1 | n/a | /* trees.c -- output deflated data using Huffman coding |
---|
2 | n/a | * Copyright (C) 1995-2017 Jean-loup Gailly |
---|
3 | n/a | * detect_data_type() function provided freely by Cosmin Truta, 2006 |
---|
4 | n/a | * For conditions of distribution and use, see copyright notice in zlib.h |
---|
5 | n/a | */ |
---|
6 | n/a | |
---|
7 | n/a | /* |
---|
8 | n/a | * ALGORITHM |
---|
9 | n/a | * |
---|
10 | n/a | * The "deflation" process uses several Huffman trees. The more |
---|
11 | n/a | * common source values are represented by shorter bit sequences. |
---|
12 | n/a | * |
---|
13 | n/a | * Each code tree is stored in a compressed form which is itself |
---|
14 | n/a | * a Huffman encoding of the lengths of all the code strings (in |
---|
15 | n/a | * ascending order by source values). The actual code strings are |
---|
16 | n/a | * reconstructed from the lengths in the inflate process, as described |
---|
17 | n/a | * in the deflate specification. |
---|
18 | n/a | * |
---|
19 | n/a | * REFERENCES |
---|
20 | n/a | * |
---|
21 | n/a | * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". |
---|
22 | n/a | * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc |
---|
23 | n/a | * |
---|
24 | n/a | * Storer, James A. |
---|
25 | n/a | * Data Compression: Methods and Theory, pp. 49-50. |
---|
26 | n/a | * Computer Science Press, 1988. ISBN 0-7167-8156-5. |
---|
27 | n/a | * |
---|
28 | n/a | * Sedgewick, R. |
---|
29 | n/a | * Algorithms, p290. |
---|
30 | n/a | * Addison-Wesley, 1983. ISBN 0-201-06672-6. |
---|
31 | n/a | */ |
---|
32 | n/a | |
---|
33 | n/a | /* @(#) $Id$ */ |
---|
34 | n/a | |
---|
35 | n/a | /* #define GEN_TREES_H */ |
---|
36 | n/a | |
---|
37 | n/a | #include "deflate.h" |
---|
38 | n/a | |
---|
39 | n/a | #ifdef ZLIB_DEBUG |
---|
40 | n/a | # include <ctype.h> |
---|
41 | n/a | #endif |
---|
42 | n/a | |
---|
43 | n/a | /* =========================================================================== |
---|
44 | n/a | * Constants |
---|
45 | n/a | */ |
---|
46 | n/a | |
---|
47 | n/a | #define MAX_BL_BITS 7 |
---|
48 | n/a | /* Bit length codes must not exceed MAX_BL_BITS bits */ |
---|
49 | n/a | |
---|
50 | n/a | #define END_BLOCK 256 |
---|
51 | n/a | /* end of block literal code */ |
---|
52 | n/a | |
---|
53 | n/a | #define REP_3_6 16 |
---|
54 | n/a | /* repeat previous bit length 3-6 times (2 bits of repeat count) */ |
---|
55 | n/a | |
---|
56 | n/a | #define REPZ_3_10 17 |
---|
57 | n/a | /* repeat a zero length 3-10 times (3 bits of repeat count) */ |
---|
58 | n/a | |
---|
59 | n/a | #define REPZ_11_138 18 |
---|
60 | n/a | /* repeat a zero length 11-138 times (7 bits of repeat count) */ |
---|
61 | n/a | |
---|
62 | n/a | local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ |
---|
63 | n/a | = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; |
---|
64 | n/a | |
---|
65 | n/a | local const int extra_dbits[D_CODES] /* extra bits for each distance code */ |
---|
66 | n/a | = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; |
---|
67 | n/a | |
---|
68 | n/a | local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ |
---|
69 | n/a | = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; |
---|
70 | n/a | |
---|
71 | n/a | local const uch bl_order[BL_CODES] |
---|
72 | n/a | = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; |
---|
73 | n/a | /* The lengths of the bit length codes are sent in order of decreasing |
---|
74 | n/a | * probability, to avoid transmitting the lengths for unused bit length codes. |
---|
75 | n/a | */ |
---|
76 | n/a | |
---|
77 | n/a | /* =========================================================================== |
---|
78 | n/a | * Local data. These are initialized only once. |
---|
79 | n/a | */ |
---|
80 | n/a | |
---|
81 | n/a | #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ |
---|
82 | n/a | |
---|
83 | n/a | #if defined(GEN_TREES_H) || !defined(STDC) |
---|
84 | n/a | /* non ANSI compilers may not accept trees.h */ |
---|
85 | n/a | |
---|
86 | n/a | local ct_data static_ltree[L_CODES+2]; |
---|
87 | n/a | /* The static literal tree. Since the bit lengths are imposed, there is no |
---|
88 | n/a | * need for the L_CODES extra codes used during heap construction. However |
---|
89 | n/a | * The codes 286 and 287 are needed to build a canonical tree (see _tr_init |
---|
90 | n/a | * below). |
---|
91 | n/a | */ |
---|
92 | n/a | |
---|
93 | n/a | local ct_data static_dtree[D_CODES]; |
---|
94 | n/a | /* The static distance tree. (Actually a trivial tree since all codes use |
---|
95 | n/a | * 5 bits.) |
---|
96 | n/a | */ |
---|
97 | n/a | |
---|
98 | n/a | uch _dist_code[DIST_CODE_LEN]; |
---|
99 | n/a | /* Distance codes. The first 256 values correspond to the distances |
---|
100 | n/a | * 3 .. 258, the last 256 values correspond to the top 8 bits of |
---|
101 | n/a | * the 15 bit distances. |
---|
102 | n/a | */ |
---|
103 | n/a | |
---|
104 | n/a | uch _length_code[MAX_MATCH-MIN_MATCH+1]; |
---|
105 | n/a | /* length code for each normalized match length (0 == MIN_MATCH) */ |
---|
106 | n/a | |
---|
107 | n/a | local int base_length[LENGTH_CODES]; |
---|
108 | n/a | /* First normalized length for each code (0 = MIN_MATCH) */ |
---|
109 | n/a | |
---|
110 | n/a | local int base_dist[D_CODES]; |
---|
111 | n/a | /* First normalized distance for each code (0 = distance of 1) */ |
---|
112 | n/a | |
---|
113 | n/a | #else |
---|
114 | n/a | # include "trees.h" |
---|
115 | n/a | #endif /* GEN_TREES_H */ |
---|
116 | n/a | |
---|
117 | n/a | struct static_tree_desc_s { |
---|
118 | n/a | const ct_data *static_tree; /* static tree or NULL */ |
---|
119 | n/a | const intf *extra_bits; /* extra bits for each code or NULL */ |
---|
120 | n/a | int extra_base; /* base index for extra_bits */ |
---|
121 | n/a | int elems; /* max number of elements in the tree */ |
---|
122 | n/a | int max_length; /* max bit length for the codes */ |
---|
123 | n/a | }; |
---|
124 | n/a | |
---|
125 | n/a | local const static_tree_desc static_l_desc = |
---|
126 | n/a | {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; |
---|
127 | n/a | |
---|
128 | n/a | local const static_tree_desc static_d_desc = |
---|
129 | n/a | {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; |
---|
130 | n/a | |
---|
131 | n/a | local const static_tree_desc static_bl_desc = |
---|
132 | n/a | {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; |
---|
133 | n/a | |
---|
134 | n/a | /* =========================================================================== |
---|
135 | n/a | * Local (static) routines in this file. |
---|
136 | n/a | */ |
---|
137 | n/a | |
---|
138 | n/a | local void tr_static_init OF((void)); |
---|
139 | n/a | local void init_block OF((deflate_state *s)); |
---|
140 | n/a | local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); |
---|
141 | n/a | local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); |
---|
142 | n/a | local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); |
---|
143 | n/a | local void build_tree OF((deflate_state *s, tree_desc *desc)); |
---|
144 | n/a | local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); |
---|
145 | n/a | local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); |
---|
146 | n/a | local int build_bl_tree OF((deflate_state *s)); |
---|
147 | n/a | local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, |
---|
148 | n/a | int blcodes)); |
---|
149 | n/a | local void compress_block OF((deflate_state *s, const ct_data *ltree, |
---|
150 | n/a | const ct_data *dtree)); |
---|
151 | n/a | local int detect_data_type OF((deflate_state *s)); |
---|
152 | n/a | local unsigned bi_reverse OF((unsigned value, int length)); |
---|
153 | n/a | local void bi_windup OF((deflate_state *s)); |
---|
154 | n/a | local void bi_flush OF((deflate_state *s)); |
---|
155 | n/a | |
---|
156 | n/a | #ifdef GEN_TREES_H |
---|
157 | n/a | local void gen_trees_header OF((void)); |
---|
158 | n/a | #endif |
---|
159 | n/a | |
---|
160 | n/a | #ifndef ZLIB_DEBUG |
---|
161 | n/a | # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) |
---|
162 | n/a | /* Send a code of the given tree. c and tree must not have side effects */ |
---|
163 | n/a | |
---|
164 | n/a | #else /* !ZLIB_DEBUG */ |
---|
165 | n/a | # define send_code(s, c, tree) \ |
---|
166 | n/a | { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ |
---|
167 | n/a | send_bits(s, tree[c].Code, tree[c].Len); } |
---|
168 | n/a | #endif |
---|
169 | n/a | |
---|
170 | n/a | /* =========================================================================== |
---|
171 | n/a | * Output a short LSB first on the stream. |
---|
172 | n/a | * IN assertion: there is enough room in pendingBuf. |
---|
173 | n/a | */ |
---|
174 | n/a | #define put_short(s, w) { \ |
---|
175 | n/a | put_byte(s, (uch)((w) & 0xff)); \ |
---|
176 | n/a | put_byte(s, (uch)((ush)(w) >> 8)); \ |
---|
177 | n/a | } |
---|
178 | n/a | |
---|
179 | n/a | /* =========================================================================== |
---|
180 | n/a | * Send a value on a given number of bits. |
---|
181 | n/a | * IN assertion: length <= 16 and value fits in length bits. |
---|
182 | n/a | */ |
---|
183 | n/a | #ifdef ZLIB_DEBUG |
---|
184 | n/a | local void send_bits OF((deflate_state *s, int value, int length)); |
---|
185 | n/a | |
---|
186 | n/a | local void send_bits(s, value, length) |
---|
187 | n/a | deflate_state *s; |
---|
188 | n/a | int value; /* value to send */ |
---|
189 | n/a | int length; /* number of bits */ |
---|
190 | n/a | { |
---|
191 | n/a | Tracevv((stderr," l %2d v %4x ", length, value)); |
---|
192 | n/a | Assert(length > 0 && length <= 15, "invalid length"); |
---|
193 | n/a | s->bits_sent += (ulg)length; |
---|
194 | n/a | |
---|
195 | n/a | /* If not enough room in bi_buf, use (valid) bits from bi_buf and |
---|
196 | n/a | * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) |
---|
197 | n/a | * unused bits in value. |
---|
198 | n/a | */ |
---|
199 | n/a | if (s->bi_valid > (int)Buf_size - length) { |
---|
200 | n/a | s->bi_buf |= (ush)value << s->bi_valid; |
---|
201 | n/a | put_short(s, s->bi_buf); |
---|
202 | n/a | s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); |
---|
203 | n/a | s->bi_valid += length - Buf_size; |
---|
204 | n/a | } else { |
---|
205 | n/a | s->bi_buf |= (ush)value << s->bi_valid; |
---|
206 | n/a | s->bi_valid += length; |
---|
207 | n/a | } |
---|
208 | n/a | } |
---|
209 | n/a | #else /* !ZLIB_DEBUG */ |
---|
210 | n/a | |
---|
211 | n/a | #define send_bits(s, value, length) \ |
---|
212 | n/a | { int len = length;\ |
---|
213 | n/a | if (s->bi_valid > (int)Buf_size - len) {\ |
---|
214 | n/a | int val = (int)value;\ |
---|
215 | n/a | s->bi_buf |= (ush)val << s->bi_valid;\ |
---|
216 | n/a | put_short(s, s->bi_buf);\ |
---|
217 | n/a | s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ |
---|
218 | n/a | s->bi_valid += len - Buf_size;\ |
---|
219 | n/a | } else {\ |
---|
220 | n/a | s->bi_buf |= (ush)(value) << s->bi_valid;\ |
---|
221 | n/a | s->bi_valid += len;\ |
---|
222 | n/a | }\ |
---|
223 | n/a | } |
---|
224 | n/a | #endif /* ZLIB_DEBUG */ |
---|
225 | n/a | |
---|
226 | n/a | |
---|
227 | n/a | /* the arguments must not have side effects */ |
---|
228 | n/a | |
---|
229 | n/a | /* =========================================================================== |
---|
230 | n/a | * Initialize the various 'constant' tables. |
---|
231 | n/a | */ |
---|
232 | n/a | local void tr_static_init() |
---|
233 | n/a | { |
---|
234 | n/a | #if defined(GEN_TREES_H) || !defined(STDC) |
---|
235 | n/a | static int static_init_done = 0; |
---|
236 | n/a | int n; /* iterates over tree elements */ |
---|
237 | n/a | int bits; /* bit counter */ |
---|
238 | n/a | int length; /* length value */ |
---|
239 | n/a | int code; /* code value */ |
---|
240 | n/a | int dist; /* distance index */ |
---|
241 | n/a | ush bl_count[MAX_BITS+1]; |
---|
242 | n/a | /* number of codes at each bit length for an optimal tree */ |
---|
243 | n/a | |
---|
244 | n/a | if (static_init_done) return; |
---|
245 | n/a | |
---|
246 | n/a | /* For some embedded targets, global variables are not initialized: */ |
---|
247 | n/a | #ifdef NO_INIT_GLOBAL_POINTERS |
---|
248 | n/a | static_l_desc.static_tree = static_ltree; |
---|
249 | n/a | static_l_desc.extra_bits = extra_lbits; |
---|
250 | n/a | static_d_desc.static_tree = static_dtree; |
---|
251 | n/a | static_d_desc.extra_bits = extra_dbits; |
---|
252 | n/a | static_bl_desc.extra_bits = extra_blbits; |
---|
253 | n/a | #endif |
---|
254 | n/a | |
---|
255 | n/a | /* Initialize the mapping length (0..255) -> length code (0..28) */ |
---|
256 | n/a | length = 0; |
---|
257 | n/a | for (code = 0; code < LENGTH_CODES-1; code++) { |
---|
258 | n/a | base_length[code] = length; |
---|
259 | n/a | for (n = 0; n < (1<<extra_lbits[code]); n++) { |
---|
260 | n/a | _length_code[length++] = (uch)code; |
---|
261 | n/a | } |
---|
262 | n/a | } |
---|
263 | n/a | Assert (length == 256, "tr_static_init: length != 256"); |
---|
264 | n/a | /* Note that the length 255 (match length 258) can be represented |
---|
265 | n/a | * in two different ways: code 284 + 5 bits or code 285, so we |
---|
266 | n/a | * overwrite length_code[255] to use the best encoding: |
---|
267 | n/a | */ |
---|
268 | n/a | _length_code[length-1] = (uch)code; |
---|
269 | n/a | |
---|
270 | n/a | /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ |
---|
271 | n/a | dist = 0; |
---|
272 | n/a | for (code = 0 ; code < 16; code++) { |
---|
273 | n/a | base_dist[code] = dist; |
---|
274 | n/a | for (n = 0; n < (1<<extra_dbits[code]); n++) { |
---|
275 | n/a | _dist_code[dist++] = (uch)code; |
---|
276 | n/a | } |
---|
277 | n/a | } |
---|
278 | n/a | Assert (dist == 256, "tr_static_init: dist != 256"); |
---|
279 | n/a | dist >>= 7; /* from now on, all distances are divided by 128 */ |
---|
280 | n/a | for ( ; code < D_CODES; code++) { |
---|
281 | n/a | base_dist[code] = dist << 7; |
---|
282 | n/a | for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { |
---|
283 | n/a | _dist_code[256 + dist++] = (uch)code; |
---|
284 | n/a | } |
---|
285 | n/a | } |
---|
286 | n/a | Assert (dist == 256, "tr_static_init: 256+dist != 512"); |
---|
287 | n/a | |
---|
288 | n/a | /* Construct the codes of the static literal tree */ |
---|
289 | n/a | for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; |
---|
290 | n/a | n = 0; |
---|
291 | n/a | while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; |
---|
292 | n/a | while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; |
---|
293 | n/a | while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; |
---|
294 | n/a | while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; |
---|
295 | n/a | /* Codes 286 and 287 do not exist, but we must include them in the |
---|
296 | n/a | * tree construction to get a canonical Huffman tree (longest code |
---|
297 | n/a | * all ones) |
---|
298 | n/a | */ |
---|
299 | n/a | gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); |
---|
300 | n/a | |
---|
301 | n/a | /* The static distance tree is trivial: */ |
---|
302 | n/a | for (n = 0; n < D_CODES; n++) { |
---|
303 | n/a | static_dtree[n].Len = 5; |
---|
304 | n/a | static_dtree[n].Code = bi_reverse((unsigned)n, 5); |
---|
305 | n/a | } |
---|
306 | n/a | static_init_done = 1; |
---|
307 | n/a | |
---|
308 | n/a | # ifdef GEN_TREES_H |
---|
309 | n/a | gen_trees_header(); |
---|
310 | n/a | # endif |
---|
311 | n/a | #endif /* defined(GEN_TREES_H) || !defined(STDC) */ |
---|
312 | n/a | } |
---|
313 | n/a | |
---|
314 | n/a | /* =========================================================================== |
---|
315 | n/a | * Genererate the file trees.h describing the static trees. |
---|
316 | n/a | */ |
---|
317 | n/a | #ifdef GEN_TREES_H |
---|
318 | n/a | # ifndef ZLIB_DEBUG |
---|
319 | n/a | # include <stdio.h> |
---|
320 | n/a | # endif |
---|
321 | n/a | |
---|
322 | n/a | # define SEPARATOR(i, last, width) \ |
---|
323 | n/a | ((i) == (last)? "\n};\n\n" : \ |
---|
324 | n/a | ((i) % (width) == (width)-1 ? ",\n" : ", ")) |
---|
325 | n/a | |
---|
326 | n/a | void gen_trees_header() |
---|
327 | n/a | { |
---|
328 | n/a | FILE *header = fopen("trees.h", "w"); |
---|
329 | n/a | int i; |
---|
330 | n/a | |
---|
331 | n/a | Assert (header != NULL, "Can't open trees.h"); |
---|
332 | n/a | fprintf(header, |
---|
333 | n/a | "/* header created automatically with -DGEN_TREES_H */\n\n"); |
---|
334 | n/a | |
---|
335 | n/a | fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); |
---|
336 | n/a | for (i = 0; i < L_CODES+2; i++) { |
---|
337 | n/a | fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, |
---|
338 | n/a | static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); |
---|
339 | n/a | } |
---|
340 | n/a | |
---|
341 | n/a | fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); |
---|
342 | n/a | for (i = 0; i < D_CODES; i++) { |
---|
343 | n/a | fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, |
---|
344 | n/a | static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); |
---|
345 | n/a | } |
---|
346 | n/a | |
---|
347 | n/a | fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); |
---|
348 | n/a | for (i = 0; i < DIST_CODE_LEN; i++) { |
---|
349 | n/a | fprintf(header, "%2u%s", _dist_code[i], |
---|
350 | n/a | SEPARATOR(i, DIST_CODE_LEN-1, 20)); |
---|
351 | n/a | } |
---|
352 | n/a | |
---|
353 | n/a | fprintf(header, |
---|
354 | n/a | "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); |
---|
355 | n/a | for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { |
---|
356 | n/a | fprintf(header, "%2u%s", _length_code[i], |
---|
357 | n/a | SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); |
---|
358 | n/a | } |
---|
359 | n/a | |
---|
360 | n/a | fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); |
---|
361 | n/a | for (i = 0; i < LENGTH_CODES; i++) { |
---|
362 | n/a | fprintf(header, "%1u%s", base_length[i], |
---|
363 | n/a | SEPARATOR(i, LENGTH_CODES-1, 20)); |
---|
364 | n/a | } |
---|
365 | n/a | |
---|
366 | n/a | fprintf(header, "local const int base_dist[D_CODES] = {\n"); |
---|
367 | n/a | for (i = 0; i < D_CODES; i++) { |
---|
368 | n/a | fprintf(header, "%5u%s", base_dist[i], |
---|
369 | n/a | SEPARATOR(i, D_CODES-1, 10)); |
---|
370 | n/a | } |
---|
371 | n/a | |
---|
372 | n/a | fclose(header); |
---|
373 | n/a | } |
---|
374 | n/a | #endif /* GEN_TREES_H */ |
---|
375 | n/a | |
---|
376 | n/a | /* =========================================================================== |
---|
377 | n/a | * Initialize the tree data structures for a new zlib stream. |
---|
378 | n/a | */ |
---|
379 | n/a | void ZLIB_INTERNAL _tr_init(s) |
---|
380 | n/a | deflate_state *s; |
---|
381 | n/a | { |
---|
382 | n/a | tr_static_init(); |
---|
383 | n/a | |
---|
384 | n/a | s->l_desc.dyn_tree = s->dyn_ltree; |
---|
385 | n/a | s->l_desc.stat_desc = &static_l_desc; |
---|
386 | n/a | |
---|
387 | n/a | s->d_desc.dyn_tree = s->dyn_dtree; |
---|
388 | n/a | s->d_desc.stat_desc = &static_d_desc; |
---|
389 | n/a | |
---|
390 | n/a | s->bl_desc.dyn_tree = s->bl_tree; |
---|
391 | n/a | s->bl_desc.stat_desc = &static_bl_desc; |
---|
392 | n/a | |
---|
393 | n/a | s->bi_buf = 0; |
---|
394 | n/a | s->bi_valid = 0; |
---|
395 | n/a | #ifdef ZLIB_DEBUG |
---|
396 | n/a | s->compressed_len = 0L; |
---|
397 | n/a | s->bits_sent = 0L; |
---|
398 | n/a | #endif |
---|
399 | n/a | |
---|
400 | n/a | /* Initialize the first block of the first file: */ |
---|
401 | n/a | init_block(s); |
---|
402 | n/a | } |
---|
403 | n/a | |
---|
404 | n/a | /* =========================================================================== |
---|
405 | n/a | * Initialize a new block. |
---|
406 | n/a | */ |
---|
407 | n/a | local void init_block(s) |
---|
408 | n/a | deflate_state *s; |
---|
409 | n/a | { |
---|
410 | n/a | int n; /* iterates over tree elements */ |
---|
411 | n/a | |
---|
412 | n/a | /* Initialize the trees. */ |
---|
413 | n/a | for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; |
---|
414 | n/a | for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; |
---|
415 | n/a | for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; |
---|
416 | n/a | |
---|
417 | n/a | s->dyn_ltree[END_BLOCK].Freq = 1; |
---|
418 | n/a | s->opt_len = s->static_len = 0L; |
---|
419 | n/a | s->last_lit = s->matches = 0; |
---|
420 | n/a | } |
---|
421 | n/a | |
---|
422 | n/a | #define SMALLEST 1 |
---|
423 | n/a | /* Index within the heap array of least frequent node in the Huffman tree */ |
---|
424 | n/a | |
---|
425 | n/a | |
---|
426 | n/a | /* =========================================================================== |
---|
427 | n/a | * Remove the smallest element from the heap and recreate the heap with |
---|
428 | n/a | * one less element. Updates heap and heap_len. |
---|
429 | n/a | */ |
---|
430 | n/a | #define pqremove(s, tree, top) \ |
---|
431 | n/a | {\ |
---|
432 | n/a | top = s->heap[SMALLEST]; \ |
---|
433 | n/a | s->heap[SMALLEST] = s->heap[s->heap_len--]; \ |
---|
434 | n/a | pqdownheap(s, tree, SMALLEST); \ |
---|
435 | n/a | } |
---|
436 | n/a | |
---|
437 | n/a | /* =========================================================================== |
---|
438 | n/a | * Compares to subtrees, using the tree depth as tie breaker when |
---|
439 | n/a | * the subtrees have equal frequency. This minimizes the worst case length. |
---|
440 | n/a | */ |
---|
441 | n/a | #define smaller(tree, n, m, depth) \ |
---|
442 | n/a | (tree[n].Freq < tree[m].Freq || \ |
---|
443 | n/a | (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) |
---|
444 | n/a | |
---|
445 | n/a | /* =========================================================================== |
---|
446 | n/a | * Restore the heap property by moving down the tree starting at node k, |
---|
447 | n/a | * exchanging a node with the smallest of its two sons if necessary, stopping |
---|
448 | n/a | * when the heap property is re-established (each father smaller than its |
---|
449 | n/a | * two sons). |
---|
450 | n/a | */ |
---|
451 | n/a | local void pqdownheap(s, tree, k) |
---|
452 | n/a | deflate_state *s; |
---|
453 | n/a | ct_data *tree; /* the tree to restore */ |
---|
454 | n/a | int k; /* node to move down */ |
---|
455 | n/a | { |
---|
456 | n/a | int v = s->heap[k]; |
---|
457 | n/a | int j = k << 1; /* left son of k */ |
---|
458 | n/a | while (j <= s->heap_len) { |
---|
459 | n/a | /* Set j to the smallest of the two sons: */ |
---|
460 | n/a | if (j < s->heap_len && |
---|
461 | n/a | smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { |
---|
462 | n/a | j++; |
---|
463 | n/a | } |
---|
464 | n/a | /* Exit if v is smaller than both sons */ |
---|
465 | n/a | if (smaller(tree, v, s->heap[j], s->depth)) break; |
---|
466 | n/a | |
---|
467 | n/a | /* Exchange v with the smallest son */ |
---|
468 | n/a | s->heap[k] = s->heap[j]; k = j; |
---|
469 | n/a | |
---|
470 | n/a | /* And continue down the tree, setting j to the left son of k */ |
---|
471 | n/a | j <<= 1; |
---|
472 | n/a | } |
---|
473 | n/a | s->heap[k] = v; |
---|
474 | n/a | } |
---|
475 | n/a | |
---|
476 | n/a | /* =========================================================================== |
---|
477 | n/a | * Compute the optimal bit lengths for a tree and update the total bit length |
---|
478 | n/a | * for the current block. |
---|
479 | n/a | * IN assertion: the fields freq and dad are set, heap[heap_max] and |
---|
480 | n/a | * above are the tree nodes sorted by increasing frequency. |
---|
481 | n/a | * OUT assertions: the field len is set to the optimal bit length, the |
---|
482 | n/a | * array bl_count contains the frequencies for each bit length. |
---|
483 | n/a | * The length opt_len is updated; static_len is also updated if stree is |
---|
484 | n/a | * not null. |
---|
485 | n/a | */ |
---|
486 | n/a | local void gen_bitlen(s, desc) |
---|
487 | n/a | deflate_state *s; |
---|
488 | n/a | tree_desc *desc; /* the tree descriptor */ |
---|
489 | n/a | { |
---|
490 | n/a | ct_data *tree = desc->dyn_tree; |
---|
491 | n/a | int max_code = desc->max_code; |
---|
492 | n/a | const ct_data *stree = desc->stat_desc->static_tree; |
---|
493 | n/a | const intf *extra = desc->stat_desc->extra_bits; |
---|
494 | n/a | int base = desc->stat_desc->extra_base; |
---|
495 | n/a | int max_length = desc->stat_desc->max_length; |
---|
496 | n/a | int h; /* heap index */ |
---|
497 | n/a | int n, m; /* iterate over the tree elements */ |
---|
498 | n/a | int bits; /* bit length */ |
---|
499 | n/a | int xbits; /* extra bits */ |
---|
500 | n/a | ush f; /* frequency */ |
---|
501 | n/a | int overflow = 0; /* number of elements with bit length too large */ |
---|
502 | n/a | |
---|
503 | n/a | for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; |
---|
504 | n/a | |
---|
505 | n/a | /* In a first pass, compute the optimal bit lengths (which may |
---|
506 | n/a | * overflow in the case of the bit length tree). |
---|
507 | n/a | */ |
---|
508 | n/a | tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ |
---|
509 | n/a | |
---|
510 | n/a | for (h = s->heap_max+1; h < HEAP_SIZE; h++) { |
---|
511 | n/a | n = s->heap[h]; |
---|
512 | n/a | bits = tree[tree[n].Dad].Len + 1; |
---|
513 | n/a | if (bits > max_length) bits = max_length, overflow++; |
---|
514 | n/a | tree[n].Len = (ush)bits; |
---|
515 | n/a | /* We overwrite tree[n].Dad which is no longer needed */ |
---|
516 | n/a | |
---|
517 | n/a | if (n > max_code) continue; /* not a leaf node */ |
---|
518 | n/a | |
---|
519 | n/a | s->bl_count[bits]++; |
---|
520 | n/a | xbits = 0; |
---|
521 | n/a | if (n >= base) xbits = extra[n-base]; |
---|
522 | n/a | f = tree[n].Freq; |
---|
523 | n/a | s->opt_len += (ulg)f * (unsigned)(bits + xbits); |
---|
524 | n/a | if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits); |
---|
525 | n/a | } |
---|
526 | n/a | if (overflow == 0) return; |
---|
527 | n/a | |
---|
528 | n/a | Tracev((stderr,"\nbit length overflow\n")); |
---|
529 | n/a | /* This happens for example on obj2 and pic of the Calgary corpus */ |
---|
530 | n/a | |
---|
531 | n/a | /* Find the first bit length which could increase: */ |
---|
532 | n/a | do { |
---|
533 | n/a | bits = max_length-1; |
---|
534 | n/a | while (s->bl_count[bits] == 0) bits--; |
---|
535 | n/a | s->bl_count[bits]--; /* move one leaf down the tree */ |
---|
536 | n/a | s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ |
---|
537 | n/a | s->bl_count[max_length]--; |
---|
538 | n/a | /* The brother of the overflow item also moves one step up, |
---|
539 | n/a | * but this does not affect bl_count[max_length] |
---|
540 | n/a | */ |
---|
541 | n/a | overflow -= 2; |
---|
542 | n/a | } while (overflow > 0); |
---|
543 | n/a | |
---|
544 | n/a | /* Now recompute all bit lengths, scanning in increasing frequency. |
---|
545 | n/a | * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all |
---|
546 | n/a | * lengths instead of fixing only the wrong ones. This idea is taken |
---|
547 | n/a | * from 'ar' written by Haruhiko Okumura.) |
---|
548 | n/a | */ |
---|
549 | n/a | for (bits = max_length; bits != 0; bits--) { |
---|
550 | n/a | n = s->bl_count[bits]; |
---|
551 | n/a | while (n != 0) { |
---|
552 | n/a | m = s->heap[--h]; |
---|
553 | n/a | if (m > max_code) continue; |
---|
554 | n/a | if ((unsigned) tree[m].Len != (unsigned) bits) { |
---|
555 | n/a | Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); |
---|
556 | n/a | s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq; |
---|
557 | n/a | tree[m].Len = (ush)bits; |
---|
558 | n/a | } |
---|
559 | n/a | n--; |
---|
560 | n/a | } |
---|
561 | n/a | } |
---|
562 | n/a | } |
---|
563 | n/a | |
---|
564 | n/a | /* =========================================================================== |
---|
565 | n/a | * Generate the codes for a given tree and bit counts (which need not be |
---|
566 | n/a | * optimal). |
---|
567 | n/a | * IN assertion: the array bl_count contains the bit length statistics for |
---|
568 | n/a | * the given tree and the field len is set for all tree elements. |
---|
569 | n/a | * OUT assertion: the field code is set for all tree elements of non |
---|
570 | n/a | * zero code length. |
---|
571 | n/a | */ |
---|
572 | n/a | local void gen_codes (tree, max_code, bl_count) |
---|
573 | n/a | ct_data *tree; /* the tree to decorate */ |
---|
574 | n/a | int max_code; /* largest code with non zero frequency */ |
---|
575 | n/a | ushf *bl_count; /* number of codes at each bit length */ |
---|
576 | n/a | { |
---|
577 | n/a | ush next_code[MAX_BITS+1]; /* next code value for each bit length */ |
---|
578 | n/a | unsigned code = 0; /* running code value */ |
---|
579 | n/a | int bits; /* bit index */ |
---|
580 | n/a | int n; /* code index */ |
---|
581 | n/a | |
---|
582 | n/a | /* The distribution counts are first used to generate the code values |
---|
583 | n/a | * without bit reversal. |
---|
584 | n/a | */ |
---|
585 | n/a | for (bits = 1; bits <= MAX_BITS; bits++) { |
---|
586 | n/a | code = (code + bl_count[bits-1]) << 1; |
---|
587 | n/a | next_code[bits] = (ush)code; |
---|
588 | n/a | } |
---|
589 | n/a | /* Check that the bit counts in bl_count are consistent. The last code |
---|
590 | n/a | * must be all ones. |
---|
591 | n/a | */ |
---|
592 | n/a | Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, |
---|
593 | n/a | "inconsistent bit counts"); |
---|
594 | n/a | Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); |
---|
595 | n/a | |
---|
596 | n/a | for (n = 0; n <= max_code; n++) { |
---|
597 | n/a | int len = tree[n].Len; |
---|
598 | n/a | if (len == 0) continue; |
---|
599 | n/a | /* Now reverse the bits */ |
---|
600 | n/a | tree[n].Code = (ush)bi_reverse(next_code[len]++, len); |
---|
601 | n/a | |
---|
602 | n/a | Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", |
---|
603 | n/a | n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); |
---|
604 | n/a | } |
---|
605 | n/a | } |
---|
606 | n/a | |
---|
607 | n/a | /* =========================================================================== |
---|
608 | n/a | * Construct one Huffman tree and assigns the code bit strings and lengths. |
---|
609 | n/a | * Update the total bit length for the current block. |
---|
610 | n/a | * IN assertion: the field freq is set for all tree elements. |
---|
611 | n/a | * OUT assertions: the fields len and code are set to the optimal bit length |
---|
612 | n/a | * and corresponding code. The length opt_len is updated; static_len is |
---|
613 | n/a | * also updated if stree is not null. The field max_code is set. |
---|
614 | n/a | */ |
---|
615 | n/a | local void build_tree(s, desc) |
---|
616 | n/a | deflate_state *s; |
---|
617 | n/a | tree_desc *desc; /* the tree descriptor */ |
---|
618 | n/a | { |
---|
619 | n/a | ct_data *tree = desc->dyn_tree; |
---|
620 | n/a | const ct_data *stree = desc->stat_desc->static_tree; |
---|
621 | n/a | int elems = desc->stat_desc->elems; |
---|
622 | n/a | int n, m; /* iterate over heap elements */ |
---|
623 | n/a | int max_code = -1; /* largest code with non zero frequency */ |
---|
624 | n/a | int node; /* new node being created */ |
---|
625 | n/a | |
---|
626 | n/a | /* Construct the initial heap, with least frequent element in |
---|
627 | n/a | * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. |
---|
628 | n/a | * heap[0] is not used. |
---|
629 | n/a | */ |
---|
630 | n/a | s->heap_len = 0, s->heap_max = HEAP_SIZE; |
---|
631 | n/a | |
---|
632 | n/a | for (n = 0; n < elems; n++) { |
---|
633 | n/a | if (tree[n].Freq != 0) { |
---|
634 | n/a | s->heap[++(s->heap_len)] = max_code = n; |
---|
635 | n/a | s->depth[n] = 0; |
---|
636 | n/a | } else { |
---|
637 | n/a | tree[n].Len = 0; |
---|
638 | n/a | } |
---|
639 | n/a | } |
---|
640 | n/a | |
---|
641 | n/a | /* The pkzip format requires that at least one distance code exists, |
---|
642 | n/a | * and that at least one bit should be sent even if there is only one |
---|
643 | n/a | * possible code. So to avoid special checks later on we force at least |
---|
644 | n/a | * two codes of non zero frequency. |
---|
645 | n/a | */ |
---|
646 | n/a | while (s->heap_len < 2) { |
---|
647 | n/a | node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); |
---|
648 | n/a | tree[node].Freq = 1; |
---|
649 | n/a | s->depth[node] = 0; |
---|
650 | n/a | s->opt_len--; if (stree) s->static_len -= stree[node].Len; |
---|
651 | n/a | /* node is 0 or 1 so it does not have extra bits */ |
---|
652 | n/a | } |
---|
653 | n/a | desc->max_code = max_code; |
---|
654 | n/a | |
---|
655 | n/a | /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, |
---|
656 | n/a | * establish sub-heaps of increasing lengths: |
---|
657 | n/a | */ |
---|
658 | n/a | for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); |
---|
659 | n/a | |
---|
660 | n/a | /* Construct the Huffman tree by repeatedly combining the least two |
---|
661 | n/a | * frequent nodes. |
---|
662 | n/a | */ |
---|
663 | n/a | node = elems; /* next internal node of the tree */ |
---|
664 | n/a | do { |
---|
665 | n/a | pqremove(s, tree, n); /* n = node of least frequency */ |
---|
666 | n/a | m = s->heap[SMALLEST]; /* m = node of next least frequency */ |
---|
667 | n/a | |
---|
668 | n/a | s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ |
---|
669 | n/a | s->heap[--(s->heap_max)] = m; |
---|
670 | n/a | |
---|
671 | n/a | /* Create a new node father of n and m */ |
---|
672 | n/a | tree[node].Freq = tree[n].Freq + tree[m].Freq; |
---|
673 | n/a | s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? |
---|
674 | n/a | s->depth[n] : s->depth[m]) + 1); |
---|
675 | n/a | tree[n].Dad = tree[m].Dad = (ush)node; |
---|
676 | n/a | #ifdef DUMP_BL_TREE |
---|
677 | n/a | if (tree == s->bl_tree) { |
---|
678 | n/a | fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", |
---|
679 | n/a | node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); |
---|
680 | n/a | } |
---|
681 | n/a | #endif |
---|
682 | n/a | /* and insert the new node in the heap */ |
---|
683 | n/a | s->heap[SMALLEST] = node++; |
---|
684 | n/a | pqdownheap(s, tree, SMALLEST); |
---|
685 | n/a | |
---|
686 | n/a | } while (s->heap_len >= 2); |
---|
687 | n/a | |
---|
688 | n/a | s->heap[--(s->heap_max)] = s->heap[SMALLEST]; |
---|
689 | n/a | |
---|
690 | n/a | /* At this point, the fields freq and dad are set. We can now |
---|
691 | n/a | * generate the bit lengths. |
---|
692 | n/a | */ |
---|
693 | n/a | gen_bitlen(s, (tree_desc *)desc); |
---|
694 | n/a | |
---|
695 | n/a | /* The field len is now set, we can generate the bit codes */ |
---|
696 | n/a | gen_codes ((ct_data *)tree, max_code, s->bl_count); |
---|
697 | n/a | } |
---|
698 | n/a | |
---|
699 | n/a | /* =========================================================================== |
---|
700 | n/a | * Scan a literal or distance tree to determine the frequencies of the codes |
---|
701 | n/a | * in the bit length tree. |
---|
702 | n/a | */ |
---|
703 | n/a | local void scan_tree (s, tree, max_code) |
---|
704 | n/a | deflate_state *s; |
---|
705 | n/a | ct_data *tree; /* the tree to be scanned */ |
---|
706 | n/a | int max_code; /* and its largest code of non zero frequency */ |
---|
707 | n/a | { |
---|
708 | n/a | int n; /* iterates over all tree elements */ |
---|
709 | n/a | int prevlen = -1; /* last emitted length */ |
---|
710 | n/a | int curlen; /* length of current code */ |
---|
711 | n/a | int nextlen = tree[0].Len; /* length of next code */ |
---|
712 | n/a | int count = 0; /* repeat count of the current code */ |
---|
713 | n/a | int max_count = 7; /* max repeat count */ |
---|
714 | n/a | int min_count = 4; /* min repeat count */ |
---|
715 | n/a | |
---|
716 | n/a | if (nextlen == 0) max_count = 138, min_count = 3; |
---|
717 | n/a | tree[max_code+1].Len = (ush)0xffff; /* guard */ |
---|
718 | n/a | |
---|
719 | n/a | for (n = 0; n <= max_code; n++) { |
---|
720 | n/a | curlen = nextlen; nextlen = tree[n+1].Len; |
---|
721 | n/a | if (++count < max_count && curlen == nextlen) { |
---|
722 | n/a | continue; |
---|
723 | n/a | } else if (count < min_count) { |
---|
724 | n/a | s->bl_tree[curlen].Freq += count; |
---|
725 | n/a | } else if (curlen != 0) { |
---|
726 | n/a | if (curlen != prevlen) s->bl_tree[curlen].Freq++; |
---|
727 | n/a | s->bl_tree[REP_3_6].Freq++; |
---|
728 | n/a | } else if (count <= 10) { |
---|
729 | n/a | s->bl_tree[REPZ_3_10].Freq++; |
---|
730 | n/a | } else { |
---|
731 | n/a | s->bl_tree[REPZ_11_138].Freq++; |
---|
732 | n/a | } |
---|
733 | n/a | count = 0; prevlen = curlen; |
---|
734 | n/a | if (nextlen == 0) { |
---|
735 | n/a | max_count = 138, min_count = 3; |
---|
736 | n/a | } else if (curlen == nextlen) { |
---|
737 | n/a | max_count = 6, min_count = 3; |
---|
738 | n/a | } else { |
---|
739 | n/a | max_count = 7, min_count = 4; |
---|
740 | n/a | } |
---|
741 | n/a | } |
---|
742 | n/a | } |
---|
743 | n/a | |
---|
744 | n/a | /* =========================================================================== |
---|
745 | n/a | * Send a literal or distance tree in compressed form, using the codes in |
---|
746 | n/a | * bl_tree. |
---|
747 | n/a | */ |
---|
748 | n/a | local void send_tree (s, tree, max_code) |
---|
749 | n/a | deflate_state *s; |
---|
750 | n/a | ct_data *tree; /* the tree to be scanned */ |
---|
751 | n/a | int max_code; /* and its largest code of non zero frequency */ |
---|
752 | n/a | { |
---|
753 | n/a | int n; /* iterates over all tree elements */ |
---|
754 | n/a | int prevlen = -1; /* last emitted length */ |
---|
755 | n/a | int curlen; /* length of current code */ |
---|
756 | n/a | int nextlen = tree[0].Len; /* length of next code */ |
---|
757 | n/a | int count = 0; /* repeat count of the current code */ |
---|
758 | n/a | int max_count = 7; /* max repeat count */ |
---|
759 | n/a | int min_count = 4; /* min repeat count */ |
---|
760 | n/a | |
---|
761 | n/a | /* tree[max_code+1].Len = -1; */ /* guard already set */ |
---|
762 | n/a | if (nextlen == 0) max_count = 138, min_count = 3; |
---|
763 | n/a | |
---|
764 | n/a | for (n = 0; n <= max_code; n++) { |
---|
765 | n/a | curlen = nextlen; nextlen = tree[n+1].Len; |
---|
766 | n/a | if (++count < max_count && curlen == nextlen) { |
---|
767 | n/a | continue; |
---|
768 | n/a | } else if (count < min_count) { |
---|
769 | n/a | do { send_code(s, curlen, s->bl_tree); } while (--count != 0); |
---|
770 | n/a | |
---|
771 | n/a | } else if (curlen != 0) { |
---|
772 | n/a | if (curlen != prevlen) { |
---|
773 | n/a | send_code(s, curlen, s->bl_tree); count--; |
---|
774 | n/a | } |
---|
775 | n/a | Assert(count >= 3 && count <= 6, " 3_6?"); |
---|
776 | n/a | send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); |
---|
777 | n/a | |
---|
778 | n/a | } else if (count <= 10) { |
---|
779 | n/a | send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); |
---|
780 | n/a | |
---|
781 | n/a | } else { |
---|
782 | n/a | send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); |
---|
783 | n/a | } |
---|
784 | n/a | count = 0; prevlen = curlen; |
---|
785 | n/a | if (nextlen == 0) { |
---|
786 | n/a | max_count = 138, min_count = 3; |
---|
787 | n/a | } else if (curlen == nextlen) { |
---|
788 | n/a | max_count = 6, min_count = 3; |
---|
789 | n/a | } else { |
---|
790 | n/a | max_count = 7, min_count = 4; |
---|
791 | n/a | } |
---|
792 | n/a | } |
---|
793 | n/a | } |
---|
794 | n/a | |
---|
795 | n/a | /* =========================================================================== |
---|
796 | n/a | * Construct the Huffman tree for the bit lengths and return the index in |
---|
797 | n/a | * bl_order of the last bit length code to send. |
---|
798 | n/a | */ |
---|
799 | n/a | local int build_bl_tree(s) |
---|
800 | n/a | deflate_state *s; |
---|
801 | n/a | { |
---|
802 | n/a | int max_blindex; /* index of last bit length code of non zero freq */ |
---|
803 | n/a | |
---|
804 | n/a | /* Determine the bit length frequencies for literal and distance trees */ |
---|
805 | n/a | scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); |
---|
806 | n/a | scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); |
---|
807 | n/a | |
---|
808 | n/a | /* Build the bit length tree: */ |
---|
809 | n/a | build_tree(s, (tree_desc *)(&(s->bl_desc))); |
---|
810 | n/a | /* opt_len now includes the length of the tree representations, except |
---|
811 | n/a | * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. |
---|
812 | n/a | */ |
---|
813 | n/a | |
---|
814 | n/a | /* Determine the number of bit length codes to send. The pkzip format |
---|
815 | n/a | * requires that at least 4 bit length codes be sent. (appnote.txt says |
---|
816 | n/a | * 3 but the actual value used is 4.) |
---|
817 | n/a | */ |
---|
818 | n/a | for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { |
---|
819 | n/a | if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; |
---|
820 | n/a | } |
---|
821 | n/a | /* Update opt_len to include the bit length tree and counts */ |
---|
822 | n/a | s->opt_len += 3*((ulg)max_blindex+1) + 5+5+4; |
---|
823 | n/a | Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", |
---|
824 | n/a | s->opt_len, s->static_len)); |
---|
825 | n/a | |
---|
826 | n/a | return max_blindex; |
---|
827 | n/a | } |
---|
828 | n/a | |
---|
829 | n/a | /* =========================================================================== |
---|
830 | n/a | * Send the header for a block using dynamic Huffman trees: the counts, the |
---|
831 | n/a | * lengths of the bit length codes, the literal tree and the distance tree. |
---|
832 | n/a | * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. |
---|
833 | n/a | */ |
---|
834 | n/a | local void send_all_trees(s, lcodes, dcodes, blcodes) |
---|
835 | n/a | deflate_state *s; |
---|
836 | n/a | int lcodes, dcodes, blcodes; /* number of codes for each tree */ |
---|
837 | n/a | { |
---|
838 | n/a | int rank; /* index in bl_order */ |
---|
839 | n/a | |
---|
840 | n/a | Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); |
---|
841 | n/a | Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, |
---|
842 | n/a | "too many codes"); |
---|
843 | n/a | Tracev((stderr, "\nbl counts: ")); |
---|
844 | n/a | send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ |
---|
845 | n/a | send_bits(s, dcodes-1, 5); |
---|
846 | n/a | send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ |
---|
847 | n/a | for (rank = 0; rank < blcodes; rank++) { |
---|
848 | n/a | Tracev((stderr, "\nbl code %2d ", bl_order[rank])); |
---|
849 | n/a | send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); |
---|
850 | n/a | } |
---|
851 | n/a | Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); |
---|
852 | n/a | |
---|
853 | n/a | send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ |
---|
854 | n/a | Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); |
---|
855 | n/a | |
---|
856 | n/a | send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ |
---|
857 | n/a | Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); |
---|
858 | n/a | } |
---|
859 | n/a | |
---|
860 | n/a | /* =========================================================================== |
---|
861 | n/a | * Send a stored block |
---|
862 | n/a | */ |
---|
863 | n/a | void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last) |
---|
864 | n/a | deflate_state *s; |
---|
865 | n/a | charf *buf; /* input block */ |
---|
866 | n/a | ulg stored_len; /* length of input block */ |
---|
867 | n/a | int last; /* one if this is the last block for a file */ |
---|
868 | n/a | { |
---|
869 | n/a | send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */ |
---|
870 | n/a | bi_windup(s); /* align on byte boundary */ |
---|
871 | n/a | put_short(s, (ush)stored_len); |
---|
872 | n/a | put_short(s, (ush)~stored_len); |
---|
873 | n/a | zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len); |
---|
874 | n/a | s->pending += stored_len; |
---|
875 | n/a | #ifdef ZLIB_DEBUG |
---|
876 | n/a | s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; |
---|
877 | n/a | s->compressed_len += (stored_len + 4) << 3; |
---|
878 | n/a | s->bits_sent += 2*16; |
---|
879 | n/a | s->bits_sent += stored_len<<3; |
---|
880 | n/a | #endif |
---|
881 | n/a | } |
---|
882 | n/a | |
---|
883 | n/a | /* =========================================================================== |
---|
884 | n/a | * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) |
---|
885 | n/a | */ |
---|
886 | n/a | void ZLIB_INTERNAL _tr_flush_bits(s) |
---|
887 | n/a | deflate_state *s; |
---|
888 | n/a | { |
---|
889 | n/a | bi_flush(s); |
---|
890 | n/a | } |
---|
891 | n/a | |
---|
892 | n/a | /* =========================================================================== |
---|
893 | n/a | * Send one empty static block to give enough lookahead for inflate. |
---|
894 | n/a | * This takes 10 bits, of which 7 may remain in the bit buffer. |
---|
895 | n/a | */ |
---|
896 | n/a | void ZLIB_INTERNAL _tr_align(s) |
---|
897 | n/a | deflate_state *s; |
---|
898 | n/a | { |
---|
899 | n/a | send_bits(s, STATIC_TREES<<1, 3); |
---|
900 | n/a | send_code(s, END_BLOCK, static_ltree); |
---|
901 | n/a | #ifdef ZLIB_DEBUG |
---|
902 | n/a | s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ |
---|
903 | n/a | #endif |
---|
904 | n/a | bi_flush(s); |
---|
905 | n/a | } |
---|
906 | n/a | |
---|
907 | n/a | /* =========================================================================== |
---|
908 | n/a | * Determine the best encoding for the current block: dynamic trees, static |
---|
909 | n/a | * trees or store, and write out the encoded block. |
---|
910 | n/a | */ |
---|
911 | n/a | void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last) |
---|
912 | n/a | deflate_state *s; |
---|
913 | n/a | charf *buf; /* input block, or NULL if too old */ |
---|
914 | n/a | ulg stored_len; /* length of input block */ |
---|
915 | n/a | int last; /* one if this is the last block for a file */ |
---|
916 | n/a | { |
---|
917 | n/a | ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ |
---|
918 | n/a | int max_blindex = 0; /* index of last bit length code of non zero freq */ |
---|
919 | n/a | |
---|
920 | n/a | /* Build the Huffman trees unless a stored block is forced */ |
---|
921 | n/a | if (s->level > 0) { |
---|
922 | n/a | |
---|
923 | n/a | /* Check if the file is binary or text */ |
---|
924 | n/a | if (s->strm->data_type == Z_UNKNOWN) |
---|
925 | n/a | s->strm->data_type = detect_data_type(s); |
---|
926 | n/a | |
---|
927 | n/a | /* Construct the literal and distance trees */ |
---|
928 | n/a | build_tree(s, (tree_desc *)(&(s->l_desc))); |
---|
929 | n/a | Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, |
---|
930 | n/a | s->static_len)); |
---|
931 | n/a | |
---|
932 | n/a | build_tree(s, (tree_desc *)(&(s->d_desc))); |
---|
933 | n/a | Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, |
---|
934 | n/a | s->static_len)); |
---|
935 | n/a | /* At this point, opt_len and static_len are the total bit lengths of |
---|
936 | n/a | * the compressed block data, excluding the tree representations. |
---|
937 | n/a | */ |
---|
938 | n/a | |
---|
939 | n/a | /* Build the bit length tree for the above two trees, and get the index |
---|
940 | n/a | * in bl_order of the last bit length code to send. |
---|
941 | n/a | */ |
---|
942 | n/a | max_blindex = build_bl_tree(s); |
---|
943 | n/a | |
---|
944 | n/a | /* Determine the best encoding. Compute the block lengths in bytes. */ |
---|
945 | n/a | opt_lenb = (s->opt_len+3+7)>>3; |
---|
946 | n/a | static_lenb = (s->static_len+3+7)>>3; |
---|
947 | n/a | |
---|
948 | n/a | Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", |
---|
949 | n/a | opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, |
---|
950 | n/a | s->last_lit)); |
---|
951 | n/a | |
---|
952 | n/a | if (static_lenb <= opt_lenb) opt_lenb = static_lenb; |
---|
953 | n/a | |
---|
954 | n/a | } else { |
---|
955 | n/a | Assert(buf != (char*)0, "lost buf"); |
---|
956 | n/a | opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ |
---|
957 | n/a | } |
---|
958 | n/a | |
---|
959 | n/a | #ifdef FORCE_STORED |
---|
960 | n/a | if (buf != (char*)0) { /* force stored block */ |
---|
961 | n/a | #else |
---|
962 | n/a | if (stored_len+4 <= opt_lenb && buf != (char*)0) { |
---|
963 | n/a | /* 4: two words for the lengths */ |
---|
964 | n/a | #endif |
---|
965 | n/a | /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. |
---|
966 | n/a | * Otherwise we can't have processed more than WSIZE input bytes since |
---|
967 | n/a | * the last block flush, because compression would have been |
---|
968 | n/a | * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to |
---|
969 | n/a | * transform a block into a stored block. |
---|
970 | n/a | */ |
---|
971 | n/a | _tr_stored_block(s, buf, stored_len, last); |
---|
972 | n/a | |
---|
973 | n/a | #ifdef FORCE_STATIC |
---|
974 | n/a | } else if (static_lenb >= 0) { /* force static trees */ |
---|
975 | n/a | #else |
---|
976 | n/a | } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { |
---|
977 | n/a | #endif |
---|
978 | n/a | send_bits(s, (STATIC_TREES<<1)+last, 3); |
---|
979 | n/a | compress_block(s, (const ct_data *)static_ltree, |
---|
980 | n/a | (const ct_data *)static_dtree); |
---|
981 | n/a | #ifdef ZLIB_DEBUG |
---|
982 | n/a | s->compressed_len += 3 + s->static_len; |
---|
983 | n/a | #endif |
---|
984 | n/a | } else { |
---|
985 | n/a | send_bits(s, (DYN_TREES<<1)+last, 3); |
---|
986 | n/a | send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, |
---|
987 | n/a | max_blindex+1); |
---|
988 | n/a | compress_block(s, (const ct_data *)s->dyn_ltree, |
---|
989 | n/a | (const ct_data *)s->dyn_dtree); |
---|
990 | n/a | #ifdef ZLIB_DEBUG |
---|
991 | n/a | s->compressed_len += 3 + s->opt_len; |
---|
992 | n/a | #endif |
---|
993 | n/a | } |
---|
994 | n/a | Assert (s->compressed_len == s->bits_sent, "bad compressed size"); |
---|
995 | n/a | /* The above check is made mod 2^32, for files larger than 512 MB |
---|
996 | n/a | * and uLong implemented on 32 bits. |
---|
997 | n/a | */ |
---|
998 | n/a | init_block(s); |
---|
999 | n/a | |
---|
1000 | n/a | if (last) { |
---|
1001 | n/a | bi_windup(s); |
---|
1002 | n/a | #ifdef ZLIB_DEBUG |
---|
1003 | n/a | s->compressed_len += 7; /* align on byte boundary */ |
---|
1004 | n/a | #endif |
---|
1005 | n/a | } |
---|
1006 | n/a | Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, |
---|
1007 | n/a | s->compressed_len-7*last)); |
---|
1008 | n/a | } |
---|
1009 | n/a | |
---|
1010 | n/a | /* =========================================================================== |
---|
1011 | n/a | * Save the match info and tally the frequency counts. Return true if |
---|
1012 | n/a | * the current block must be flushed. |
---|
1013 | n/a | */ |
---|
1014 | n/a | int ZLIB_INTERNAL _tr_tally (s, dist, lc) |
---|
1015 | n/a | deflate_state *s; |
---|
1016 | n/a | unsigned dist; /* distance of matched string */ |
---|
1017 | n/a | unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ |
---|
1018 | n/a | { |
---|
1019 | n/a | s->d_buf[s->last_lit] = (ush)dist; |
---|
1020 | n/a | s->l_buf[s->last_lit++] = (uch)lc; |
---|
1021 | n/a | if (dist == 0) { |
---|
1022 | n/a | /* lc is the unmatched char */ |
---|
1023 | n/a | s->dyn_ltree[lc].Freq++; |
---|
1024 | n/a | } else { |
---|
1025 | n/a | s->matches++; |
---|
1026 | n/a | /* Here, lc is the match length - MIN_MATCH */ |
---|
1027 | n/a | dist--; /* dist = match distance - 1 */ |
---|
1028 | n/a | Assert((ush)dist < (ush)MAX_DIST(s) && |
---|
1029 | n/a | (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && |
---|
1030 | n/a | (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); |
---|
1031 | n/a | |
---|
1032 | n/a | s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; |
---|
1033 | n/a | s->dyn_dtree[d_code(dist)].Freq++; |
---|
1034 | n/a | } |
---|
1035 | n/a | |
---|
1036 | n/a | #ifdef TRUNCATE_BLOCK |
---|
1037 | n/a | /* Try to guess if it is profitable to stop the current block here */ |
---|
1038 | n/a | if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { |
---|
1039 | n/a | /* Compute an upper bound for the compressed length */ |
---|
1040 | n/a | ulg out_length = (ulg)s->last_lit*8L; |
---|
1041 | n/a | ulg in_length = (ulg)((long)s->strstart - s->block_start); |
---|
1042 | n/a | int dcode; |
---|
1043 | n/a | for (dcode = 0; dcode < D_CODES; dcode++) { |
---|
1044 | n/a | out_length += (ulg)s->dyn_dtree[dcode].Freq * |
---|
1045 | n/a | (5L+extra_dbits[dcode]); |
---|
1046 | n/a | } |
---|
1047 | n/a | out_length >>= 3; |
---|
1048 | n/a | Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", |
---|
1049 | n/a | s->last_lit, in_length, out_length, |
---|
1050 | n/a | 100L - out_length*100L/in_length)); |
---|
1051 | n/a | if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; |
---|
1052 | n/a | } |
---|
1053 | n/a | #endif |
---|
1054 | n/a | return (s->last_lit == s->lit_bufsize-1); |
---|
1055 | n/a | /* We avoid equality with lit_bufsize because of wraparound at 64K |
---|
1056 | n/a | * on 16 bit machines and because stored blocks are restricted to |
---|
1057 | n/a | * 64K-1 bytes. |
---|
1058 | n/a | */ |
---|
1059 | n/a | } |
---|
1060 | n/a | |
---|
1061 | n/a | /* =========================================================================== |
---|
1062 | n/a | * Send the block data compressed using the given Huffman trees |
---|
1063 | n/a | */ |
---|
1064 | n/a | local void compress_block(s, ltree, dtree) |
---|
1065 | n/a | deflate_state *s; |
---|
1066 | n/a | const ct_data *ltree; /* literal tree */ |
---|
1067 | n/a | const ct_data *dtree; /* distance tree */ |
---|
1068 | n/a | { |
---|
1069 | n/a | unsigned dist; /* distance of matched string */ |
---|
1070 | n/a | int lc; /* match length or unmatched char (if dist == 0) */ |
---|
1071 | n/a | unsigned lx = 0; /* running index in l_buf */ |
---|
1072 | n/a | unsigned code; /* the code to send */ |
---|
1073 | n/a | int extra; /* number of extra bits to send */ |
---|
1074 | n/a | |
---|
1075 | n/a | if (s->last_lit != 0) do { |
---|
1076 | n/a | dist = s->d_buf[lx]; |
---|
1077 | n/a | lc = s->l_buf[lx++]; |
---|
1078 | n/a | if (dist == 0) { |
---|
1079 | n/a | send_code(s, lc, ltree); /* send a literal byte */ |
---|
1080 | n/a | Tracecv(isgraph(lc), (stderr," '%c' ", lc)); |
---|
1081 | n/a | } else { |
---|
1082 | n/a | /* Here, lc is the match length - MIN_MATCH */ |
---|
1083 | n/a | code = _length_code[lc]; |
---|
1084 | n/a | send_code(s, code+LITERALS+1, ltree); /* send the length code */ |
---|
1085 | n/a | extra = extra_lbits[code]; |
---|
1086 | n/a | if (extra != 0) { |
---|
1087 | n/a | lc -= base_length[code]; |
---|
1088 | n/a | send_bits(s, lc, extra); /* send the extra length bits */ |
---|
1089 | n/a | } |
---|
1090 | n/a | dist--; /* dist is now the match distance - 1 */ |
---|
1091 | n/a | code = d_code(dist); |
---|
1092 | n/a | Assert (code < D_CODES, "bad d_code"); |
---|
1093 | n/a | |
---|
1094 | n/a | send_code(s, code, dtree); /* send the distance code */ |
---|
1095 | n/a | extra = extra_dbits[code]; |
---|
1096 | n/a | if (extra != 0) { |
---|
1097 | n/a | dist -= (unsigned)base_dist[code]; |
---|
1098 | n/a | send_bits(s, dist, extra); /* send the extra distance bits */ |
---|
1099 | n/a | } |
---|
1100 | n/a | } /* literal or match pair ? */ |
---|
1101 | n/a | |
---|
1102 | n/a | /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ |
---|
1103 | n/a | Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, |
---|
1104 | n/a | "pendingBuf overflow"); |
---|
1105 | n/a | |
---|
1106 | n/a | } while (lx < s->last_lit); |
---|
1107 | n/a | |
---|
1108 | n/a | send_code(s, END_BLOCK, ltree); |
---|
1109 | n/a | } |
---|
1110 | n/a | |
---|
1111 | n/a | /* =========================================================================== |
---|
1112 | n/a | * Check if the data type is TEXT or BINARY, using the following algorithm: |
---|
1113 | n/a | * - TEXT if the two conditions below are satisfied: |
---|
1114 | n/a | * a) There are no non-portable control characters belonging to the |
---|
1115 | n/a | * "black list" (0..6, 14..25, 28..31). |
---|
1116 | n/a | * b) There is at least one printable character belonging to the |
---|
1117 | n/a | * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). |
---|
1118 | n/a | * - BINARY otherwise. |
---|
1119 | n/a | * - The following partially-portable control characters form a |
---|
1120 | n/a | * "gray list" that is ignored in this detection algorithm: |
---|
1121 | n/a | * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). |
---|
1122 | n/a | * IN assertion: the fields Freq of dyn_ltree are set. |
---|
1123 | n/a | */ |
---|
1124 | n/a | local int detect_data_type(s) |
---|
1125 | n/a | deflate_state *s; |
---|
1126 | n/a | { |
---|
1127 | n/a | /* black_mask is the bit mask of black-listed bytes |
---|
1128 | n/a | * set bits 0..6, 14..25, and 28..31 |
---|
1129 | n/a | * 0xf3ffc07f = binary 11110011111111111100000001111111 |
---|
1130 | n/a | */ |
---|
1131 | n/a | unsigned long black_mask = 0xf3ffc07fUL; |
---|
1132 | n/a | int n; |
---|
1133 | n/a | |
---|
1134 | n/a | /* Check for non-textual ("black-listed") bytes. */ |
---|
1135 | n/a | for (n = 0; n <= 31; n++, black_mask >>= 1) |
---|
1136 | n/a | if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) |
---|
1137 | n/a | return Z_BINARY; |
---|
1138 | n/a | |
---|
1139 | n/a | /* Check for textual ("white-listed") bytes. */ |
---|
1140 | n/a | if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 |
---|
1141 | n/a | || s->dyn_ltree[13].Freq != 0) |
---|
1142 | n/a | return Z_TEXT; |
---|
1143 | n/a | for (n = 32; n < LITERALS; n++) |
---|
1144 | n/a | if (s->dyn_ltree[n].Freq != 0) |
---|
1145 | n/a | return Z_TEXT; |
---|
1146 | n/a | |
---|
1147 | n/a | /* There are no "black-listed" or "white-listed" bytes: |
---|
1148 | n/a | * this stream either is empty or has tolerated ("gray-listed") bytes only. |
---|
1149 | n/a | */ |
---|
1150 | n/a | return Z_BINARY; |
---|
1151 | n/a | } |
---|
1152 | n/a | |
---|
1153 | n/a | /* =========================================================================== |
---|
1154 | n/a | * Reverse the first len bits of a code, using straightforward code (a faster |
---|
1155 | n/a | * method would use a table) |
---|
1156 | n/a | * IN assertion: 1 <= len <= 15 |
---|
1157 | n/a | */ |
---|
1158 | n/a | local unsigned bi_reverse(code, len) |
---|
1159 | n/a | unsigned code; /* the value to invert */ |
---|
1160 | n/a | int len; /* its bit length */ |
---|
1161 | n/a | { |
---|
1162 | n/a | register unsigned res = 0; |
---|
1163 | n/a | do { |
---|
1164 | n/a | res |= code & 1; |
---|
1165 | n/a | code >>= 1, res <<= 1; |
---|
1166 | n/a | } while (--len > 0); |
---|
1167 | n/a | return res >> 1; |
---|
1168 | n/a | } |
---|
1169 | n/a | |
---|
1170 | n/a | /* =========================================================================== |
---|
1171 | n/a | * Flush the bit buffer, keeping at most 7 bits in it. |
---|
1172 | n/a | */ |
---|
1173 | n/a | local void bi_flush(s) |
---|
1174 | n/a | deflate_state *s; |
---|
1175 | n/a | { |
---|
1176 | n/a | if (s->bi_valid == 16) { |
---|
1177 | n/a | put_short(s, s->bi_buf); |
---|
1178 | n/a | s->bi_buf = 0; |
---|
1179 | n/a | s->bi_valid = 0; |
---|
1180 | n/a | } else if (s->bi_valid >= 8) { |
---|
1181 | n/a | put_byte(s, (Byte)s->bi_buf); |
---|
1182 | n/a | s->bi_buf >>= 8; |
---|
1183 | n/a | s->bi_valid -= 8; |
---|
1184 | n/a | } |
---|
1185 | n/a | } |
---|
1186 | n/a | |
---|
1187 | n/a | /* =========================================================================== |
---|
1188 | n/a | * Flush the bit buffer and align the output on a byte boundary |
---|
1189 | n/a | */ |
---|
1190 | n/a | local void bi_windup(s) |
---|
1191 | n/a | deflate_state *s; |
---|
1192 | n/a | { |
---|
1193 | n/a | if (s->bi_valid > 8) { |
---|
1194 | n/a | put_short(s, s->bi_buf); |
---|
1195 | n/a | } else if (s->bi_valid > 0) { |
---|
1196 | n/a | put_byte(s, (Byte)s->bi_buf); |
---|
1197 | n/a | } |
---|
1198 | n/a | s->bi_buf = 0; |
---|
1199 | n/a | s->bi_valid = 0; |
---|
1200 | n/a | #ifdef ZLIB_DEBUG |
---|
1201 | n/a | s->bits_sent = (s->bits_sent+7) & ~7; |
---|
1202 | n/a | #endif |
---|
1203 | n/a | } |
---|