/a | PyMemAllocatorEx alloc; |
---|
165 | n/a | } debug_alloc_api_t; |
---|
166 | n/a | static struct { |
---|
167 | n/a | debug_alloc_api_t raw; |
---|
168 | n/a | debug_alloc_api_t mem; |
---|
169 | n/a | debug_alloc_api_t obj; |
---|
170 | n/a | } _PyMem_Debug = { |
---|
171 | n/a | {'r', {NULL, PYRAW_FUNCS}}, |
---|
172 | n/a | {'m', {NULL, PYMEM_FUNCS}}, |
---|
173 | n/a | {'o', {NULL, PYOBJ_FUNCS}} |
---|
174 | n/a | }; |
---|
175 | n/a | |
---|
176 | n/a | #define PYRAWDBG_FUNCS \ |
---|
177 | n/a | _PyMem_DebugRawMalloc, _PyMem_DebugRawCalloc, _PyMem_DebugRawRealloc, _PyMem_DebugRawFree |
---|
178 | n/a | #define PYDBG_FUNCS \ |
---|
179 | n/a | _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree |
---|
180 | n/a | |
---|
181 | n/a | static PyMemAllocatorEx _PyMem_Raw = { |
---|
182 | n/a | #ifdef Py_DEBUG |
---|
183 | n/a | &_PyMem_Debug.raw, PYRAWDBG_FUNCS |
---|
184 | n/a | #else |
---|
185 | n/a | NULL, PYRAW_FUNCS |
---|
186 | n/a | #endif |
---|
187 | n/a | }; |
---|
188 | n/a | |
---|
189 | n/a | static PyMemAllocatorEx _PyMem = { |
---|
190 | n/a | #ifdef Py_DEBUG |
---|
191 | n/a | &_PyMem_Debug.mem, PYDBG_FUNCS |
---|
192 | n/a | #else |
---|
193 | n/a | NULL, PYMEM_FUNCS |
---|
194 | n/a | #endif |
---|
195 | n/a | }; |
---|
196 | n/a | |
---|
197 | n/a | static PyMemAllocatorEx _PyObject = { |
---|
198 | n/a | #ifdef Py_DEBUG |
---|
199 | n/a | &_PyMem_Debug.obj, PYDBG_FUNCS |
---|
200 | n/a | #else |
---|
201 | n/a | NULL, PYOBJ_FUNCS |
---|
202 | n/a | #endif |
---|
203 | n/a | }; |
---|
204 | n/a | |
---|
205 | n/a | int |
---|
206 | n/a | _PyMem_SetupAllocators(const char *opt) |
---|
207 | n/a | { |
---|
208 | n/a | if (opt == NULL || *opt == '\0') { |
---|
209 | n/a | /* PYTHONMALLOC is empty or is not set or ignored (-E/-I command line |
---|
210 | n/a | options): use default allocators */ |
---|
211 | n/a | #ifdef Py_DEBUG |
---|
212 | n/a | # ifdef WITH_PYMALLOC |
---|
213 | n/a | opt = "pymalloc_debug"; |
---|
214 | n/a | # else |
---|
215 | n/a | opt = "malloc_debug"; |
---|
216 | n/a | # endif |
---|
217 | n/a | #else |
---|
218 | n/a | /* !Py_DEBUG */ |
---|
219 | n/a | # ifdef WITH_PYMALLOC |
---|
220 | n/a | opt = "pymalloc"; |
---|
221 | n/a | # else |
---|
222 | n/a | opt = "malloc"; |
---|
223 | n/a | # endif |
---|
224 | n/a | #endif |
---|
225 | n/a | } |
---|
226 | n/a | |
---|
227 | n/a | if (strcmp(opt, "debug") == 0) { |
---|
228 | n/a | PyMem_SetupDebugHooks(); |
---|
229 | n/a | } |
---|
230 | n/a | else if (strcmp(opt, "malloc") == 0 || strcmp(opt, "malloc_debug") == 0) |
---|
231 | n/a | { |
---|
232 | n/a | PyMemAllocatorEx alloc = {NULL, PYRAW_FUNCS}; |
---|
233 | n/a | |
---|
234 | n/a | PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &alloc); |
---|
235 | n/a | PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &alloc); |
---|
236 | n/a | PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &alloc); |
---|
237 | n/a | |
---|
238 | n/a | if (strcmp(opt, "malloc_debug") == 0) |
---|
239 | n/a | PyMem_SetupDebugHooks(); |
---|
240 | n/a | } |
---|
241 | n/a | #ifdef WITH_PYMALLOC |
---|
242 | n/a | else if (strcmp(opt, "pymalloc") == 0 |
---|
243 | n/a | || strcmp(opt, "pymalloc_debug") == 0) |
---|
244 | n/a | { |
---|
245 | n/a | PyMemAllocatorEx raw_alloc = {NULL, PYRAW_FUNCS}; |
---|
246 | n/a | PyMemAllocatorEx mem_alloc = {NULL, PYMEM_FUNCS}; |
---|
247 | n/a | PyMemAllocatorEx obj_alloc = {NULL, PYOBJ_FUNCS}; |
---|
248 | n/a | |
---|
249 | n/a | PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &raw_alloc); |
---|
250 | n/a | PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &mem_alloc); |
---|
251 | n/a | PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &obj_alloc); |
---|
252 | n/a | |
---|
253 | n/a | if (strcmp(opt, "pymalloc_debug") == 0) |
---|
254 | n/a | PyMem_SetupDebugHooks(); |
---|
255 | n/a | } |
---|
256 | n/a | #endif |
---|
257 | n/a | else { |
---|
258 | n/a | /* unknown allocator */ |
---|
259 | n/a | return -1; |
---|
260 | n/a | } |
---|
261 | n/a | return 0; |
---|
262 | n/a | } |
---|
263 | n/a | |
---|
264 | n/a | #undef PYRAW_FUNCS |
---|
265 | n/a | #undef PYMEM_FUNCS |
---|
266 | n/a | #undef PYOBJ_FUNCS |
---|
267 | n/a | #undef PYRAWDBG_FUNCS |
---|
268 | n/a | #undef PYDBG_FUNCS |
---|
269 | n/a | |
---|
270 | n/a | static PyObjectArenaAllocator _PyObject_Arena = {NULL, |
---|
271 | n/a | #ifdef MS_WINDOWS |
---|
272 | n/a | _PyObject_ArenaVirtualAlloc, _PyObject_ArenaVirtualFree |
---|
273 | n/a | #elif defined(ARENAS_USE_MMAP) |
---|
274 | n/a | _PyObject_ArenaMmap, _PyObject_ArenaMunmap |
---|
275 | n/a | #else |
---|
276 | n/a | _PyObject_ArenaMalloc, _PyObject_ArenaFree |
---|
277 | n/a | #endif |
---|
278 | n/a | }; |
---|
279 | n/a | |
---|
280 | n/a | #ifdef WITH_PYMALLOC |
---|
281 | n/a | static int |
---|
282 | n/a | _PyMem_DebugEnabled(void) |
---|
283 | n/a | { |
---|
284 | n/a | return (_PyObject.malloc == _PyMem_DebugMalloc); |
---|
285 | n/a | } |
---|
286 | n/a | |
---|
287 | n/a | int |
---|
288 | n/a | _PyMem_PymallocEnabled(void) |
---|
289 | n/a | { |
---|
290 | n/a | if (_PyMem_DebugEnabled()) { |
---|
291 | n/a | return (_PyMem_Debug.obj.alloc.malloc == _PyObject_Malloc); |
---|
292 | n/a | } |
---|
293 | n/a | else { |
---|
294 | n/a | return (_PyObject.malloc == _PyObject_Malloc); |
---|
295 | n/a | } |
---|
296 | n/a | } |
---|
297 | n/a | #endif |
---|
298 | n/a | |
---|
299 | n/a | void |
---|
300 | n/a | PyMem_SetupDebugHooks(void) |
---|
301 | n/a | { |
---|
302 | n/a | PyMemAllocatorEx alloc; |
---|
303 | n/a | |
---|
304 | n/a | alloc.malloc = _PyMem_DebugRawMalloc; |
---|
305 | n/a | alloc.calloc = _PyMem_DebugRawCalloc; |
---|
306 | n/a | alloc.realloc = _PyMem_DebugRawRealloc; |
---|
307 | n/a | alloc.free = _PyMem_DebugRawFree; |
---|
308 | n/a | |
---|
309 | n/a | if (_PyMem_Raw.malloc != _PyMem_DebugRawMalloc) { |
---|
310 | n/a | alloc.ctx = &_PyMem_Debug.raw; |
---|
311 | n/a | PyMem_GetAllocator(PYMEM_DOMAIN_RAW, &_PyMem_Debug.raw.alloc); |
---|
312 | n/a | PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &alloc); |
---|
313 | n/a | } |
---|
314 | n/a | |
---|
315 | n/a | alloc.malloc = _PyMem_DebugMalloc; |
---|
316 | n/a | alloc.calloc = _PyMem_DebugCalloc; |
---|
317 | n/a | alloc.realloc = _PyMem_DebugRealloc; |
---|
318 | n/a | alloc.free = _PyMem_DebugFree; |
---|
319 | n/a | |
---|
320 | n/a | if (_PyMem.malloc != _PyMem_DebugMalloc) { |
---|
321 | n/a | alloc.ctx = &_PyMem_Debug.mem; |
---|
322 | n/a | PyMem_GetAllocator(PYMEM_DOMAIN_MEM, &_PyMem_Debug.mem.alloc); |
---|
323 | n/a | PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &alloc); |
---|
324 | n/a | } |
---|
325 | n/a | |
---|
326 | n/a | if (_PyObject.malloc != _PyMem_DebugMalloc) { |
---|
327 | n/a | alloc.ctx = &_PyMem_Debug.obj; |
---|
328 | n/a | PyMem_GetAllocator(PYMEM_DOMAIN_OBJ, &_PyMem_Debug.obj.alloc); |
---|
329 | n/a | PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &alloc); |
---|
330 | n/a | } |
---|
331 | n/a | } |
---|
332 | n/a | |
---|
333 | n/a | void |
---|
334 | n/a | PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator) |
---|
335 | n/a | { |
---|
336 | n/a | switch(domain) |
---|
337 | n/a | { |
---|
338 | n/a | case PYMEM_DOMAIN_RAW: *allocator = _PyMem_Raw; break; |
---|
339 | n/a | case PYMEM_DOMAIN_MEM: *allocator = _PyMem; break; |
---|
340 | n/a | case PYMEM_DOMAIN_OBJ: *allocator = _PyObject; break; |
---|
341 | n/a | default: |
---|
342 | n/a | /* unknown domain: set all attributes to NULL */ |
---|
343 | n/a | allocator->ctx = NULL; |
---|
344 | n/a | allocator->malloc = NULL; |
---|
345 | n/a | allocator->calloc = NULL; |
---|
346 | n/a | allocator->realloc = NULL; |
---|
347 | n/a | allocator->free = NULL; |
---|
348 | n/a | } |
---|
349 | n/a | } |
---|
350 | n/a | |
---|
351 | n/a | void |
---|
352 | n/a | PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator) |
---|
353 | n/a | { |
---|
354 | n/a | switch(domain) |
---|
355 | n/a | { |
---|
356 | n/a | case PYMEM_DOMAIN_RAW: _PyMem_Raw = *allocator; break; |
---|
357 | n/a | case PYMEM_DOMAIN_MEM: _PyMem = *allocator; break; |
---|
358 | n/a | case PYMEM_DOMAIN_OBJ: _PyObject = *allocator; break; |
---|
359 | n/a | /* ignore unknown domain */ |
---|
360 | n/a | } |
---|
361 | n/a | } |
---|
362 | n/a | |
---|
363 | n/a | void |
---|
364 | n/a | PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator) |
---|
365 | n/a | { |
---|
366 | n/a | *allocator = _PyObject_Arena; |
---|
367 | n/a | } |
---|
368 | n/a | |
---|
369 | n/a | void |
---|
370 | n/a | PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator) |
---|
371 | n/a | { |
---|
372 | n/a | _PyObject_Arena = *allocator; |
---|
373 | n/a | } |
---|
374 | n/a | |
---|
375 | n/a | void * |
---|
376 | n/a | PyMem_RawMalloc(size_t size) |
---|
377 | n/a | { |
---|
378 | n/a | /* |
---|
379 | n/a | * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes. |
---|
380 | n/a | * Most python internals blindly use a signed Py_ssize_t to track |
---|
381 | n/a | * things without checking for overflows or negatives. |
---|
382 | n/a | * As size_t is unsigned, checking for size < 0 is not required. |
---|
383 | n/a | */ |
---|
384 | n/a | if (size > (size_t)PY_SSIZE_T_MAX) |
---|
385 | n/a | return NULL; |
---|
386 | n/a | return _PyMem_Raw.malloc(_PyMem_Raw.ctx, size); |
---|
387 | n/a | } |
---|
388 | n/a | |
---|
389 | n/a | void * |
---|
390 | n/a | PyMem_RawCalloc(size_t nelem, size_t elsize) |
---|
391 | n/a | { |
---|
392 | n/a | /* see PyMem_RawMalloc() */ |
---|
393 | n/a | if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize) |
---|
394 | n/a | return NULL; |
---|
395 | n/a | return _PyMem_Raw.calloc(_PyMem_Raw.ctx, nelem, elsize); |
---|
396 | n/a | } |
---|
397 | n/a | |
---|
398 | n/a | void* |
---|
399 | n/a | PyMem_RawRealloc(void *ptr, size_t new_size) |
---|
400 | n/a | { |
---|
401 | n/a | /* see PyMem_RawMalloc() */ |
---|
402 | n/a | if (new_size > (size_t)PY_SSIZE_T_MAX) |
---|
403 | n/a | return NULL; |
---|
404 | n/a | return _PyMem_Raw.realloc(_PyMem_Raw.ctx, ptr, new_size); |
---|
405 | n/a | } |
---|
406 | n/a | |
---|
407 | n/a | void PyMem_RawFree(void *ptr) |
---|
408 | n/a | { |
---|
409 | n/a | _PyMem_Raw.free(_PyMem_Raw.ctx, ptr); |
---|
410 | n/a | } |
---|
411 | n/a | |
---|
412 | n/a | void * |
---|
413 | n/a | PyMem_Malloc(size_t size) |
---|
414 | n/a | { |
---|
415 | n/a | /* see PyMem_RawMalloc() */ |
---|
416 | n/a | if (size > (size_t)PY_SSIZE_T_MAX) |
---|
417 | n/a | return NULL; |
---|
418 | n/a | return _PyMem.malloc(_PyMem.ctx, size); |
---|
419 | n/a | } |
---|
420 | n/a | |
---|
421 | n/a | void * |
---|
422 | n/a | PyMem_Calloc(size_t nelem, size_t elsize) |
---|
423 | n/a | { |
---|
424 | n/a | /* see PyMem_RawMalloc() */ |
---|
425 | n/a | if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize) |
---|
426 | n/a | return NULL; |
---|
427 | n/a | return _PyMem.calloc(_PyMem.ctx, nelem, elsize); |
---|
428 | n/a | } |
---|
429 | n/a | |
---|
430 | n/a | void * |
---|
431 | n/a | PyMem_Realloc(void *ptr, size_t new_size) |
---|
432 | n/a | { |
---|
433 | n/a | /* see PyMem_RawMalloc() */ |
---|
434 | n/a | if (new_size > (size_t)PY_SSIZE_T_MAX) |
---|
435 | n/a | return NULL; |
---|
436 | n/a | return _PyMem.realloc(_PyMem.ctx, ptr, new_size); |
---|
437 | n/a | } |
---|
438 | n/a | |
---|
439 | n/a | void |
---|
440 | n/a | PyMem_Free(void *ptr) |
---|
441 | n/a | { |
---|
442 | n/a | _PyMem.free(_PyMem.ctx, ptr); |
---|
443 | n/a | } |
---|
444 | n/a | |
---|
445 | n/a | char * |
---|
446 | n/a | _PyMem_RawStrdup(const char *str) |
---|
447 | n/a | { |
---|
448 | n/a | size_t size; |
---|
449 | n/a | char *copy; |
---|
450 | n/a | |
---|
451 | n/a | size = strlen(str) + 1; |
---|
452 | n/a | copy = PyMem_RawMalloc(size); |
---|
453 | n/a | if (copy == NULL) |
---|
454 | n/a | return NULL; |
---|
455 | n/a | memcpy(copy, str, size); |
---|
456 | n/a | return copy; |
---|
457 | n/a | } |
---|
458 | n/a | |
---|
459 | n/a | char * |
---|
460 | n/a | _PyMem_Strdup(const char *str) |
---|
461 | n/a | { |
---|
462 | n/a | size_t size; |
---|
463 | n/a | char *copy; |
---|
464 | n/a | |
---|
465 | n/a | size = strlen(str) + 1; |
---|
466 | n/a | copy = PyMem_Malloc(size); |
---|
467 | n/a | if (copy == NULL) |
---|
468 | n/a | return NULL; |
---|
469 | n/a | memcpy(copy, str, size); |
---|
470 | n/a | return copy; |
---|
471 | n/a | } |
---|
472 | n/a | |
---|
473 | n/a | void * |
---|
474 | n/a | PyObject_Malloc(size_t size) |
---|
475 | n/a | { |
---|
476 | n/a | /* see PyMem_RawMalloc() */ |
---|
477 | n/a | if (size > (size_t)PY_SSIZE_T_MAX) |
---|
478 | n/a | return NULL; |
---|
479 | n/a | return _PyObject.malloc(_PyObject.ctx, size); |
---|
480 | n/a | } |
---|
481 | n/a | |
---|
482 | n/a | void * |
---|
483 | n/a | PyObject_Calloc(size_t nelem, size_t elsize) |
---|
484 | n/a | { |
---|
485 | n/a | /* see PyMem_RawMalloc() */ |
---|
486 | n/a | if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize) |
---|
487 | n/a | return NULL; |
---|
488 | n/a | return _PyObject.calloc(_PyObject.ctx, nelem, elsize); |
---|
489 | n/a | } |
---|
490 | n/a | |
---|
491 | n/a | void * |
---|
492 | n/a | PyObject_Realloc(void *ptr, size_t new_size) |
---|
493 | n/a | { |
---|
494 | n/a | /* see PyMem_RawMalloc() */ |
---|
495 | n/a | if (new_size > (size_t)PY_SSIZE_T_MAX) |
---|
496 | n/a | return NULL; |
---|
497 | n/a | return _PyObject.realloc(_PyObject.ctx, ptr, new_size); |
---|
498 | n/a | } |
---|
499 | n/a | |
---|
500 | n/a | void |
---|
501 | n/a | PyObject_Free(void *ptr) |
---|
502 | n/a | { |
---|
503 | n/a | _PyObject.free(_PyObject.ctx, ptr); |
---|
504 | n/a | } |
---|
505 | n/a | |
---|
506 | n/a | |
---|
507 | n/a | #ifdef WITH_PYMALLOC |
---|
508 | n/a | |
---|
509 | n/a | #ifdef WITH_VALGRIND |
---|
510 | n/a | #include <valgrind/valgrind.h> |
---|
511 | n/a | |
---|
512 | n/a | /* If we're using GCC, use __builtin_expect() to reduce overhead of |
---|
513 | n/a | the valgrind checks */ |
---|
514 | n/a | #if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__) |
---|
515 | n/a | # define UNLIKELY(value) __builtin_expect((value), 0) |
---|
516 | n/a | #else |
---|
517 | n/a | # define UNLIKELY(value) (value) |
---|
518 | n/a | #endif |
---|
519 | n/a | |
---|
520 | n/a | /* -1 indicates that we haven't checked that we're running on valgrind yet. */ |
---|
521 | n/a | static int running_on_valgrind = -1; |
---|
522 | n/a | #endif |
---|
523 | n/a | |
---|
524 | n/a | /* An object allocator for Python. |
---|
525 | n/a | |
---|
526 | n/a | Here is an introduction to the layers of the Python memory architecture, |
---|
527 | n/a | showing where the object allocator is actually used (layer +2), It is |
---|
528 | n/a | called for every object allocation and deallocation (PyObject_New/Del), |
---|
529 | n/a | unless the object-specific allocators implement a proprietary allocation |
---|
530 | n/a | scheme (ex.: ints use a simple free list). This is also the place where |
---|
531 | n/a | the cyclic garbage collector operates selectively on container objects. |
---|
532 | n/a | |
---|
533 | n/a | |
---|
534 | n/a | Object-specific allocators |
---|
535 | n/a | _____ ______ ______ ________ |
---|
536 | n/a | [ int ] [ dict ] [ list ] ... [ string ] Python core | |
---|
537 | n/a | +3 | <----- Object-specific memory -----> | <-- Non-object memory --> | |
---|
538 | n/a | _______________________________ | | |
---|
539 | n/a | [ Python's object allocator ] | | |
---|
540 | n/a | +2 | ####### Object memory ####### | <------ Internal buffers ------> | |
---|
541 | n/a | ______________________________________________________________ | |
---|
542 | n/a | [ Python's raw memory allocator (PyMem_ API) ] | |
---|
543 | n/a | +1 | <----- Python memory (under PyMem manager's control) ------> | | |
---|
544 | n/a | __________________________________________________________________ |
---|
545 | n/a | [ Underlying general-purpose allocator (ex: C library malloc) ] |
---|
546 | n/a | 0 | <------ Virtual memory allocated for the python process -------> | |
---|
547 | n/a | |
---|
548 | n/a | ========================================================================= |
---|
549 | n/a | _______________________________________________________________________ |
---|
550 | n/a | [ OS-specific Virtual Memory Manager (VMM) ] |
---|
551 | n/a | -1 | <--- Kernel dynamic storage allocation & management (page-based) ---> | |
---|
552 | n/a | __________________________________ __________________________________ |
---|
553 | n/a | [ ] [ ] |
---|
554 | n/a | -2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> | |
---|
555 | n/a | |
---|
556 | n/a | */ |
---|
557 | n/a | /*==========================================================================*/ |
---|
558 | n/a | |
---|
559 | n/a | /* A fast, special-purpose memory allocator for small blocks, to be used |
---|
560 | n/a | on top of a general-purpose malloc -- heavily based on previous art. */ |
---|
561 | n/a | |
---|
562 | n/a | /* Vladimir Marangozov -- August 2000 */ |
---|
563 | n/a | |
---|
564 | n/a | /* |
---|
565 | n/a | * "Memory management is where the rubber meets the road -- if we do the wrong |
---|
566 | n/a | * thing at any level, the results will not be good. And if we don't make the |
---|
567 | n/a | * levels work well together, we are in serious trouble." (1) |
---|
568 | n/a | * |
---|
569 | n/a | * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles, |
---|
570 | n/a | * "Dynamic Storage Allocation: A Survey and Critical Review", |
---|
571 | n/a | * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995. |
---|
572 | n/a | */ |
---|
573 | n/a | |
---|
574 | n/a | /* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */ |
---|
575 | n/a | |
---|
576 | n/a | /*==========================================================================*/ |
---|
577 | n/a | |
---|
578 | n/a | /* |
---|
579 | n/a | * Allocation strategy abstract: |
---|
580 | n/a | * |
---|
581 | n/a | * For small requests, the allocator sub-allocates <Big> blocks of memory. |
---|
582 | n/a | * Requests greater than SMALL_REQUEST_THRESHOLD bytes are routed to the |
---|
583 | n/a | * system's allocator. |
---|
584 | n/a | * |
---|
585 | n/a | * Small requests are grouped in size classes spaced 8 bytes apart, due |
---|
586 | n/a | * to the required valid alignment of the returned address. Requests of |
---|
587 | n/a | * a particular size are serviced from memory pools of 4K (one VMM page). |
---|
588 | n/a | * Pools are fragmented on demand and contain free lists of blocks of one |
---|
589 | n/a | * particular size class. In other words, there is a fixed-size allocator |
---|
590 | n/a | * for each size class. Free pools are shared by the different allocators |
---|
591 | n/a | * thus minimizing the space reserved for a particular size class. |
---|
592 | n/a | * |
---|
593 | n/a | * This allocation strategy is a variant of what is known as "simple |
---|
594 | n/a | * segregated storage based on array of free lists". The main drawback of |
---|
595 | n/a | * simple segregated storage is that we might end up with lot of reserved |
---|
596 | n/a | * memory for the different free lists, which degenerate in time. To avoid |
---|
597 | n/a | * this, we partition each free list in pools and we share dynamically the |
---|
598 | n/a | * reserved space between all free lists. This technique is quite efficient |
---|
599 | n/a | * for memory intensive programs which allocate mainly small-sized blocks. |
---|
600 | n/a | * |
---|
601 | n/a | * For small requests we have the following table: |
---|
602 | n/a | * |
---|
603 | n/a | * Request in bytes Size of allocated block Size class idx |
---|
604 | n/a | * ---------------------------------------------------------------- |
---|
605 | n/a | * 1-8 8 0 |
---|
606 | n/a | * 9-16 16 1 |
---|
607 | n/a | * 17-24 24 2 |
---|
608 | n/a | * 25-32 32 3 |
---|
609 | n/a | * 33-40 40 4 |
---|
610 | n/a | * 41-48 48 5 |
---|
611 | n/a | * 49-56 56 6 |
---|
612 | n/a | * 57-64 64 7 |
---|
613 | n/a | * 65-72 72 8 |
---|
614 | n/a | * ... ... ... |
---|
615 | n/a | * 497-504 504 62 |
---|
616 | n/a | * 505-512 512 63 |
---|
617 | n/a | * |
---|
618 | n/a | * 0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying |
---|
619 | n/a | * allocator. |
---|
620 | n/a | */ |
---|
621 | n/a | |
---|
622 | n/a | /*==========================================================================*/ |
---|
623 | n/a | |
---|
624 | n/a | /* |
---|
625 | n/a | * -- Main tunable settings section -- |
---|
626 | n/a | */ |
---|
627 | n/a | |
---|
628 | n/a | /* |
---|
629 | n/a | * Alignment of addresses returned to the user. 8-bytes alignment works |
---|
630 | n/a | * on most current architectures (with 32-bit or 64-bit address busses). |
---|
631 | n/a | * The alignment value is also used for grouping small requests in size |
---|
632 | n/a | * classes spaced ALIGNMENT bytes apart. |
---|
633 | n/a | * |
---|
634 | n/a | * You shouldn't change this unless you know what you are doing. |
---|
635 | n/a | */ |
---|
636 | n/a | #define ALIGNMENT 8 /* must be 2^N */ |
---|
637 | n/a | #define ALIGNMENT_SHIFT 3 |
---|
638 | n/a | |
---|
639 | n/a | /* Return the number of bytes in size class I, as a uint. */ |
---|
640 | n/a | #define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT) |
---|
641 | n/a | |
---|
642 | n/a | /* |
---|
643 | n/a | * Max size threshold below which malloc requests are considered to be |
---|
644 | n/a | * small enough in order to use preallocated memory pools. You can tune |
---|
645 | n/a | * this value according to your application behaviour and memory needs. |
---|
646 | n/a | * |
---|
647 | n/a | * Note: a size threshold of 512 guarantees that newly created dictionaries |
---|
648 | n/a | * will be allocated from preallocated memory pools on 64-bit. |
---|
649 | n/a | * |
---|
650 | n/a | * The following invariants must hold: |
---|
651 | n/a | * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 512 |
---|
652 | n/a | * 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT |
---|
653 | n/a | * |
---|
654 | n/a | * Although not required, for better performance and space efficiency, |
---|
655 | n/a | * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2. |
---|
656 | n/a | */ |
---|
657 | n/a | #define SMALL_REQUEST_THRESHOLD 512 |
---|
658 | n/a | #define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT) |
---|
659 | n/a | |
---|
660 | n/a | /* |
---|
661 | n/a | * The system's VMM page size can be obtained on most unices with a |
---|
662 | n/a | * getpagesize() call or deduced from various header files. To make |
---|
663 | n/a | * things simpler, we assume that it is 4K, which is OK for most systems. |
---|
664 | n/a | * It is probably better if this is the native page size, but it doesn't |
---|
665 | n/a | * have to be. In theory, if SYSTEM_PAGE_SIZE is larger than the native page |
---|
666 | n/a | * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation |
---|
667 | n/a | * violation fault. 4K is apparently OK for all the platforms that python |
---|
668 | n/a | * currently targets. |
---|
669 | n/a | */ |
---|
670 | n/a | #define SYSTEM_PAGE_SIZE (4 * 1024) |
---|
671 | n/a | #define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1) |
---|
672 | n/a | |
---|
673 | n/a | /* |
---|
674 | n/a | * Maximum amount of memory managed by the allocator for small requests. |
---|
675 | n/a | */ |
---|
676 | n/a | #ifdef WITH_MEMORY_LIMITS |
---|
677 | n/a | #ifndef SMALL_MEMORY_LIMIT |
---|
678 | n/a | #define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */ |
---|
679 | n/a | #endif |
---|
680 | n/a | #endif |
---|
681 | n/a | |
---|
682 | n/a | /* |
---|
683 | n/a | * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned |
---|
684 | n/a | * on a page boundary. This is a reserved virtual address space for the |
---|
685 | n/a | * current process (obtained through a malloc()/mmap() call). In no way this |
---|
686 | n/a | * means that the memory arenas will be used entirely. A malloc(<Big>) is |
---|
687 | n/a | * usually an address range reservation for <Big> bytes, unless all pages within |
---|
688 | n/a | * this space are referenced subsequently. So malloc'ing big blocks and not |
---|
689 | n/a | * using them does not mean "wasting memory". It's an addressable range |
---|
690 | n/a | * wastage... |
---|
691 | n/a | * |
---|
692 | n/a | * Arenas are allocated with mmap() on systems supporting anonymous memory |
---|
693 | n/a | * mappings to reduce heap fragmentation. |
---|
694 | n/a | */ |
---|
695 | n/a | #define ARENA_SIZE (256 << 10) /* 256KB */ |
---|
696 | n/a | |
---|
697 | n/a | #ifdef WITH_MEMORY_LIMITS |
---|
698 | n/a | #define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE) |
---|
699 | n/a | #endif |
---|
700 | n/a | |
---|
701 | n/a | /* |
---|
702 | n/a | * Size of the pools used for small blocks. Should be a power of 2, |
---|
703 | n/a | * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k. |
---|
704 | n/a | */ |
---|
705 | n/a | #define POOL_SIZE SYSTEM_PAGE_SIZE /* must be 2^N */ |
---|
706 | n/a | #define POOL_SIZE_MASK SYSTEM_PAGE_SIZE_MASK |
---|
707 | n/a | |
---|
708 | n/a | /* |
---|
709 | n/a | * -- End of tunable settings section -- |
---|
710 | n/a | */ |
---|
711 | n/a | |
---|
712 | n/a | /*==========================================================================*/ |
---|
713 | n/a | |
---|
714 | n/a | /* |
---|
715 | n/a | * Locking |
---|
716 | n/a | * |
---|
717 | n/a | * To reduce lock contention, it would probably be better to refine the |
---|
718 | n/a | * crude function locking with per size class locking. I'm not positive |
---|
719 | n/a | * however, whether it's worth switching to such locking policy because |
---|
720 | n/a | * of the performance penalty it might introduce. |
---|
721 | n/a | * |
---|
722 | n/a | * The following macros describe the simplest (should also be the fastest) |
---|
723 | n/a | * lock object on a particular platform and the init/fini/lock/unlock |
---|
724 | n/a | * operations on it. The locks defined here are not expected to be recursive |
---|
725 | n/a | * because it is assumed that they will always be called in the order: |
---|
726 | n/a | * INIT, [LOCK, UNLOCK]*, FINI. |
---|
727 | n/a | */ |
---|
728 | n/a | |
---|
729 | n/a | /* |
---|
730 | n/a | * Python's threads are serialized, so object malloc locking is disabled. |
---|
731 | n/a | */ |
---|
732 | n/a | #define SIMPLELOCK_DECL(lock) /* simple lock declaration */ |
---|
733 | n/a | #define SIMPLELOCK_INIT(lock) /* allocate (if needed) and initialize */ |
---|
734 | n/a | #define SIMPLELOCK_FINI(lock) /* free/destroy an existing lock */ |
---|
735 | n/a | #define SIMPLELOCK_LOCK(lock) /* acquire released lock */ |
---|
736 | n/a | #define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */ |
---|
737 | n/a | |
---|
738 | n/a | /* When you say memory, my mind reasons in terms of (pointers to) blocks */ |
---|
739 | n/a | typedef uint8_t block; |
---|
740 | n/a | |
---|
741 | n/a | /* Pool for small blocks. */ |
---|
742 | n/a | struct pool_header { |
---|
743 | n/a | union { block *_padding; |
---|
744 | n/a | uint count; } ref; /* number of allocated blocks */ |
---|
745 | n/a | block *freeblock; /* pool's free list head */ |
---|
746 | n/a | struct pool_header *nextpool; /* next pool of this size class */ |
---|
747 | n/a | struct pool_header *prevpool; /* previous pool "" */ |
---|
748 | n/a | uint arenaindex; /* index into arenas of base adr */ |
---|
749 | n/a | uint szidx; /* block size class index */ |
---|
750 | n/a | uint nextoffset; /* bytes to virgin block */ |
---|
751 | n/a | uint maxnextoffset; /* largest valid nextoffset */ |
---|
752 | n/a | }; |
---|
753 | n/a | |
---|
754 | n/a | typedef struct pool_header *poolp; |
---|
755 | n/a | |
---|
756 | n/a | /* Record keeping for arenas. */ |
---|
757 | n/a | struct arena_object { |
---|
758 | n/a | /* The address of the arena, as returned by malloc. Note that 0 |
---|
759 | n/a | * will never be returned by a successful malloc, and is used |
---|
760 | n/a | * here to mark an arena_object that doesn't correspond to an |
---|
761 | n/a | * allocated arena. |
---|
762 | n/a | */ |
---|
763 | n/a | uintptr_t address; |
---|
764 | n/a | |
---|
765 | n/a | /* Pool-aligned pointer to the next pool to be carved off. */ |
---|
766 | n/a | block* pool_address; |
---|
767 | n/a | |
---|
768 | n/a | /* The number of available pools in the arena: free pools + never- |
---|
769 | n/a | * allocated pools. |
---|
770 | n/a | */ |
---|
771 | n/a | uint nfreepools; |
---|
772 | n/a | |
---|
773 | n/a | /* The total number of pools in the arena, whether or not available. */ |
---|
774 | n/a | uint ntotalpools; |
---|
775 | n/a | |
---|
776 | n/a | /* Singly-linked list of available pools. */ |
---|
777 | n/a | struct pool_header* freepools; |
---|
778 | n/a | |
---|
779 | n/a | /* Whenever this arena_object is not associated with an allocated |
---|
780 | n/a | * arena, the nextarena member is used to link all unassociated |
---|
781 | n/a | * arena_objects in the singly-linked `unused_arena_objects` list. |
---|
782 | n/a | * The prevarena member is unused in this case. |
---|
783 | n/a | * |
---|
784 | n/a | * When this arena_object is associated with an allocated arena |
---|
785 | n/a | * with at least one available pool, both members are used in the |
---|
786 | n/a | * doubly-linked `usable_arenas` list, which is maintained in |
---|
787 | n/a | * increasing order of `nfreepools` values. |
---|
788 | n/a | * |
---|
789 | n/a | * Else this arena_object is associated with an allocated arena |
---|
790 | n/a | * all of whose pools are in use. `nextarena` and `prevarena` |
---|
791 | n/a | * are both meaningless in this case. |
---|
792 | n/a | */ |
---|
793 | n/a | struct arena_object* nextarena; |
---|
794 | n/a | struct arena_object* prevarena; |
---|
795 | n/a | }; |
---|
796 | n/a | |
---|
797 | n/a | #define POOL_OVERHEAD _Py_SIZE_ROUND_UP(sizeof(struct pool_header), ALIGNMENT) |
---|
798 | n/a | |
---|
799 | n/a | #define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */ |
---|
800 | n/a | |
---|
801 | n/a | /* Round pointer P down to the closest pool-aligned address <= P, as a poolp */ |
---|
802 | n/a | #define POOL_ADDR(P) ((poolp)_Py_ALIGN_DOWN((P), POOL_SIZE)) |
---|
803 | n/a | |
---|
804 | n/a | /* Return total number of blocks in pool of size index I, as a uint. */ |
---|
805 | n/a | #define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I)) |
---|
806 | n/a | |
---|
807 | n/a | /*==========================================================================*/ |
---|
808 | n/a | |
---|
809 | n/a | /* |
---|
810 | n/a | * This malloc lock |
---|
811 | n/a | */ |
---|
812 | n/a | SIMPLELOCK_DECL(_malloc_lock) |
---|
813 | n/a | #define LOCK() SIMPLELOCK_LOCK(_malloc_lock) |
---|
814 | n/a | #define UNLOCK() SIMPLELOCK_UNLOCK(_malloc_lock) |
---|
815 | n/a | #define LOCK_INIT() SIMPLELOCK_INIT(_malloc_lock) |
---|
816 | n/a | #define LOCK_FINI() SIMPLELOCK_FINI(_malloc_lock) |
---|
817 | n/a | |
---|
818 | n/a | /* |
---|
819 | n/a | * Pool table -- headed, circular, doubly-linked lists of partially used pools. |
---|
820 | n/a | |
---|
821 | n/a | This is involved. For an index i, usedpools[i+i] is the header for a list of |
---|
822 | n/a | all partially used pools holding small blocks with "size class idx" i. So |
---|
823 | n/a | usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size |
---|
824 | n/a | 16, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT. |
---|
825 | n/a | |
---|
826 | n/a | Pools are carved off an arena's highwater mark (an arena_object's pool_address |
---|
827 | n/a | member) as needed. Once carved off, a pool is in one of three states forever |
---|
828 | n/a | after: |
---|
829 | n/a | |
---|
830 | n/a | used == partially used, neither empty nor full |
---|
831 | n/a | At least one block in the pool is currently allocated, and at least one |
---|
832 | n/a | block in the pool is not currently allocated (note this implies a pool |
---|
833 | n/a | has room for at least two blocks). |
---|
834 | n/a | This is a pool's initial state, as a pool is created only when malloc |
---|
835 | n/a | needs space. |
---|
836 | n/a | The pool holds blocks of a fixed size, and is in the circular list headed |
---|
837 | n/a | at usedpools[i] (see above). It's linked to the other used pools of the |
---|
838 | n/a | same size class via the pool_header's nextpool and prevpool members. |
---|
839 | n/a | If all but one block is currently allocated, a malloc can cause a |
---|
840 | n/a | transition to the full state. If all but one block is not currently |
---|
841 | n/a | allocated, a free can cause a transition to the empty state. |
---|
842 | n/a | |
---|
843 | n/a | full == all the pool's blocks are currently allocated |
---|
844 | n/a | On transition to full, a pool is unlinked from its usedpools[] list. |
---|
845 | n/a | It's not linked to from anything then anymore, and its nextpool and |
---|
846 | n/a | prevpool members are meaningless until it transitions back to used. |
---|
847 | n/a | A free of a block in a full pool puts the pool back in the used state. |
---|
848 | n/a | Then it's linked in at the front of the appropriate usedpools[] list, so |
---|
849 | n/a | that the next allocation for its size class will reuse the freed block. |
---|
850 | n/a | |
---|
851 | n/a | empty == all the pool's blocks are currently available for allocation |
---|
852 | n/a | On transition to empty, a pool is unlinked from its usedpools[] list, |
---|
853 | n/a | and linked to the front of its arena_object's singly-linked freepools list, |
---|
854 | n/a | via its nextpool member. The prevpool member has no meaning in this case. |
---|
855 | n/a | Empty pools have no inherent size class: the next time a malloc finds |
---|
856 | n/a | an empty list in usedpools[], it takes the first pool off of freepools. |
---|
857 | n/a | If the size class needed happens to be the same as the size class the pool |
---|
858 | n/a | last had, some pool initialization can be skipped. |
---|
859 | n/a | |
---|
860 | n/a | |
---|
861 | n/a | Block Management |
---|
862 | n/a | |
---|
863 | n/a | Blocks within pools are again carved out as needed. pool->freeblock points to |
---|
864 | n/a | the start of a singly-linked list of free blocks within the pool. When a |
---|
865 | n/a | block is freed, it's inserted at the front of its pool's freeblock list. Note |
---|
866 | n/a | that the available blocks in a pool are *not* linked all together when a pool |
---|
867 | n/a | is initialized. Instead only "the first two" (lowest addresses) blocks are |
---|
868 | n/a | set up, returning the first such block, and setting pool->freeblock to a |
---|
869 | n/a | one-block list holding the second such block. This is consistent with that |
---|
870 | n/a | pymalloc strives at all levels (arena, pool, and block) never to touch a piece |
---|
871 | n/a | of memory until it's actually needed. |
---|
872 | n/a | |
---|
873 | n/a | So long as a pool is in the used state, we're certain there *is* a block |
---|
874 | n/a | available for allocating, and pool->freeblock is not NULL. If pool->freeblock |
---|
875 | n/a | points to the end of the free list before we've carved the entire pool into |
---|
876 | n/a | blocks, that means we simply haven't yet gotten to one of the higher-address |
---|
877 | n/a | blocks. The offset from the pool_header to the start of "the next" virgin |
---|
878 | n/a | block is stored in the pool_header nextoffset member, and the largest value |
---|
879 | n/a | of nextoffset that makes sense is stored in the maxnextoffset member when a |
---|
880 | n/a | pool is initialized. All the blocks in a pool have been passed out at least |
---|
881 | n/a | once when and only when nextoffset > maxnextoffset. |
---|
882 | n/a | |
---|
883 | n/a | |
---|
884 | n/a | Major obscurity: While the usedpools vector is declared to have poolp |
---|
885 | n/a | entries, it doesn't really. It really contains two pointers per (conceptual) |
---|
886 | n/a | poolp entry, the nextpool and prevpool members of a pool_header. The |
---|
887 | n/a | excruciating initialization code below fools C so that |
---|
888 | n/a | |
---|
889 | n/a | usedpool[i+i] |
---|
890 | n/a | |
---|
891 | n/a | "acts like" a genuine poolp, but only so long as you only reference its |
---|
892 | n/a | nextpool and prevpool members. The "- 2*sizeof(block *)" gibberish is |
---|
893 | n/a | compensating for that a pool_header's nextpool and prevpool members |
---|
894 | n/a | immediately follow a pool_header's first two members: |
---|
895 | n/a | |
---|
896 | n/a | union { block *_padding; |
---|
897 | n/a | uint count; } ref; |
---|
898 | n/a | block *freeblock; |
---|
899 | n/a | |
---|
900 | n/a | each of which consume sizeof(block *) bytes. So what usedpools[i+i] really |
---|
901 | n/a | contains is a fudged-up pointer p such that *if* C believes it's a poolp |
---|
902 | n/a | pointer, then p->nextpool and p->prevpool are both p (meaning that the headed |
---|
903 | n/a | circular list is empty). |
---|
904 | n/a | |
---|
905 | n/a | It's unclear why the usedpools setup is so convoluted. It could be to |
---|
906 | n/a | minimize the amount of cache required to hold this heavily-referenced table |
---|
907 | n/a | (which only *needs* the two interpool pointer members of a pool_header). OTOH, |
---|
908 | n/a | referencing code has to remember to "double the index" and doing so isn't |
---|
909 | n/a | free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying |
---|
910 | n/a | on that C doesn't insert any padding anywhere in a pool_header at or before |
---|
911 | n/a | the prevpool member. |
---|
912 | n/a | **************************************************************************** */ |
---|
913 | n/a | |
---|
914 | n/a | #define PTA(x) ((poolp )((uint8_t *)&(usedpools[2*(x)]) - 2*sizeof(block *))) |
---|
915 | n/a | #define PT(x) PTA(x), PTA(x) |
---|
916 | n/a | |
---|
917 | n/a | static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = { |
---|
918 | n/a | PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7) |
---|
919 | n/a | #if NB_SMALL_SIZE_CLASSES > 8 |
---|
920 | n/a | , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15) |
---|
921 | n/a | #if NB_SMALL_SIZE_CLASSES > 16 |
---|
922 | n/a | , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23) |
---|
923 | n/a | #if NB_SMALL_SIZE_CLASSES > 24 |
---|
924 | n/a | , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31) |
---|
925 | n/a | #if NB_SMALL_SIZE_CLASSES > 32 |
---|
926 | n/a | , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39) |
---|
927 | n/a | #if NB_SMALL_SIZE_CLASSES > 40 |
---|
928 | n/a | , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47) |
---|
929 | n/a | #if NB_SMALL_SIZE_CLASSES > 48 |
---|
930 | n/a | , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55) |
---|
931 | n/a | #if NB_SMALL_SIZE_CLASSES > 56 |
---|
932 | n/a | , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63) |
---|
933 | n/a | #if NB_SMALL_SIZE_CLASSES > 64 |
---|
934 | n/a | #error "NB_SMALL_SIZE_CLASSES should be less than 64" |
---|
935 | n/a | #endif /* NB_SMALL_SIZE_CLASSES > 64 */ |
---|
936 | n/a | #endif /* NB_SMALL_SIZE_CLASSES > 56 */ |
---|
937 | n/a | #endif /* NB_SMALL_SIZE_CLASSES > 48 */ |
---|
938 | n/a | #endif /* NB_SMALL_SIZE_CLASSES > 40 */ |
---|
939 | n/a | #endif /* NB_SMALL_SIZE_CLASSES > 32 */ |
---|
940 | n/a | #endif /* NB_SMALL_SIZE_CLASSES > 24 */ |
---|
941 | n/a | #endif /* NB_SMALL_SIZE_CLASSES > 16 */ |
---|
942 | n/a | #endif /* NB_SMALL_SIZE_CLASSES > 8 */ |
---|
943 | n/a | }; |
---|
944 | n/a | |
---|
945 | n/a | /*========================================================================== |
---|
946 | n/a | Arena management. |
---|
947 | n/a | |
---|
948 | n/a | `arenas` is a vector of arena_objects. It contains maxarenas entries, some of |
---|
949 | n/a | which may not be currently used (== they're arena_objects that aren't |
---|
950 | n/a | currently associated with an allocated arena). Note that arenas proper are |
---|
951 | n/a | separately malloc'ed. |
---|
952 | n/a | |
---|
953 | n/a | Prior to Python 2.5, arenas were never free()'ed. Starting with Python 2.5, |
---|
954 | n/a | we do try to free() arenas, and use some mild heuristic strategies to increase |
---|
955 | n/a | the likelihood that arenas eventually can be freed. |
---|
956 | n/a | |
---|
957 | n/a | unused_arena_objects |
---|
958 | n/a | |
---|
959 | n/a | This is a singly-linked list of the arena_objects that are currently not |
---|
960 | n/a | being used (no arena is associated with them). Objects are taken off the |
---|
961 | n/a | head of the list in new_arena(), and are pushed on the head of the list in |
---|
962 | n/a | PyObject_Free() when the arena is empty. Key invariant: an arena_object |
---|
963 | n/a | is on this list if and only if its .address member is 0. |
---|
964 | n/a | |
---|
965 | n/a | usable_arenas |
---|
966 | n/a | |
---|
967 | n/a | This is a doubly-linked list of the arena_objects associated with arenas |
---|
968 | n/a | that have pools available. These pools are either waiting to be reused, |
---|
969 | n/a | or have not been used before. The list is sorted to have the most- |
---|
970 | n/a | allocated arenas first (ascending order based on the nfreepools member). |
---|
971 | n/a | This means that the next allocation will come from a heavily used arena, |
---|
972 | n/a | which gives the nearly empty arenas a chance to be returned to the system. |
---|
973 | n/a | In my unscientific tests this dramatically improved the number of arenas |
---|
974 | n/a | that could be freed. |
---|
975 | n/a | |
---|
976 | n/a | Note that an arena_object associated with an arena all of whose pools are |
---|
977 | n/a | currently in use isn't on either list. |
---|
978 | n/a | */ |
---|
979 | n/a | |
---|
980 | n/a | /* Array of objects used to track chunks of memory (arenas). */ |
---|
981 | n/a | static struct arena_object* arenas = NULL; |
---|
982 | n/a | /* Number of slots currently allocated in the `arenas` vector. */ |
---|
983 | n/a | static uint maxarenas = 0; |
---|
984 | n/a | |
---|
985 | n/a | /* The head of the singly-linked, NULL-terminated list of available |
---|
986 | n/a | * arena_objects. |
---|
987 | n/a | */ |
---|
988 | n/a | static struct arena_object* unused_arena_objects = NULL; |
---|
989 | n/a | |
---|
990 | n/a | /* The head of the doubly-linked, NULL-terminated at each end, list of |
---|
991 | n/a | * arena_objects associated with arenas that have pools available. |
---|
992 | n/a | */ |
---|
993 | n/a | static struct arena_object* usable_arenas = NULL; |
---|
994 | n/a | |
---|
995 | n/a | /* How many arena_objects do we initially allocate? |
---|
996 | n/a | * 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the |
---|
997 | n/a | * `arenas` vector. |
---|
998 | n/a | */ |
---|
999 | n/a | #define INITIAL_ARENA_OBJECTS 16 |
---|
1000 | n/a | |
---|
1001 | n/a | /* Number of arenas allocated that haven't been free()'d. */ |
---|
1002 | n/a | static size_t narenas_currently_allocated = 0; |
---|
1003 | n/a | |
---|
1004 | n/a | /* Total number of times malloc() called to allocate an arena. */ |
---|
1005 | n/a | static size_t ntimes_arena_allocated = 0; |
---|
1006 | n/a | /* High water mark (max value ever seen) for narenas_currently_allocated. */ |
---|
1007 | n/a | static size_t narenas_highwater = 0; |
---|
1008 | n/a | |
---|
1009 | n/a | static Py_ssize_t _Py_AllocatedBlocks = 0; |
---|
1010 | n/a | |
---|
1011 | n/a | Py_ssize_t |
---|
1012 | n/a | _Py_GetAllocatedBlocks(void) |
---|
1013 | n/a | { |
---|
1014 | n/a | return _Py_AllocatedBlocks; |
---|
1015 | n/a | } |
---|
1016 | n/a | |
---|
1017 | n/a | |
---|
1018 | n/a | /* Allocate a new arena. If we run out of memory, return NULL. Else |
---|
1019 | n/a | * allocate a new arena, and return the address of an arena_object |
---|
1020 | n/a | * describing the new arena. It's expected that the caller will set |
---|
1021 | n/a | * `usable_arenas` to the return value. |
---|
1022 | n/a | */ |
---|
1023 | n/a | static struct arena_object* |
---|
1024 | n/a | new_arena(void) |
---|
1025 | n/a | { |
---|
1026 | n/a | struct arena_object* arenaobj; |
---|
1027 | n/a | uint excess; /* number of bytes above pool alignment */ |
---|
1028 | n/a | void *address; |
---|
1029 | n/a | static int debug_stats = -1; |
---|
1030 | n/a | |
---|
1031 | n/a | if (debug_stats == -1) { |
---|
1032 | n/a | char *opt = Py_GETENV("PYTHONMALLOCSTATS"); |
---|
1033 | n/a | debug_stats = (opt != NULL && *opt != '\0'); |
---|
1034 | n/a | } |
---|
1035 | n/a | if (debug_stats) |
---|
1036 | n/a | _PyObject_DebugMallocStats(stderr); |
---|
1037 | n/a | |
---|
1038 | n/a | if (unused_arena_objects == NULL) { |
---|
1039 | n/a | uint i; |
---|
1040 | n/a | uint numarenas; |
---|
1041 | n/a | size_t nbytes; |
---|
1042 | n/a | |
---|
1043 | n/a | /* Double the number of arena objects on each allocation. |
---|
1044 | n/a | * Note that it's possible for `numarenas` to overflow. |
---|
1045 | n/a | */ |
---|
1046 | n/a | numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS; |
---|
1047 | n/a | if (numarenas <= maxarenas) |
---|
1048 | n/a | return NULL; /* overflow */ |
---|
1049 | n/a | #if SIZEOF_SIZE_T <= SIZEOF_INT |
---|
1050 | n/a | if (numarenas > SIZE_MAX / sizeof(*arenas)) |
---|
1051 | n/a | return NULL; /* overflow */ |
---|
1052 | n/a | #endif |
---|
1053 | n/a | nbytes = numarenas * sizeof(*arenas); |
---|
1054 | n/a | arenaobj = (struct arena_object *)PyMem_RawRealloc(arenas, nbytes); |
---|
1055 | n/a | if (arenaobj == NULL) |
---|
1056 | n/a | return NULL; |
---|
1057 | n/a | arenas = arenaobj; |
---|
1058 | n/a | |
---|
1059 | n/a | /* We might need to fix pointers that were copied. However, |
---|
1060 | n/a | * new_arena only gets called when all the pages in the |
---|
1061 | n/a | * previous arenas are full. Thus, there are *no* pointers |
---|
1062 | n/a | * into the old array. Thus, we don't have to worry about |
---|
1063 | n/a | * invalid pointers. Just to be sure, some asserts: |
---|
1064 | n/a | */ |
---|
1065 | n/a | assert(usable_arenas == NULL); |
---|
1066 | n/a | assert(unused_arena_objects == NULL); |
---|
1067 | n/a | |
---|
1068 | n/a | /* Put the new arenas on the unused_arena_objects list. */ |
---|
1069 | n/a | for (i = maxarenas; i < numarenas; ++i) { |
---|
1070 | n/a | arenas[i].address = 0; /* mark as unassociated */ |
---|
1071 | n/a | arenas[i].nextarena = i < numarenas - 1 ? |
---|
1072 | n/a | &arenas[i+1] : NULL; |
---|
1073 | n/a | } |
---|
1074 | n/a | |
---|
1075 | n/a | /* Update globals. */ |
---|
1076 | n/a | unused_arena_objects = &arenas[maxarenas]; |
---|
1077 | n/a | maxarenas = numarenas; |
---|
1078 | n/a | } |
---|
1079 | n/a | |
---|
1080 | n/a | /* Take the next available arena object off the head of the list. */ |
---|
1081 | n/a | assert(unused_arena_objects != NULL); |
---|
1082 | n/a | arenaobj = unused_arena_objects; |
---|
1083 | n/a | unused_arena_objects = arenaobj->nextarena; |
---|
1084 | n/a | assert(arenaobj->address == 0); |
---|
1085 | n/a | address = _PyObject_Arena.alloc(_PyObject_Arena.ctx, ARENA_SIZE); |
---|
1086 | n/a | if (address == NULL) { |
---|
1087 | n/a | /* The allocation failed: return NULL after putting the |
---|
1088 | n/a | * arenaobj back. |
---|
1089 | n/a | */ |
---|
1090 | n/a | arenaobj->nextarena = unused_arena_objects; |
---|
1091 | n/a | unused_arena_objects = arenaobj; |
---|
1092 | n/a | return NULL; |
---|
1093 | n/a | } |
---|
1094 | n/a | arenaobj->address = (uintptr_t)address; |
---|
1095 | n/a | |
---|
1096 | n/a | ++narenas_currently_allocated; |
---|
1097 | n/a | ++ntimes_arena_allocated; |
---|
1098 | n/a | if (narenas_currently_allocated > narenas_highwater) |
---|
1099 | n/a | narenas_highwater = narenas_currently_allocated; |
---|
1100 | n/a | arenaobj->freepools = NULL; |
---|
1101 | n/a | /* pool_address <- first pool-aligned address in the arena |
---|
1102 | n/a | nfreepools <- number of whole pools that fit after alignment */ |
---|
1103 | n/a | arenaobj->pool_address = (block*)arenaobj->address; |
---|
1104 | n/a | arenaobj->nfreepools = ARENA_SIZE / POOL_SIZE; |
---|
1105 | n/a | assert(POOL_SIZE * arenaobj->nfreepools == ARENA_SIZE); |
---|
1106 | n/a | excess = (uint)(arenaobj->address & POOL_SIZE_MASK); |
---|
1107 | n/a | if (excess != 0) { |
---|
1108 | n/a | --arenaobj->nfreepools; |
---|
1109 | n/a | arenaobj->pool_address += POOL_SIZE - excess; |
---|
1110 | n/a | } |
---|
1111 | n/a | arenaobj->ntotalpools = arenaobj->nfreepools; |
---|
1112 | n/a | |
---|
1113 | n/a | return arenaobj; |
---|
1114 | n/a | } |
---|
1115 | n/a | |
---|
1116 | n/a | /* |
---|
1117 | n/a | address_in_range(P, POOL) |
---|
1118 | n/a | |
---|
1119 | n/a | Return true if and only if P is an address that was allocated by pymalloc. |
---|
1120 | n/a | POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P) |
---|
1121 | n/a | (the caller is asked to compute this because the macro expands POOL more than |
---|
1122 | n/a | once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a |
---|
1123 | n/a | variable and pass the latter to the macro; because address_in_range is |
---|
1124 | n/a | called on every alloc/realloc/free, micro-efficiency is important here). |
---|
1125 | n/a | |
---|
1126 | n/a | Tricky: Let B be the arena base address associated with the pool, B = |
---|
1127 | n/a | arenas[(POOL)->arenaindex].address. Then P belongs to the arena if and only if |
---|
1128 | n/a | |
---|
1129 | n/a | B <= P < B + ARENA_SIZE |
---|
1130 | n/a | |
---|
1131 | n/a | Subtracting B throughout, this is true iff |
---|
1132 | n/a | |
---|
1133 | n/a | 0 <= P-B < ARENA_SIZE |
---|
1134 | n/a | |
---|
1135 | n/a | By using unsigned arithmetic, the "0 <=" half of the test can be skipped. |
---|
1136 | n/a | |
---|
1137 | n/a | Obscure: A PyMem "free memory" function can call the pymalloc free or realloc |
---|
1138 | n/a | before the first arena has been allocated. `arenas` is still NULL in that |
---|
1139 | n/a | case. We're relying on that maxarenas is also 0 in that case, so that |
---|
1140 | n/a | (POOL)->arenaindex < maxarenas must be false, saving us from trying to index |
---|
1141 | n/a | into a NULL arenas. |
---|
1142 | n/a | |
---|
1143 | n/a | Details: given P and POOL, the arena_object corresponding to P is AO = |
---|
1144 | n/a | arenas[(POOL)->arenaindex]. Suppose obmalloc controls P. Then (barring wild |
---|
1145 | n/a | stores, etc), POOL is the correct address of P's pool, AO.address is the |
---|
1146 | n/a | correct base address of the pool's arena, and P must be within ARENA_SIZE of |
---|
1147 | n/a | AO.address. In addition, AO.address is not 0 (no arena can start at address 0 |
---|
1148 | n/a | (NULL)). Therefore address_in_range correctly reports that obmalloc |
---|
1149 | n/a | controls P. |
---|
1150 | n/a | |
---|
1151 | n/a | Now suppose obmalloc does not control P (e.g., P was obtained via a direct |
---|
1152 | n/a | call to the system malloc() or realloc()). (POOL)->arenaindex may be anything |
---|
1153 | n/a | in this case -- it may even be uninitialized trash. If the trash arenaindex |
---|
1154 | n/a | is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't |
---|
1155 | n/a | control P. |
---|
1156 | n/a | |
---|
1157 | n/a | Else arenaindex is < maxarena, and AO is read up. If AO corresponds to an |
---|
1158 | n/a | allocated arena, obmalloc controls all the memory in slice AO.address : |
---|
1159 | n/a | AO.address+ARENA_SIZE. By case assumption, P is not controlled by obmalloc, |
---|
1160 | n/a | so P doesn't lie in that slice, so the macro correctly reports that P is not |
---|
1161 | n/a | controlled by obmalloc. |
---|
1162 | n/a | |
---|
1163 | n/a | Finally, if P is not controlled by obmalloc and AO corresponds to an unused |
---|
1164 | n/a | arena_object (one not currently associated with an allocated arena), |
---|
1165 | n/a | AO.address is 0, and the second test in the macro reduces to: |
---|
1166 | n/a | |
---|
1167 | n/a | P < ARENA_SIZE |
---|
1168 | n/a | |
---|
1169 | n/a | If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes |
---|
1170 | n/a | that P is not controlled by obmalloc. However, if P < ARENA_SIZE, this part |
---|
1171 | n/a | of the test still passes, and the third clause (AO.address != 0) is necessary |
---|
1172 | n/a | to get the correct result: AO.address is 0 in this case, so the macro |
---|
1173 | n/a | correctly reports that P is not controlled by obmalloc (despite that P lies in |
---|
1174 | n/a | slice AO.address : AO.address + ARENA_SIZE). |
---|
1175 | n/a | |
---|
1176 | n/a | Note: The third (AO.address != 0) clause was added in Python 2.5. Before |
---|
1177 | n/a | 2.5, arenas were never free()'ed, and an arenaindex < maxarena always |
---|
1178 | n/a | corresponded to a currently-allocated arena, so the "P is not controlled by |
---|
1179 | n/a | obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case |
---|
1180 | n/a | was impossible. |
---|
1181 | n/a | |
---|
1182 | n/a | Note that the logic is excruciating, and reading up possibly uninitialized |
---|
1183 | n/a | memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex) |
---|
1184 | n/a | creates problems for some memory debuggers. The overwhelming advantage is |
---|
1185 | n/a | that this test determines whether an arbitrary address is controlled by |
---|
1186 | n/a | obmalloc in a small constant time, independent of the number of arenas |
---|
1187 | n/a | obmalloc controls. Since this test is needed at every entry point, it's |
---|
1188 | n/a | extremely desirable that it be this fast. |
---|
1189 | n/a | */ |
---|
1190 | n/a | |
---|
1191 | n/a | static bool ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS |
---|
1192 | n/a | address_in_range(void *p, poolp pool) |
---|
1193 | n/a | { |
---|
1194 | n/a | // Since address_in_range may be reading from memory which was not allocated |
---|
1195 | n/a | // by Python, it is important that pool->arenaindex is read only once, as |
---|
1196 | n/a | // another thread may be concurrently modifying the value without holding |
---|
1197 | n/a | // the GIL. The following dance forces the compiler to read pool->arenaindex |
---|
1198 | n/a | // only once. |
---|
1199 | n/a | uint arenaindex = *((volatile uint *)&pool->arenaindex); |
---|
1200 | n/a | return arenaindex < maxarenas && |
---|
1201 | n/a | (uintptr_t)p - arenas[arenaindex].address < ARENA_SIZE && |
---|
1202 | n/a | arenas[arenaindex].address != 0; |
---|
1203 | n/a | } |
---|
1204 | n/a | |
---|
1205 | n/a | /*==========================================================================*/ |
---|
1206 | n/a | |
---|
1207 | n/a | /* malloc. Note that nbytes==0 tries to return a non-NULL pointer, distinct |
---|
1208 | n/a | * from all other currently live pointers. This may not be possible. |
---|
1209 | n/a | */ |
---|
1210 | n/a | |
---|
1211 | n/a | /* |
---|
1212 | n/a | * The basic blocks are ordered by decreasing execution frequency, |
---|
1213 | n/a | * which minimizes the number of jumps in the most common cases, |
---|
1214 | n/a | * improves branching prediction and instruction scheduling (small |
---|
1215 | n/a | * block allocations typically result in a couple of instructions). |
---|
1216 | n/a | * Unless the optimizer reorders everything, being too smart... |
---|
1217 | n/a | */ |
---|
1218 | n/a | |
---|
1219 | n/a | static void * |
---|
1220 | n/a | _PyObject_Alloc(int use_calloc, void *ctx, size_t nelem, size_t elsize) |
---|
1221 | n/a | { |
---|
1222 | n/a | size_t nbytes; |
---|
1223 | n/a | block *bp; |
---|
1224 | n/a | poolp pool; |
---|
1225 | n/a | poolp next; |
---|
1226 | n/a | uint size; |
---|
1227 | n/a | |
---|
1228 | n/a | _Py_AllocatedBlocks++; |
---|
1229 | n/a | |
---|
1230 | n/a | assert(nelem <= PY_SSIZE_T_MAX / elsize); |
---|
1231 | n/a | nbytes = nelem * elsize; |
---|
1232 | n/a | |
---|
1233 | n/a | #ifdef WITH_VALGRIND |
---|
1234 | n/a | if (UNLIKELY(running_on_valgrind == -1)) |
---|
1235 | n/a | running_on_valgrind = RUNNING_ON_VALGRIND; |
---|
1236 | n/a | if (UNLIKELY(running_on_valgrind)) |
---|
1237 | n/a | goto redirect; |
---|
1238 | n/a | #endif |
---|
1239 | n/a | |
---|
1240 | n/a | if (nelem == 0 || elsize == 0) |
---|
1241 | n/a | goto redirect; |
---|
1242 | n/a | |
---|
1243 | n/a | if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) { |
---|
1244 | n/a | LOCK(); |
---|
1245 | n/a | /* |
---|
1246 | n/a | * Most frequent paths first |
---|
1247 | n/a | */ |
---|
1248 | n/a | size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT; |
---|
1249 | n/a | pool = usedpools[size + size]; |
---|
1250 | n/a | if (pool != pool->nextpool) { |
---|
1251 | n/a | /* |
---|
1252 | n/a | * There is a used pool for this size class. |
---|
1253 | n/a | * Pick up the head block of its free list. |
---|
1254 | n/a | */ |
---|
1255 | n/a | ++pool->ref.count; |
---|
1256 | n/a | bp = pool->freeblock; |
---|
1257 | n/a | assert(bp != NULL); |
---|
1258 | n/a | if ((pool->freeblock = *(block **)bp) != NULL) { |
---|
1259 | n/a | UNLOCK(); |
---|
1260 | n/a | if (use_calloc) |
---|
1261 | n/a | memset(bp, 0, nbytes); |
---|
1262 | n/a | return (void *)bp; |
---|
1263 | n/a | } |
---|
1264 | n/a | /* |
---|
1265 | n/a | * Reached the end of the free list, try to extend it. |
---|
1266 | n/a | */ |
---|
1267 | n/a | if (pool->nextoffset <= pool->maxnextoffset) { |
---|
1268 | n/a | /* There is room for another block. */ |
---|
1269 | n/a | pool->freeblock = (block*)pool + |
---|
1270 | n/a | pool->nextoffset; |
---|
1271 | n/a | pool->nextoffset += INDEX2SIZE(size); |
---|
1272 | n/a | *(block **)(pool->freeblock) = NULL; |
---|
1273 | n/a | UNLOCK(); |
---|
1274 | n/a | if (use_calloc) |
---|
1275 | n/a | memset(bp, 0, nbytes); |
---|
1276 | n/a | return (void *)bp; |
---|
1277 | n/a | } |
---|
1278 | n/a | /* Pool is full, unlink from used pools. */ |
---|
1279 | n/a | next = pool->nextpool; |
---|
1280 | n/a | pool = pool->prevpool; |
---|
1281 | n/a | next->prevpool = pool; |
---|
1282 | n/a | pool->nextpool = next; |
---|
1283 | n/a | UNLOCK(); |
---|
1284 | n/a | if (use_calloc) |
---|
1285 | n/a | memset(bp, 0, nbytes); |
---|
1286 | n/a | return (void *)bp; |
---|
1287 | n/a | } |
---|
1288 | n/a | |
---|
1289 | n/a | /* There isn't a pool of the right size class immediately |
---|
1290 | n/a | * available: use a free pool. |
---|
1291 | n/a | */ |
---|
1292 | n/a | if (usable_arenas == NULL) { |
---|
1293 | n/a | /* No arena has a free pool: allocate a new arena. */ |
---|
1294 | n/a | #ifdef WITH_MEMORY_LIMITS |
---|
1295 | n/a | if (narenas_currently_allocated >= MAX_ARENAS) { |
---|
1296 | n/a | UNLOCK(); |
---|
1297 | n/a | goto redirect; |
---|
1298 | n/a | } |
---|
1299 | n/a | #endif |
---|
1300 | n/a | usable_arenas = new_arena(); |
---|
1301 | n/a | if (usable_arenas == NULL) { |
---|
1302 | n/a | UNLOCK(); |
---|
1303 | n/a | goto redirect; |
---|
1304 | n/a | } |
---|
1305 | n/a | usable_arenas->nextarena = |
---|
1306 | n/a | usable_arenas->prevarena = NULL; |
---|
1307 | n/a | } |
---|
1308 | n/a | assert(usable_arenas->address != 0); |
---|
1309 | n/a | |
---|
1310 | n/a | /* Try to get a cached free pool. */ |
---|
1311 | n/a | pool = usable_arenas->freepools; |
---|
1312 | n/a | if (pool != NULL) { |
---|
1313 | n/a | /* Unlink from cached pools. */ |
---|
1314 | n/a | usable_arenas->freepools = pool->nextpool; |
---|
1315 | n/a | |
---|
1316 | n/a | /* This arena already had the smallest nfreepools |
---|
1317 | n/a | * value, so decreasing nfreepools doesn't change |
---|
1318 | n/a | * that, and we don't need to rearrange the |
---|
1319 | n/a | * usable_arenas list. However, if the arena has |
---|
1320 | n/a | * become wholly allocated, we need to remove its |
---|
1321 | n/a | * arena_object from usable_arenas. |
---|
1322 | n/a | */ |
---|
1323 | n/a | --usable_arenas->nfreepools; |
---|
1324 | n/a | if (usable_arenas->nfreepools == 0) { |
---|
1325 | n/a | /* Wholly allocated: remove. */ |
---|
1326 | n/a | assert(usable_arenas->freepools == NULL); |
---|
1327 | n/a | assert(usable_arenas->nextarena == NULL || |
---|
1328 | n/a | usable_arenas->nextarena->prevarena == |
---|
1329 | n/a | usable_arenas); |
---|
1330 | n/a | |
---|
1331 | n/a | usable_arenas = usable_arenas->nextarena; |
---|
1332 | n/a | if (usable_arenas != NULL) { |
---|
1333 | n/a | usable_arenas->prevarena = NULL; |
---|
1334 | n/a | assert(usable_arenas->address != 0); |
---|
1335 | n/a | } |
---|
1336 | n/a | } |
---|
1337 | n/a | else { |
---|
1338 | n/a | /* nfreepools > 0: it must be that freepools |
---|
1339 | n/a | * isn't NULL, or that we haven't yet carved |
---|
1340 | n/a | * off all the arena's pools for the first |
---|
1341 | n/a | * time. |
---|
1342 | n/a | */ |
---|
1343 | n/a | assert(usable_arenas->freepools != NULL || |
---|
1344 | n/a | usable_arenas->pool_address <= |
---|
1345 | n/a | (block*)usable_arenas->address + |
---|
1346 | n/a | ARENA_SIZE - POOL_SIZE); |
---|
1347 | n/a | } |
---|
1348 | n/a | init_pool: |
---|
1349 | n/a | /* Frontlink to used pools. */ |
---|
1350 | n/a | next = usedpools[size + size]; /* == prev */ |
---|
1351 | n/a | pool->nextpool = next; |
---|
1352 | n/a | pool->prevpool = next; |
---|
1353 | n/a | next->nextpool = pool; |
---|
1354 | n/a | next->prevpool = pool; |
---|
1355 | n/a | pool->ref.count = 1; |
---|
1356 | n/a | if (pool->szidx == size) { |
---|
1357 | n/a | /* Luckily, this pool last contained blocks |
---|
1358 | n/a | * of the same size class, so its header |
---|
1359 | n/a | * and free list are already initialized. |
---|
1360 | n/a | */ |
---|
1361 | n/a | bp = pool->freeblock; |
---|
1362 | n/a | assert(bp != NULL); |
---|
1363 | n/a | pool->freeblock = *(block **)bp; |
---|
1364 | n/a | UNLOCK(); |
---|
1365 | n/a | if (use_calloc) |
---|
1366 | n/a | memset(bp, 0, nbytes); |
---|
1367 | n/a | return (void *)bp; |
---|
1368 | n/a | } |
---|
1369 | n/a | /* |
---|
1370 | n/a | * Initialize the pool header, set up the free list to |
---|
1371 | n/a | * contain just the second block, and return the first |
---|
1372 | n/a | * block. |
---|
1373 | n/a | */ |
---|
1374 | n/a | pool->szidx = size; |
---|
1375 | n/a | size = INDEX2SIZE(size); |
---|
1376 | n/a | bp = (block *)pool + POOL_OVERHEAD; |
---|
1377 | n/a | pool->nextoffset = POOL_OVERHEAD + (size << 1); |
---|
1378 | n/a | pool->maxnextoffset = POOL_SIZE - size; |
---|
1379 | n/a | pool->freeblock = bp + size; |
---|
1380 | n/a | *(block **)(pool->freeblock) = NULL; |
---|
1381 | n/a | UNLOCK(); |
---|
1382 | n/a | if (use_calloc) |
---|
1383 | n/a | memset(bp, 0, nbytes); |
---|
1384 | n/a | return (void *)bp; |
---|
1385 | n/a | } |
---|
1386 | n/a | |
---|
1387 | n/a | /* Carve off a new pool. */ |
---|
1388 | n/a | assert(usable_arenas->nfreepools > 0); |
---|
1389 | n/a | assert(usable_arenas->freepools == NULL); |
---|
1390 | n/a | pool = (poolp)usable_arenas->pool_address; |
---|
1391 | n/a | assert((block*)pool <= (block*)usable_arenas->address + |
---|
1392 | n/a | ARENA_SIZE - POOL_SIZE); |
---|
1393 | n/a | pool->arenaindex = (uint)(usable_arenas - arenas); |
---|
1394 | n/a | assert(&arenas[pool->arenaindex] == usable_arenas); |
---|
1395 | n/a | pool->szidx = DUMMY_SIZE_IDX; |
---|
1396 | n/a | usable_arenas->pool_address += POOL_SIZE; |
---|
1397 | n/a | --usable_arenas->nfreepools; |
---|
1398 | n/a | |
---|
1399 | n/a | if (usable_arenas->nfreepools == 0) { |
---|
1400 | n/a | assert(usable_arenas->nextarena == NULL || |
---|
1401 | n/a | usable_arenas->nextarena->prevarena == |
---|
1402 | n/a | usable_arenas); |
---|
1403 | n/a | /* Unlink the arena: it is completely allocated. */ |
---|
1404 | n/a | usable_arenas = usable_arenas->nextarena; |
---|
1405 | n/a | if (usable_arenas != NULL) { |
---|
1406 | n/a | usable_arenas->prevarena = NULL; |
---|
1407 | n/a | assert(usable_arenas->address != 0); |
---|
1408 | n/a | } |
---|
1409 | n/a | } |
---|
1410 | n/a | |
---|
1411 | n/a | goto init_pool; |
---|
1412 | n/a | } |
---|
1413 | n/a | |
---|
1414 | n/a | /* The small block allocator ends here. */ |
---|
1415 | n/a | |
---|
1416 | n/a | redirect: |
---|
1417 | n/a | /* Redirect the original request to the underlying (libc) allocator. |
---|
1418 | n/a | * We jump here on bigger requests, on error in the code above (as a |
---|
1419 | n/a | * last chance to serve the request) or when the max memory limit |
---|
1420 | n/a | * has been reached. |
---|
1421 | n/a | */ |
---|
1422 | n/a | { |
---|
1423 | n/a | void *result; |
---|
1424 | n/a | if (use_calloc) |
---|
1425 | n/a | result = PyMem_RawCalloc(nelem, elsize); |
---|
1426 | n/a | else |
---|
1427 | n/a | result = PyMem_RawMalloc(nbytes); |
---|
1428 | n/a | if (!result) |
---|
1429 | n/a | _Py_AllocatedBlocks--; |
---|
1430 | n/a | return result; |
---|
1431 | n/a | } |
---|
1432 | n/a | } |
---|
1433 | n/a | |
---|
1434 | n/a | static void * |
---|
1435 | n/a | _PyObject_Malloc(void *ctx, size_t nbytes) |
---|
1436 | n/a | { |
---|
1437 | n/a | return _PyObject_Alloc(0, ctx, 1, nbytes); |
---|
1438 | n/a | } |
---|
1439 | n/a | |
---|
1440 | n/a | static void * |
---|
1441 | n/a | _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize) |
---|
1442 | n/a | { |
---|
1443 | n/a | return _PyObject_Alloc(1, ctx, nelem, elsize); |
---|
1444 | n/a | } |
---|
1445 | n/a | |
---|
1446 | n/a | /* free */ |
---|
1447 | n/a | |
---|
1448 | n/a | static void |
---|
1449 | n/a | _PyObject_Free(void *ctx, void *p) |
---|
1450 | n/a | { |
---|
1451 | n/a | poolp pool; |
---|
1452 | n/a | block *lastfree; |
---|
1453 | n/a | poolp next, prev; |
---|
1454 | n/a | uint size; |
---|
1455 | n/a | |
---|
1456 | n/a | if (p == NULL) /* free(NULL) has no effect */ |
---|
1457 | n/a | return; |
---|
1458 | n/a | |
---|
1459 | n/a | _Py_AllocatedBlocks--; |
---|
1460 | n/a | |
---|
1461 | n/a | #ifdef WITH_VALGRIND |
---|
1462 | n/a | if (UNLIKELY(running_on_valgrind > 0)) |
---|
1463 | n/a | goto redirect; |
---|
1464 | n/a | #endif |
---|
1465 | n/a | |
---|
1466 | n/a | pool = POOL_ADDR(p); |
---|
1467 | n/a | if (address_in_range(p, pool)) { |
---|
1468 | n/a | /* We allocated this address. */ |
---|
1469 | n/a | LOCK(); |
---|
1470 | n/a | /* Link p to the start of the pool's freeblock list. Since |
---|
1471 | n/a | * the pool had at least the p block outstanding, the pool |
---|
1472 | n/a | * wasn't empty (so it's already in a usedpools[] list, or |
---|
1473 | n/a | * was full and is in no list -- it's not in the freeblocks |
---|
1474 | n/a | * list in any case). |
---|
1475 | n/a | */ |
---|
1476 | n/a | assert(pool->ref.count > 0); /* else it was empty */ |
---|
1477 | n/a | *(block **)p = lastfree = pool->freeblock; |
---|
1478 | n/a | pool->freeblock = (block *)p; |
---|
1479 | n/a | if (lastfree) { |
---|
1480 | n/a | struct arena_object* ao; |
---|
1481 | n/a | uint nf; /* ao->nfreepools */ |
---|
1482 | n/a | |
---|
1483 | n/a | /* freeblock wasn't NULL, so the pool wasn't full, |
---|
1484 | n/a | * and the pool is in a usedpools[] list. |
---|
1485 | n/a | */ |
---|
1486 | n/a | if (--pool->ref.count != 0) { |
---|
1487 | n/a | /* pool isn't empty: leave it in usedpools */ |
---|
1488 | n/a | UNLOCK(); |
---|
1489 | n/a | return; |
---|
1490 | n/a | } |
---|
1491 | n/a | /* Pool is now empty: unlink from usedpools, and |
---|
1492 | n/a | * link to the front of freepools. This ensures that |
---|
1493 | n/a | * previously freed pools will be allocated later |
---|
1494 | n/a | * (being not referenced, they are perhaps paged out). |
---|
1495 | n/a | */ |
---|
1496 | n/a | next = pool->nextpool; |
---|
1497 | n/a | prev = pool->prevpool; |
---|
1498 | n/a | next->prevpool = prev; |
---|
1499 | n/a | prev->nextpool = next; |
---|
1500 | n/a | |
---|
1501 | n/a | /* Link the pool to freepools. This is a singly-linked |
---|
1502 | n/a | * list, and pool->prevpool isn't used there. |
---|
1503 | n/a | */ |
---|
1504 | n/a | ao = &arenas[pool->arenaindex]; |
---|
1505 | n/a | pool->nextpool = ao->freepools; |
---|
1506 | n/a | ao->freepools = pool; |
---|
1507 | n/a | nf = ++ao->nfreepools; |
---|
1508 | n/a | |
---|
1509 | n/a | /* All the rest is arena management. We just freed |
---|
1510 | n/a | * a pool, and there are 4 cases for arena mgmt: |
---|
1511 | n/a | * 1. If all the pools are free, return the arena to |
---|
1512 | n/a | * the system free(). |
---|
1513 | n/a | * 2. If this is the only free pool in the arena, |
---|
1514 | n/a | * add the arena back to the `usable_arenas` list. |
---|
1515 | n/a | * 3. If the "next" arena has a smaller count of free |
---|
1516 | n/a | * pools, we have to "slide this arena right" to |
---|
1517 | n/a | * restore that usable_arenas is sorted in order of |
---|
1518 | n/a | * nfreepools. |
---|
1519 | n/a | * 4. Else there's nothing more to do. |
---|
1520 | n/a | */ |
---|
1521 | n/a | if (nf == ao->ntotalpools) { |
---|
1522 | n/a | /* Case 1. First unlink ao from usable_arenas. |
---|
1523 | n/a | */ |
---|
1524 | n/a | assert(ao->prevarena == NULL || |
---|
1525 | n/a | ao->prevarena->address != 0); |
---|
1526 | n/a | assert(ao ->nextarena == NULL || |
---|
1527 | n/a | ao->nextarena->address != 0); |
---|
1528 | n/a | |
---|
1529 | n/a | /* Fix the pointer in the prevarena, or the |
---|
1530 | n/a | * usable_arenas pointer. |
---|
1531 | n/a | */ |
---|
1532 | n/a | if (ao->prevarena == NULL) { |
---|
1533 | n/a | usable_arenas = ao->nextarena; |
---|
1534 | n/a | assert(usable_arenas == NULL || |
---|
1535 | n/a | usable_arenas->address != 0); |
---|
1536 | n/a | } |
---|
1537 | n/a | else { |
---|
1538 | n/a | assert(ao->prevarena->nextarena == ao); |
---|
1539 | n/a | ao->prevarena->nextarena = |
---|
1540 | n/a | ao->nextarena; |
---|
1541 | n/a | } |
---|
1542 | n/a | /* Fix the pointer in the nextarena. */ |
---|
1543 | n/a | if (ao->nextarena != NULL) { |
---|
1544 | n/a | assert(ao->nextarena->prevarena == ao); |
---|
1545 | n/a | ao->nextarena->prevarena = |
---|
1546 | n/a | ao->prevarena; |
---|
1547 | n/a | } |
---|
1548 | n/a | /* Record that this arena_object slot is |
---|
1549 | n/a | * available to be reused. |
---|
1550 | n/a | */ |
---|
1551 | n/a | ao->nextarena = unused_arena_objects; |
---|
1552 | n/a | unused_arena_objects = ao; |
---|
1553 | n/a | |
---|
1554 | n/a | /* Free the entire arena. */ |
---|
1555 | n/a | _PyObject_Arena.free(_PyObject_Arena.ctx, |
---|
1556 | n/a | (void *)ao->address, ARENA_SIZE); |
---|
1557 | n/a | ao->address = 0; /* mark unassociated */ |
---|
1558 | n/a | --narenas_currently_allocated; |
---|
1559 | n/a | |
---|
1560 | n/a | UNLOCK(); |
---|
1561 | n/a | return; |
---|
1562 | n/a | } |
---|
1563 | n/a | if (nf == 1) { |
---|
1564 | n/a | /* Case 2. Put ao at the head of |
---|
1565 | n/a | * usable_arenas. Note that because |
---|
1566 | n/a | * ao->nfreepools was 0 before, ao isn't |
---|
1567 | n/a | * currently on the usable_arenas list. |
---|
1568 | n/a | */ |
---|
1569 | n/a | ao->nextarena = usable_arenas; |
---|
1570 | n/a | ao->prevarena = NULL; |
---|
1571 | n/a | if (usable_arenas) |
---|
1572 | n/a | usable_arenas->prevarena = ao; |
---|
1573 | n/a | usable_arenas = ao; |
---|
1574 | n/a | assert(usable_arenas->address != 0); |
---|
1575 | n/a | |
---|
1576 | n/a | UNLOCK(); |
---|
1577 | n/a | return; |
---|
1578 | n/a | } |
---|
1579 | n/a | /* If this arena is now out of order, we need to keep |
---|
1580 | n/a | * the list sorted. The list is kept sorted so that |
---|
1581 | n/a | * the "most full" arenas are used first, which allows |
---|
1582 | n/a | * the nearly empty arenas to be completely freed. In |
---|
1583 | n/a | * a few un-scientific tests, it seems like this |
---|
1584 | n/a | * approach allowed a lot more memory to be freed. |
---|
1585 | n/a | */ |
---|
1586 | n/a | if (ao->nextarena == NULL || |
---|
1587 | n/a | nf <= ao->nextarena->nfreepools) { |
---|
1588 | n/a | /* Case 4. Nothing to do. */ |
---|
1589 | n/a | UNLOCK(); |
---|
1590 | n/a | return; |
---|
1591 | n/a | } |
---|
1592 | n/a | /* Case 3: We have to move the arena towards the end |
---|
1593 | n/a | * of the list, because it has more free pools than |
---|
1594 | n/a | * the arena to its right. |
---|
1595 | n/a | * First unlink ao from usable_arenas. |
---|
1596 | n/a | */ |
---|
1597 | n/a | if (ao->prevarena != NULL) { |
---|
1598 | n/a | /* ao isn't at the head of the list */ |
---|
1599 | n/a | assert(ao->prevarena->nextarena == ao); |
---|
1600 | n/a | ao->prevarena->nextarena = ao->nextarena; |
---|
1601 | n/a | } |
---|
1602 | n/a | else { |
---|
1603 | n/a | /* ao is at the head of the list */ |
---|
1604 | n/a | assert(usable_arenas == ao); |
---|
1605 | n/a | usable_arenas = ao->nextarena; |
---|
1606 | n/a | } |
---|
1607 | n/a | ao->nextarena->prevarena = ao->prevarena; |
---|
1608 | n/a | |
---|
1609 | n/a | /* Locate the new insertion point by iterating over |
---|
1610 | n/a | * the list, using our nextarena pointer. |
---|
1611 | n/a | */ |
---|
1612 | n/a | while (ao->nextarena != NULL && |
---|
1613 | n/a | nf > ao->nextarena->nfreepools) { |
---|
1614 | n/a | ao->prevarena = ao->nextarena; |
---|
1615 | n/a | ao->nextarena = ao->nextarena->nextarena; |
---|
1616 | n/a | } |
---|
1617 | n/a | |
---|
1618 | n/a | /* Insert ao at this point. */ |
---|
1619 | n/a | assert(ao->nextarena == NULL || |
---|
1620 | n/a | ao->prevarena == ao->nextarena->prevarena); |
---|
1621 | n/a | assert(ao->prevarena->nextarena == ao->nextarena); |
---|
1622 | n/a | |
---|
1623 | n/a | ao->prevarena->nextarena = ao; |
---|
1624 | n/a | if (ao->nextarena != NULL) |
---|
1625 | n/a | ao->nextarena->prevarena = ao; |
---|
1626 | n/a | |
---|
1627 | n/a | /* Verify that the swaps worked. */ |
---|
1628 | n/a | assert(ao->nextarena == NULL || |
---|
1629 | n/a | nf <= ao->nextarena->nfreepools); |
---|
1630 | n/a | assert(ao->prevarena == NULL || |
---|
1631 | n/a | nf > ao->prevarena->nfreepools); |
---|
1632 | n/a | assert(ao->nextarena == NULL || |
---|
1633 | n/a | ao->nextarena->prevarena == ao); |
---|
1634 | n/a | assert((usable_arenas == ao && |
---|
1635 | n/a | ao->prevarena == NULL) || |
---|
1636 | n/a | ao->prevarena->nextarena == ao); |
---|
1637 | n/a | |
---|
1638 | n/a | UNLOCK(); |
---|
1639 | n/a | return; |
---|
1640 | n/a | } |
---|
1641 | n/a | /* Pool was full, so doesn't currently live in any list: |
---|
1642 | n/a | * link it to the front of the appropriate usedpools[] list. |
---|
1643 | n/a | * This mimics LRU pool usage for new allocations and |
---|
1644 | n/a | * targets optimal filling when several pools contain |
---|
1645 | n/a | * blocks of the same size class. |
---|
1646 | n/a | */ |
---|
1647 | n/a | --pool->ref.count; |
---|
1648 | n/a | assert(pool->ref.count > 0); /* else the pool is empty */ |
---|
1649 | n/a | size = pool->szidx; |
---|
1650 | n/a | next = usedpools[size + size]; |
---|
1651 | n/a | prev = next->prevpool; |
---|
1652 | n/a | /* insert pool before next: prev <-> pool <-> next */ |
---|
1653 | n/a | pool->nextpool = next; |
---|
1654 | n/a | pool->prevpool = prev; |
---|
1655 | n/a | next->prevpool = pool; |
---|
1656 | n/a | prev->nextpool = pool; |
---|
1657 | n/a | UNLOCK(); |
---|
1658 | n/a | return; |
---|
1659 | n/a | } |
---|
1660 | n/a | |
---|
1661 | n/a | #ifdef WITH_VALGRIND |
---|
1662 | n/a | redirect: |
---|
1663 | n/a | #endif |
---|
1664 | n/a | /* We didn't allocate this address. */ |
---|
1665 | n/a | PyMem_RawFree(p); |
---|
1666 | n/a | } |
---|
1667 | n/a | |
---|
1668 | n/a | /* realloc. If p is NULL, this acts like malloc(nbytes). Else if nbytes==0, |
---|
1669 | n/a | * then as the Python docs promise, we do not treat this like free(p), and |
---|
1670 | n/a | * return a non-NULL result. |
---|
1671 | n/a | */ |
---|
1672 | n/a | |
---|
1673 | n/a | static void * |
---|
1674 | n/a | _PyObject_Realloc(void *ctx, void *p, size_t nbytes) |
---|
1675 | n/a | { |
---|
1676 | n/a | void *bp; |
---|
1677 | n/a | poolp pool; |
---|
1678 | n/a | size_t size; |
---|
1679 | n/a | |
---|
1680 | n/a | if (p == NULL) |
---|
1681 | n/a | return _PyObject_Alloc(0, ctx, 1, nbytes); |
---|
1682 | n/a | |
---|
1683 | n/a | #ifdef WITH_VALGRIND |
---|
1684 | n/a | /* Treat running_on_valgrind == -1 the same as 0 */ |
---|
1685 | n/a | if (UNLIKELY(running_on_valgrind > 0)) |
---|
1686 | n/a | goto redirect; |
---|
1687 | n/a | #endif |
---|
1688 | n/a | |
---|
1689 | n/a | pool = POOL_ADDR(p); |
---|
1690 | n/a | if (address_in_range(p, pool)) { |
---|
1691 | n/a | /* We're in charge of this block */ |
---|
1692 | n/a | size = INDEX2SIZE(pool->szidx); |
---|
1693 | n/a | if (nbytes <= size) { |
---|
1694 | n/a | /* The block is staying the same or shrinking. If |
---|
1695 | n/a | * it's shrinking, there's a tradeoff: it costs |
---|
1696 | n/a | * cycles to copy the block to a smaller size class, |
---|
1697 | n/a | * but it wastes memory not to copy it. The |
---|
1698 | n/a | * compromise here is to copy on shrink only if at |
---|
1699 | n/a | * least 25% of size can be shaved off. |
---|
1700 | n/a | */ |
---|
1701 | n/a | if (4 * nbytes > 3 * size) { |
---|
1702 | n/a | /* It's the same, |
---|
1703 | n/a | * or shrinking and new/old > 3/4. |
---|
1704 | n/a | */ |
---|
1705 | n/a | return p; |
---|
1706 | n/a | } |
---|
1707 | n/a | size = nbytes; |
---|
1708 | n/a | } |
---|
1709 | n/a | bp = _PyObject_Alloc(0, ctx, 1, nbytes); |
---|
1710 | n/a | if (bp != NULL) { |
---|
1711 | n/a | memcpy(bp, p, size); |
---|
1712 | n/a | _PyObject_Free(ctx, p); |
---|
1713 | n/a | } |
---|
1714 | n/a | return bp; |
---|
1715 | n/a | } |
---|
1716 | n/a | #ifdef WITH_VALGRIND |
---|
1717 | n/a | redirect: |
---|
1718 | n/a | #endif |
---|
1719 | n/a | /* We're not managing this block. If nbytes <= |
---|
1720 | n/a | * SMALL_REQUEST_THRESHOLD, it's tempting to try to take over this |
---|
1721 | n/a | * block. However, if we do, we need to copy the valid data from |
---|
1722 | n/a | * the C-managed block to one of our blocks, and there's no portable |
---|
1723 | n/a | * way to know how much of the memory space starting at p is valid. |
---|
1724 | n/a | * As bug 1185883 pointed out the hard way, it's possible that the |
---|
1725 | n/a | * C-managed block is "at the end" of allocated VM space, so that |
---|
1726 | n/a | * a memory fault can occur if we try to copy nbytes bytes starting |
---|
1727 | n/a | * at p. Instead we punt: let C continue to manage this block. |
---|
1728 | n/a | */ |
---|
1729 | n/a | if (nbytes) |
---|
1730 | n/a | return PyMem_RawRealloc(p, nbytes); |
---|
1731 | n/a | /* C doesn't define the result of realloc(p, 0) (it may or may not |
---|
1732 | n/a | * return NULL then), but Python's docs promise that nbytes==0 never |
---|
1733 | n/a | * returns NULL. We don't pass 0 to realloc(), to avoid that endcase |
---|
1734 | n/a | * to begin with. Even then, we can't be sure that realloc() won't |
---|
1735 | n/a | * return NULL. |
---|
1736 | n/a | */ |
---|
1737 | n/a | bp = PyMem_RawRealloc(p, 1); |
---|
1738 | n/a | return bp ? bp : p; |
---|
1739 | n/a | } |
---|
1740 | n/a | |
---|
1741 | n/a | #else /* ! WITH_PYMALLOC */ |
---|
1742 | n/a | |
---|
1743 | n/a | /*==========================================================================*/ |
---|
1744 | n/a | /* pymalloc not enabled: Redirect the entry points to malloc. These will |
---|
1745 | n/a | * only be used by extensions that are compiled with pymalloc enabled. */ |
---|
1746 | n/a | |
---|
1747 | n/a | Py_ssize_t |
---|
1748 | n/a | _Py_GetAllocatedBlocks(void) |
---|
1749 | n/a | { |
---|
1750 | n/a | return 0; |
---|
1751 | n/a | } |
---|
1752 | n/a | |
---|
1753 | n/a | #endif /* WITH_PYMALLOC */ |
---|
1754 | n/a | |
---|
1755 | n/a | |
---|
1756 | n/a | /*==========================================================================*/ |
---|
1757 | n/a | /* A x-platform debugging allocator. This doesn't manage memory directly, |
---|
1758 | n/a | * it wraps a real allocator, adding extra debugging info to the memory blocks. |
---|
1759 | n/a | */ |
---|
1760 | n/a | |
---|
1761 | n/a | /* Special bytes broadcast into debug memory blocks at appropriate times. |
---|
1762 | n/a | * Strings of these are unlikely to be valid addresses, floats, ints or |
---|
1763 | n/a | * 7-bit ASCII. |
---|
1764 | n/a | */ |
---|
1765 | n/a | #undef CLEANBYTE |
---|
1766 | n/a | #undef DEADBYTE |
---|
1767 | n/a | #undef FORBIDDENBYTE |
---|
1768 | n/a | #define CLEANBYTE 0xCB /* clean (newly allocated) memory */ |
---|
1769 | n/a | #define DEADBYTE 0xDB /* dead (newly freed) memory */ |
---|
1770 | n/a | #define FORBIDDENBYTE 0xFB /* untouchable bytes at each end of a block */ |
---|
1771 | n/a | |
---|
1772 | n/a | static size_t serialno = 0; /* incremented on each debug {m,re}alloc */ |
---|
1773 | n/a | |
---|
1774 | n/a | /* serialno is always incremented via calling this routine. The point is |
---|
1775 | n/a | * to supply a single place to set a breakpoint. |
---|
1776 | n/a | */ |
---|
1777 | n/a | static void |
---|
1778 | n/a | bumpserialno(void) |
---|
1779 | n/a | { |
---|
1780 | n/a | ++serialno; |
---|
1781 | n/a | } |
---|
1782 | n/a | |
---|
1783 | n/a | #define SST SIZEOF_SIZE_T |
---|
1784 | n/a | |
---|
1785 | n/a | /* Read sizeof(size_t) bytes at p as a big-endian size_t. */ |
---|
1786 | n/a | static size_t |
---|
1787 | n/a | read_size_t(const void *p) |
---|
1788 | n/a | { |
---|
1789 | n/a | const uint8_t *q = (const uint8_t *)p; |
---|
1790 | n/a | size_t result = *q++; |
---|
1791 | n/a | int i; |
---|
1792 | n/a | |
---|
1793 | n/a | for (i = SST; --i > 0; ++q) |
---|
1794 | n/a | result = (result << 8) | *q; |
---|
1795 | n/a | return result; |
---|
1796 | n/a | } |
---|
1797 | n/a | |
---|
1798 | n/a | /* Write n as a big-endian size_t, MSB at address p, LSB at |
---|
1799 | n/a | * p + sizeof(size_t) - 1. |
---|
1800 | n/a | */ |
---|
1801 | n/a | static void |
---|
1802 | n/a | write_size_t(void *p, size_t n) |
---|
1803 | n/a | { |
---|
1804 | n/a | uint8_t *q = (uint8_t *)p + SST - 1; |
---|
1805 | n/a | int i; |
---|
1806 | n/a | |
---|
1807 | n/a | for (i = SST; --i >= 0; --q) { |
---|
1808 | n/a | *q = (uint8_t)(n & 0xff); |
---|
1809 | n/a | n >>= 8; |
---|
1810 | n/a | } |
---|
1811 | n/a | } |
---|
1812 | n/a | |
---|
1813 | n/a | /* Let S = sizeof(size_t). The debug malloc asks for 4*S extra bytes and |
---|
1814 | n/a | fills them with useful stuff, here calling the underlying malloc's result p: |
---|
1815 | n/a | |
---|
1816 | n/a | p[0: S] |
---|
1817 | n/a | Number of bytes originally asked for. This is a size_t, big-endian (easier |
---|
1818 | n/a | to read in a memory dump). |
---|
1819 | n/a | p[S] |
---|
1820 | n/a | API ID. See PEP 445. This is a character, but seems undocumented. |
---|
1821 | n/a | p[S+1: 2*S] |
---|
1822 | n/a | Copies of FORBIDDENBYTE. Used to catch under- writes and reads. |
---|
1823 | n/a | p[2*S: 2*S+n] |
---|
1824 | n/a | The requested memory, filled with copies of CLEANBYTE. |
---|
1825 | n/a | Used to catch reference to uninitialized memory. |
---|
1826 | n/a | &p[2*S] is returned. Note that this is 8-byte aligned if pymalloc |
---|
1827 | n/a | handled the request itself. |
---|
1828 | n/a | p[2*S+n: 2*S+n+S] |
---|
1829 | n/a | Copies of FORBIDDENBYTE. Used to catch over- writes and reads. |
---|
1830 | n/a | p[2*S+n+S: 2*S+n+2*S] |
---|
1831 | n/a | A serial number, incremented by 1 on each call to _PyMem_DebugMalloc |
---|
1832 | n/a | and _PyMem_DebugRealloc. |
---|
1833 | n/a | This is a big-endian size_t. |
---|
1834 | n/a | If "bad memory" is detected later, the serial number gives an |
---|
1835 | n/a | excellent way to set a breakpoint on the next run, to capture the |
---|
1836 | n/a | instant at which this block was passed out. |
---|
1837 | n/a | */ |
---|
1838 | n/a | |
---|
1839 | n/a | static void * |
---|
1840 | n/a | _PyMem_DebugRawAlloc(int use_calloc, void *ctx, size_t nbytes) |
---|
1841 | n/a | { |
---|
1842 | n/a | debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; |
---|
1843 | n/a | uint8_t *p; /* base address of malloc'ed block */ |
---|
1844 | n/a | uint8_t *tail; /* p + 2*SST + nbytes == pointer to tail pad bytes */ |
---|
1845 | n/a | size_t total; /* nbytes + 4*SST */ |
---|
1846 | n/a | |
---|
1847 | n/a | bumpserialno(); |
---|
1848 | n/a | total = nbytes + 4*SST; |
---|
1849 | n/a | if (nbytes > PY_SSIZE_T_MAX - 4*SST) |
---|
1850 | n/a | /* overflow: can't represent total as a Py_ssize_t */ |
---|
1851 | n/a | return NULL; |
---|
1852 | n/a | |
---|
1853 | n/a | if (use_calloc) |
---|
1854 | n/a | p = (uint8_t *)api->alloc.calloc(api->alloc.ctx, 1, total); |
---|
1855 | n/a | else |
---|
1856 | n/a | p = (uint8_t *)api->alloc.malloc(api->alloc.ctx, total); |
---|
1857 | n/a | if (p == NULL) |
---|
1858 | n/a | return NULL; |
---|
1859 | n/a | |
---|
1860 | n/a | /* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */ |
---|
1861 | n/a | write_size_t(p, nbytes); |
---|
1862 | n/a | p[SST] = (uint8_t)api->api_id; |
---|
1863 | n/a | memset(p + SST + 1, FORBIDDENBYTE, SST-1); |
---|
1864 | n/a | |
---|
1865 | n/a | if (nbytes > 0 && !use_calloc) |
---|
1866 | n/a | memset(p + 2*SST, CLEANBYTE, nbytes); |
---|
1867 | n/a | |
---|
1868 | n/a | /* at tail, write pad (SST bytes) and serialno (SST bytes) */ |
---|
1869 | n/a | tail = p + 2*SST + nbytes; |
---|
1870 | n/a | memset(tail, FORBIDDENBYTE, SST); |
---|
1871 | n/a | write_size_t(tail + SST, serialno); |
---|
1872 | n/a | |
---|
1873 | n/a | return p + 2*SST; |
---|
1874 | n/a | } |
---|
1875 | n/a | |
---|
1876 | n/a | static void * |
---|
1877 | n/a | _PyMem_DebugRawMalloc(void *ctx, size_t nbytes) |
---|
1878 | n/a | { |
---|
1879 | n/a | return _PyMem_DebugRawAlloc(0, ctx, nbytes); |
---|
1880 | n/a | } |
---|
1881 | n/a | |
---|
1882 | n/a | static void * |
---|
1883 | n/a | _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize) |
---|
1884 | n/a | { |
---|
1885 | n/a | size_t nbytes; |
---|
1886 | n/a | assert(elsize == 0 || nelem <= PY_SSIZE_T_MAX / elsize); |
---|
1887 | n/a | nbytes = nelem * elsize; |
---|
1888 | n/a | return _PyMem_DebugRawAlloc(1, ctx, nbytes); |
---|
1889 | n/a | } |
---|
1890 | n/a | |
---|
1891 | n/a | /* The debug free first checks the 2*SST bytes on each end for sanity (in |
---|
1892 | n/a | particular, that the FORBIDDENBYTEs with the api ID are still intact). |
---|
1893 | n/a | Then fills the original bytes with DEADBYTE. |
---|
1894 | n/a | Then calls the underlying free. |
---|
1895 | n/a | */ |
---|
1896 | n/a | static void |
---|
1897 | n/a | _PyMem_DebugRawFree(void *ctx, void *p) |
---|
1898 | n/a | { |
---|
1899 | n/a | debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; |
---|
1900 | n/a | uint8_t *q = (uint8_t *)p - 2*SST; /* address returned from malloc */ |
---|
1901 | n/a | size_t nbytes; |
---|
1902 | n/a | |
---|
1903 | n/a | if (p == NULL) |
---|
1904 | n/a | return; |
---|
1905 | n/a | _PyMem_DebugCheckAddress(api->api_id, p); |
---|
1906 | n/a | nbytes = read_size_t(q); |
---|
1907 | n/a | nbytes += 4*SST; |
---|
1908 | n/a | if (nbytes > 0) |
---|
1909 | n/a | memset(q, DEADBYTE, nbytes); |
---|
1910 | n/a | api->alloc.free(api->alloc.ctx, q); |
---|
1911 | n/a | } |
---|
1912 | n/a | |
---|
1913 | n/a | static void * |
---|
1914 | n/a | _PyMem_DebugRawRealloc(void *ctx, void *p, size_t nbytes) |
---|
1915 | n/a | { |
---|
1916 | n/a | debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; |
---|
1917 | n/a | uint8_t *q = (uint8_t *)p, *oldq; |
---|
1918 | n/a | uint8_t *tail; |
---|
1919 | n/a | size_t total; /* nbytes + 4*SST */ |
---|
1920 | n/a | size_t original_nbytes; |
---|
1921 | n/a | int i; |
---|
1922 | n/a | |
---|
1923 | n/a | if (p == NULL) |
---|
1924 | n/a | return _PyMem_DebugRawAlloc(0, ctx, nbytes); |
---|
1925 | n/a | |
---|
1926 | n/a | _PyMem_DebugCheckAddress(api->api_id, p); |
---|
1927 | n/a | bumpserialno(); |
---|
1928 | n/a | original_nbytes = read_size_t(q - 2*SST); |
---|
1929 | n/a | total = nbytes + 4*SST; |
---|
1930 | n/a | if (nbytes > PY_SSIZE_T_MAX - 4*SST) |
---|
1931 | n/a | /* overflow: can't represent total as a Py_ssize_t */ |
---|
1932 | n/a | return NULL; |
---|
1933 | n/a | |
---|
1934 | n/a | /* Resize and add decorations. We may get a new pointer here, in which |
---|
1935 | n/a | * case we didn't get the chance to mark the old memory with DEADBYTE, |
---|
1936 | n/a | * but we live with that. |
---|
1937 | n/a | */ |
---|
1938 | n/a | oldq = q; |
---|
1939 | n/a | q = (uint8_t *)api->alloc.realloc(api->alloc.ctx, q - 2*SST, total); |
---|
1940 | n/a | if (q == NULL) |
---|
1941 | n/a | return NULL; |
---|
1942 | n/a | |
---|
1943 | n/a | if (q == oldq && nbytes < original_nbytes) { |
---|
1944 | n/a | /* shrinking: mark old extra memory dead */ |
---|
1945 | n/a | memset(q + nbytes, DEADBYTE, original_nbytes - nbytes); |
---|
1946 | n/a | } |
---|
1947 | n/a | |
---|
1948 | n/a | write_size_t(q, nbytes); |
---|
1949 | n/a | assert(q[SST] == (uint8_t)api->api_id); |
---|
1950 | n/a | for (i = 1; i < SST; ++i) |
---|
1951 | n/a | assert(q[SST + i] == FORBIDDENBYTE); |
---|
1952 | n/a | q += 2*SST; |
---|
1953 | n/a | |
---|
1954 | n/a | tail = q + nbytes; |
---|
1955 | n/a | memset(tail, FORBIDDENBYTE, SST); |
---|
1956 | n/a | write_size_t(tail + SST, serialno); |
---|
1957 | n/a | |
---|
1958 | n/a | if (nbytes > original_nbytes) { |
---|
1959 | n/a | /* growing: mark new extra memory clean */ |
---|
1960 | n/a | memset(q + original_nbytes, CLEANBYTE, |
---|
1961 | n/a | nbytes - original_nbytes); |
---|
1962 | n/a | } |
---|
1963 | n/a | |
---|
1964 | n/a | return q; |
---|
1965 | n/a | } |
---|
1966 | n/a | |
---|
1967 | n/a | static void |
---|
1968 | n/a | _PyMem_DebugCheckGIL(void) |
---|
1969 | n/a | { |
---|
1970 | n/a | #ifdef WITH_THREAD |
---|
1971 | n/a | if (!PyGILState_Check()) |
---|
1972 | n/a | Py_FatalError("Python memory allocator called " |
---|
1973 | n/a | "without holding the GIL"); |
---|
1974 | n/a | #endif |
---|
1975 | n/a | } |
---|
1976 | n/a | |
---|
1977 | n/a | static void * |
---|
1978 | n/a | _PyMem_DebugMalloc(void *ctx, size_t nbytes) |
---|
1979 | n/a | { |
---|
1980 | n/a | _PyMem_DebugCheckGIL(); |
---|
1981 | n/a | return _PyMem_DebugRawMalloc(ctx, nbytes); |
---|
1982 | n/a | } |
---|
1983 | n/a | |
---|
1984 | n/a | static void * |
---|
1985 | n/a | _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize) |
---|
1986 | n/a | { |
---|
1987 | n/a | _PyMem_DebugCheckGIL(); |
---|
1988 | n/a | return _PyMem_DebugRawCalloc(ctx, nelem, elsize); |
---|
1989 | n/a | } |
---|
1990 | n/a | |
---|
1991 | n/a | static void |
---|
1992 | n/a | _PyMem_DebugFree(void *ctx, void *ptr) |
---|
1993 | n/a | { |
---|
1994 | n/a | _PyMem_DebugCheckGIL(); |
---|
1995 | n/a | _PyMem_DebugRawFree(ctx, ptr); |
---|
1996 | n/a | } |
---|
1997 | n/a | |
---|
1998 | n/a | static void * |
---|
1999 | n/a | _PyMem_DebugRealloc(void *ctx, void *ptr, size_t nbytes) |
---|
2000 | n/a | { |
---|
2001 | n/a | _PyMem_DebugCheckGIL(); |
---|
2002 | n/a | return _PyMem_DebugRawRealloc(ctx, ptr, nbytes); |
---|
2003 | n/a | } |
---|
2004 | n/a | |
---|
2005 | n/a | /* Check the forbidden bytes on both ends of the memory allocated for p. |
---|
2006 | n/a | * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress, |
---|
2007 | n/a | * and call Py_FatalError to kill the program. |
---|
2008 | n/a | * The API id, is also checked. |
---|
2009 | n/a | */ |
---|
2010 | n/a | static void |
---|
2011 | n/a | _PyMem_DebugCheckAddress(char api, const void *p) |
---|
2012 | n/a | { |
---|
2013 | n/a | const uint8_t *q = (const uint8_t *)p; |
---|
2014 | n/a | char msgbuf[64]; |
---|
2015 | n/a | char *msg; |
---|
2016 | n/a | size_t nbytes; |
---|
2017 | n/a | const uint8_t *tail; |
---|
2018 | n/a | int i; |
---|
2019 | n/a | char id; |
---|
2020 | n/a | |
---|
2021 | n/a | if (p == NULL) { |
---|
2022 | n/a | msg = "didn't expect a NULL pointer"; |
---|
2023 | n/a | goto error; |
---|
2024 | n/a | } |
---|
2025 | n/a | |
---|
2026 | n/a | /* Check the API id */ |
---|
2027 | n/a | id = (char)q[-SST]; |
---|
2028 | n/a | if (id != api) { |
---|
2029 | n/a | msg = msgbuf; |
---|
2030 | n/a | snprintf(msg, sizeof(msgbuf), "bad ID: Allocated using API '%c', verified using API '%c'", id, api); |
---|
2031 | n/a | msgbuf[sizeof(msgbuf)-1] = 0; |
---|
2032 | n/a | goto error; |
---|
2033 | n/a | } |
---|
2034 | n/a | |
---|
2035 | n/a | /* Check the stuff at the start of p first: if there's underwrite |
---|
2036 | n/a | * corruption, the number-of-bytes field may be nuts, and checking |
---|
2037 | n/a | * the tail could lead to a segfault then. |
---|
2038 | n/a | */ |
---|
2039 | n/a | for (i = SST-1; i >= 1; --i) { |
---|
2040 | n/a | if (*(q-i) != FORBIDDENBYTE) { |
---|
2041 | n/a | msg = "bad leading pad byte"; |
---|
2042 | n/a | goto error; |
---|
2043 | n/a | } |
---|
2044 | n/a | } |
---|
2045 | n/a | |
---|
2046 | n/a | nbytes = read_size_t(q - 2*SST); |
---|
2047 | n/a | tail = q + nbytes; |
---|
2048 | n/a | for (i = 0; i < SST; ++i) { |
---|
2049 | n/a | if (tail[i] != FORBIDDENBYTE) { |
---|
2050 | n/a | msg = "bad trailing pad byte"; |
---|
2051 | n/a | goto error; |
---|
2052 | n/a | } |
---|
2053 | n/a | } |
---|
2054 | n/a | |
---|
2055 | n/a | return; |
---|
2056 | n/a | |
---|
2057 | n/a | error: |
---|
2058 | n/a | _PyObject_DebugDumpAddress(p); |
---|
2059 | n/a | Py_FatalError(msg); |
---|
2060 | n/a | } |
---|
2061 | n/a | |
---|
2062 | n/a | /* Display info to stderr about the memory block at p. */ |
---|
2063 | n/a | static void |
---|
2064 | n/a | _PyObject_DebugDumpAddress(const void *p) |
---|
2065 | n/a | { |
---|
2066 | n/a | const uint8_t *q = (const uint8_t *)p; |
---|
2067 | n/a | const uint8_t *tail; |
---|
2068 | n/a | size_t nbytes, serial; |
---|
2069 | n/a | int i; |
---|
2070 | n/a | int ok; |
---|
2071 | n/a | char id; |
---|
2072 | n/a | |
---|
2073 | n/a | fprintf(stderr, "Debug memory block at address p=%p:", p); |
---|
2074 | n/a | if (p == NULL) { |
---|
2075 | n/a | fprintf(stderr, "\n"); |
---|
2076 | n/a | return; |
---|
2077 | n/a | } |
---|
2078 | n/a | id = (char)q[-SST]; |
---|
2079 | n/a | fprintf(stderr, " API '%c'\n", id); |
---|
2080 | n/a | |
---|
2081 | n/a | nbytes = read_size_t(q - 2*SST); |
---|
2082 | n/a | fprintf(stderr, " %" PY_FORMAT_SIZE_T "u bytes originally " |
---|
2083 | n/a | "requested\n", nbytes); |
---|
2084 | n/a | |
---|
2085 | n/a | /* In case this is nuts, check the leading pad bytes first. */ |
---|
2086 | n/a | fprintf(stderr, " The %d pad bytes at p-%d are ", SST-1, SST-1); |
---|
2087 | n/a | ok = 1; |
---|
2088 | n/a | for (i = 1; i <= SST-1; ++i) { |
---|
2089 | n/a | if (*(q-i) != FORBIDDENBYTE) { |
---|
2090 | n/a | ok = 0; |
---|
2091 | n/a | break; |
---|
2092 | n/a | } |
---|
2093 | n/a | } |
---|
2094 | n/a | if (ok) |
---|
2095 | n/a | fputs("FORBIDDENBYTE, as expected.\n", stderr); |
---|
2096 | n/a | else { |
---|
2097 | n/a | fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n", |
---|
2098 | n/a | FORBIDDENBYTE); |
---|
2099 | n/a | for (i = SST-1; i >= 1; --i) { |
---|
2100 | n/a | const uint8_t byte = *(q-i); |
---|
2101 | n/a | fprintf(stderr, " at p-%d: 0x%02x", i, byte); |
---|
2102 | n/a | if (byte != FORBIDDENBYTE) |
---|
2103 | n/a | fputs(" *** OUCH", stderr); |
---|
2104 | n/a | fputc('\n', stderr); |
---|
2105 | n/a | } |
---|
2106 | n/a | |
---|
2107 | n/a | fputs(" Because memory is corrupted at the start, the " |
---|
2108 | n/a | "count of bytes requested\n" |
---|
2109 | n/a | " may be bogus, and checking the trailing pad " |
---|
2110 | n/a | "bytes may segfault.\n", stderr); |
---|
2111 | n/a | } |
---|
2112 | n/a | |
---|
2113 | n/a | tail = q + nbytes; |
---|
2114 | n/a | fprintf(stderr, " The %d pad bytes at tail=%p are ", SST, tail); |
---|
2115 | n/a | ok = 1; |
---|
2116 | n/a | for (i = 0; i < SST; ++i) { |
---|
2117 | n/a | if (tail[i] != FORBIDDENBYTE) { |
---|
2118 | n/a | ok = 0; |
---|
2119 | n/a | break; |
---|
2120 | n/a | } |
---|
2121 | n/a | } |
---|
2122 | n/a | if (ok) |
---|
2123 | n/a | fputs("FORBIDDENBYTE, as expected.\n", stderr); |
---|
2124 | n/a | else { |
---|
2125 | n/a | fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n", |
---|
2126 | n/a | FORBIDDENBYTE); |
---|
2127 | n/a | for (i = 0; i < SST; ++i) { |
---|
2128 | n/a | const uint8_t byte = tail[i]; |
---|
2129 | n/a | fprintf(stderr, " at tail+%d: 0x%02x", |
---|
2130 | n/a | i, byte); |
---|
2131 | n/a | if (byte != FORBIDDENBYTE) |
---|
2132 | n/a | fputs(" *** OUCH", stderr); |
---|
2133 | n/a | fputc('\n', stderr); |
---|
2134 | n/a | } |
---|
2135 | n/a | } |
---|
2136 | n/a | |
---|
2137 | n/a | serial = read_size_t(tail + SST); |
---|
2138 | n/a | fprintf(stderr, " The block was made by call #%" PY_FORMAT_SIZE_T |
---|
2139 | n/a | "u to debug malloc/realloc.\n", serial); |
---|
2140 | n/a | |
---|
2141 | n/a | if (nbytes > 0) { |
---|
2142 | n/a | i = 0; |
---|
2143 | n/a | fputs(" Data at p:", stderr); |
---|
2144 | n/a | /* print up to 8 bytes at the start */ |
---|
2145 | n/a | while (q < tail && i < 8) { |
---|
2146 | n/a | fprintf(stderr, " %02x", *q); |
---|
2147 | n/a | ++i; |
---|
2148 | n/a | ++q; |
---|
2149 | n/a | } |
---|
2150 | n/a | /* and up to 8 at the end */ |
---|
2151 | n/a | if (q < tail) { |
---|
2152 | n/a | if (tail - q > 8) { |
---|
2153 | n/a | fputs(" ...", stderr); |
---|
2154 | n/a | q = tail - 8; |
---|
2155 | n/a | } |
---|
2156 | n/a | while (q < tail) { |
---|
2157 | n/a | fprintf(stderr, " %02x", *q); |
---|
2158 | n/a | ++q; |
---|
2159 | n/a | } |
---|
2160 | n/a | } |
---|
2161 | n/a | fputc('\n', stderr); |
---|
2162 | n/a | } |
---|
2163 | n/a | fputc('\n', stderr); |
---|
2164 | n/a | |
---|
2165 | n/a | fflush(stderr); |
---|
2166 | n/a | _PyMem_DumpTraceback(fileno(stderr), p); |
---|
2167 | n/a | } |
---|
2168 | n/a | |
---|
2169 | n/a | |
---|
2170 | n/a | static size_t |
---|
2171 | n/a | printone(FILE *out, const char* msg, size_t value) |
---|
2172 | n/a | { |
---|
2173 | n/a | int i, k; |
---|
2174 | n/a | char buf[100]; |
---|
2175 | n/a | size_t origvalue = value; |
---|
2176 | n/a | |
---|
2177 | n/a | fputs(msg, out); |
---|
2178 | n/a | for (i = (int)strlen(msg); i < 35; ++i) |
---|
2179 | n/a | fputc(' ', out); |
---|
2180 | n/a | fputc('=', out); |
---|
2181 | n/a | |
---|
2182 | n/a | /* Write the value with commas. */ |
---|
2183 | n/a | i = 22; |
---|
2184 | n/a | buf[i--] = '\0'; |
---|
2185 | n/a | buf[i--] = '\n'; |
---|
2186 | n/a | k = 3; |
---|
2187 | n/a | do { |
---|
2188 | n/a | size_t nextvalue = value / 10; |
---|
2189 | n/a | unsigned int digit = (unsigned int)(value - nextvalue * 10); |
---|
2190 | n/a | value = nextvalue; |
---|
2191 | n/a | buf[i--] = (char)(digit + '0'); |
---|
2192 | n/a | --k; |
---|
2193 | n/a | if (k == 0 && value && i >= 0) { |
---|
2194 | n/a | k = 3; |
---|
2195 | n/a | buf[i--] = ','; |
---|
2196 | n/a | } |
---|
2197 | n/a | } while (value && i >= 0); |
---|
2198 | n/a | |
---|
2199 | n/a | while (i >= 0) |
---|
2200 | n/a | buf[i--] = ' '; |
---|
2201 | n/a | fputs(buf, out); |
---|
2202 | n/a | |
---|
2203 | n/a | return origvalue; |
---|
2204 | n/a | } |
---|
2205 | n/a | |
---|
2206 | n/a | void |
---|
2207 | n/a | _PyDebugAllocatorStats(FILE *out, |
---|
2208 | n/a | const char *block_name, int num_blocks, size_t sizeof_block) |
---|
2209 | n/a | { |
---|
2210 | n/a | char buf1[128]; |
---|
2211 | n/a | char buf2[128]; |
---|
2212 | n/a | PyOS_snprintf(buf1, sizeof(buf1), |
---|
2213 | n/a | "%d %ss * %" PY_FORMAT_SIZE_T "d bytes each", |
---|
2214 | n/a | num_blocks, block_name, sizeof_block); |
---|
2215 | n/a | PyOS_snprintf(buf2, sizeof(buf2), |
---|
2216 | n/a | "%48s ", buf1); |
---|
2217 | n/a | (void)printone(out, buf2, num_blocks * sizeof_block); |
---|
2218 | n/a | } |
---|
2219 | n/a | |
---|
2220 | n/a | |
---|
2221 | n/a | #ifdef WITH_PYMALLOC |
---|
2222 | n/a | |
---|
2223 | n/a | #ifdef Py_DEBUG |
---|
2224 | n/a | /* Is target in the list? The list is traversed via the nextpool pointers. |
---|
2225 | n/a | * The list may be NULL-terminated, or circular. Return 1 if target is in |
---|
2226 | n/a | * list, else 0. |
---|
2227 | n/a | */ |
---|
2228 | n/a | static int |
---|
2229 | n/a | pool_is_in_list(const poolp target, poolp list) |
---|
2230 | n/a | { |
---|
2231 | n/a | poolp origlist = list; |
---|
2232 | n/a | assert(target != NULL); |
---|
2233 | n/a | if (list == NULL) |
---|
2234 | n/a | return 0; |
---|
2235 | n/a | do { |
---|
2236 | n/a | if (target == list) |
---|
2237 | n/a | return 1; |
---|
2238 | n/a | list = list->nextpool; |
---|
2239 | n/a | } while (list != NULL && list != origlist); |
---|
2240 | n/a | return 0; |
---|
2241 | n/a | } |
---|
2242 | n/a | #endif |
---|
2243 | n/a | |
---|
2244 | n/a | /* Print summary info to "out" about the state of pymalloc's structures. |
---|
2245 | n/a | * In Py_DEBUG mode, also perform some expensive internal consistency |
---|
2246 | n/a | * checks. |
---|
2247 | n/a | */ |
---|
2248 | n/a | void |
---|
2249 | n/a | _PyObject_DebugMallocStats(FILE *out) |
---|
2250 | n/a | { |
---|
2251 | n/a | uint i; |
---|
2252 | n/a | const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT; |
---|
2253 | n/a | /* # of pools, allocated blocks, and free blocks per class index */ |
---|
2254 | n/a | size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; |
---|
2255 | n/a | size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; |
---|
2256 | n/a | size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; |
---|
2257 | n/a | /* total # of allocated bytes in used and full pools */ |
---|
2258 | n/a | size_t allocated_bytes = 0; |
---|
2259 | n/a | /* total # of available bytes in used pools */ |
---|
2260 | n/a | size_t available_bytes = 0; |
---|
2261 | n/a | /* # of free pools + pools not yet carved out of current arena */ |
---|
2262 | n/a | uint numfreepools = 0; |
---|
2263 | n/a | /* # of bytes for arena alignment padding */ |
---|
2264 | n/a | size_t arena_alignment = 0; |
---|
2265 | n/a | /* # of bytes in used and full pools used for pool_headers */ |
---|
2266 | n/a | size_t pool_header_bytes = 0; |
---|
2267 | n/a | /* # of bytes in used and full pools wasted due to quantization, |
---|
2268 | n/a | * i.e. the necessarily leftover space at the ends of used and |
---|
2269 | n/a | * full pools. |
---|
2270 | n/a | */ |
---|
2271 | n/a | size_t quantization = 0; |
---|
2272 | n/a | /* # of arenas actually allocated. */ |
---|
2273 | n/a | size_t narenas = 0; |
---|
2274 | n/a | /* running total -- should equal narenas * ARENA_SIZE */ |
---|
2275 | n/a | size_t total; |
---|
2276 | n/a | char buf[128]; |
---|
2277 | n/a | |
---|
2278 | n/a | fprintf(out, "Small block threshold = %d, in %u size classes.\n", |
---|
2279 | n/a | SMALL_REQUEST_THRESHOLD, numclasses); |
---|
2280 | n/a | |
---|
2281 | n/a | for (i = 0; i < numclasses; ++i) |
---|
2282 | n/a | numpools[i] = numblocks[i] = numfreeblocks[i] = 0; |
---|
2283 | n/a | |
---|
2284 | n/a | /* Because full pools aren't linked to from anything, it's easiest |
---|
2285 | n/a | * to march over all the arenas. If we're lucky, most of the memory |
---|
2286 | n/a | * will be living in full pools -- would be a shame to miss them. |
---|
2287 | n/a | */ |
---|
2288 | n/a | for (i = 0; i < maxarenas; ++i) { |
---|
2289 | n/a | uint j; |
---|
2290 | n/a | uintptr_t base = arenas[i].address; |
---|
2291 | n/a | |
---|
2292 | n/a | /* Skip arenas which are not allocated. */ |
---|
2293 | n/a | if (arenas[i].address == (uintptr_t)NULL) |
---|
2294 | n/a | continue; |
---|
2295 | n/a | narenas += 1; |
---|
2296 | n/a | |
---|
2297 | n/a | numfreepools += arenas[i].nfreepools; |
---|
2298 | n/a | |
---|
2299 | n/a | /* round up to pool alignment */ |
---|
2300 | n/a | if (base & (uintptr_t)POOL_SIZE_MASK) { |
---|
2301 | n/a | arena_alignment += POOL_SIZE; |
---|
2302 | n/a | base &= ~(uintptr_t)POOL_SIZE_MASK; |
---|
2303 | n/a | base += POOL_SIZE; |
---|
2304 | n/a | } |
---|
2305 | n/a | |
---|
2306 | n/a | /* visit every pool in the arena */ |
---|
2307 | n/a | assert(base <= (uintptr_t) arenas[i].pool_address); |
---|
2308 | n/a | for (j = 0; base < (uintptr_t) arenas[i].pool_address; |
---|
2309 | n/a | ++j, base += POOL_SIZE) { |
---|
2310 | n/a | poolp p = (poolp)base; |
---|
2311 | n/a | const uint sz = p->szidx; |
---|
2312 | n/a | uint freeblocks; |
---|
2313 | n/a | |
---|
2314 | n/a | if (p->ref.count == 0) { |
---|
2315 | n/a | /* currently unused */ |
---|
2316 | n/a | #ifdef Py_DEBUG |
---|
2317 | n/a | assert(pool_is_in_list(p, arenas[i].freepools)); |
---|
2318 | n/a | #endif |
---|
2319 | n/a | continue; |
---|
2320 | n/a | } |
---|
2321 | n/a | ++numpools[sz]; |
---|
2322 | n/a | numblocks[sz] += p->ref.count; |
---|
2323 | n/a | freeblocks = NUMBLOCKS(sz) - p->ref.count; |
---|
2324 | n/a | numfreeblocks[sz] += freeblocks; |
---|
2325 | n/a | #ifdef Py_DEBUG |
---|
2326 | n/a | if (freeblocks > 0) |
---|
2327 | n/a | assert(pool_is_in_list(p, usedpools[sz + sz])); |
---|
2328 | n/a | #endif |
---|
2329 | n/a | } |
---|
2330 | n/a | } |
---|
2331 | n/a | assert(narenas == narenas_currently_allocated); |
---|
2332 | n/a | |
---|
2333 | n/a | fputc('\n', out); |
---|
2334 | n/a | fputs("class size num pools blocks in use avail blocks\n" |
---|
2335 | n/a | "----- ---- --------- ------------- ------------\n", |
---|
2336 | n/a | out); |
---|
2337 | n/a | |
---|
2338 | n/a | for (i = 0; i < numclasses; ++i) { |
---|
2339 | n/a | size_t p = numpools[i]; |
---|
2340 | n/a | size_t b = numblocks[i]; |
---|
2341 | n/a | size_t f = numfreeblocks[i]; |
---|
2342 | n/a | uint size = INDEX2SIZE(i); |
---|
2343 | n/a | if (p == 0) { |
---|
2344 | n/a | assert(b == 0 && f == 0); |
---|
2345 | n/a | continue; |
---|
2346 | n/a | } |
---|
2347 | n/a | fprintf(out, "%5u %6u " |
---|
2348 | n/a | "%11" PY_FORMAT_SIZE_T "u " |
---|
2349 | n/a | "%15" PY_FORMAT_SIZE_T "u " |
---|
2350 | n/a | "%13" PY_FORMAT_SIZE_T "u\n", |
---|
2351 | n/a | i, size, p, b, f); |
---|
2352 | n/a | allocated_bytes += b * size; |
---|
2353 | n/a | available_bytes += f * size; |
---|
2354 | n/a | pool_header_bytes += p * POOL_OVERHEAD; |
---|
2355 | n/a | quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size); |
---|
2356 | n/a | } |
---|
2357 | n/a | fputc('\n', out); |
---|
2358 | n/a | if (_PyMem_DebugEnabled()) |
---|
2359 | n/a | (void)printone(out, "# times object malloc called", serialno); |
---|
2360 | n/a | (void)printone(out, "# arenas allocated total", ntimes_arena_allocated); |
---|
2361 | n/a | (void)printone(out, "# arenas reclaimed", ntimes_arena_allocated - narenas); |
---|
2362 | n/a | (void)printone(out, "# arenas highwater mark", narenas_highwater); |
---|
2363 | n/a | (void)printone(out, "# arenas allocated current", narenas); |
---|
2364 | n/a | |
---|
2365 | n/a | PyOS_snprintf(buf, sizeof(buf), |
---|
2366 | n/a | "%" PY_FORMAT_SIZE_T "u arenas * %d bytes/arena", |
---|
2367 | n/a | narenas, ARENA_SIZE); |
---|
2368 | n/a | (void)printone(out, buf, narenas * ARENA_SIZE); |
---|
2369 | n/a | |
---|
2370 | n/a | fputc('\n', out); |
---|
2371 | n/a | |
---|
2372 | n/a | total = printone(out, "# bytes in allocated blocks", allocated_bytes); |
---|
2373 | n/a | total += printone(out, "# bytes in available blocks", available_bytes); |
---|
2374 | n/a | |
---|
2375 | n/a | PyOS_snprintf(buf, sizeof(buf), |
---|
2376 | n/a | "%u unused pools * %d bytes", numfreepools, POOL_SIZE); |
---|
2377 | n/a | total += printone(out, buf, (size_t)numfreepools * POOL_SIZE); |
---|
2378 | n/a | |
---|
2379 | n/a | total += printone(out, "# bytes lost to pool headers", pool_header_bytes); |
---|
2380 | n/a | total += printone(out, "# bytes lost to quantization", quantization); |
---|
2381 | n/a | total += printone(out, "# bytes lost to arena alignment", arena_alignment); |
---|
2382 | n/a | (void)printone(out, "Total", total); |
---|
2383 | n/a | } |
---|
2384 | n/a | |
---|
2385 | n/a | #endif /* #ifdef WITH_PYMALLOC */ |
---|