| 1 | n/a | #include "rotatingtree.h" |
|---|
| 2 | n/a | |
|---|
| 3 | n/a | #define KEY_LOWER_THAN(key1, key2) ((char*)(key1) < (char*)(key2)) |
|---|
| 4 | n/a | |
|---|
| 5 | n/a | /* The randombits() function below is a fast-and-dirty generator that |
|---|
| 6 | n/a | * is probably irregular enough for our purposes. Note that it's biased: |
|---|
| 7 | n/a | * I think that ones are slightly more probable than zeroes. It's not |
|---|
| 8 | n/a | * important here, though. |
|---|
| 9 | n/a | */ |
|---|
| 10 | n/a | |
|---|
| 11 | n/a | static unsigned int random_value = 1; |
|---|
| 12 | n/a | static unsigned int random_stream = 0; |
|---|
| 13 | n/a | |
|---|
| 14 | n/a | static int |
|---|
| 15 | n/a | randombits(int bits) |
|---|
| 16 | n/a | { |
|---|
| 17 | n/a | int result; |
|---|
| 18 | n/a | if (random_stream < (1U << bits)) { |
|---|
| 19 | n/a | random_value *= 1082527; |
|---|
| 20 | n/a | random_stream = random_value; |
|---|
| 21 | n/a | } |
|---|
| 22 | n/a | result = random_stream & ((1<<bits)-1); |
|---|
| 23 | n/a | random_stream >>= bits; |
|---|
| 24 | n/a | return result; |
|---|
| 25 | n/a | } |
|---|
| 26 | n/a | |
|---|
| 27 | n/a | |
|---|
| 28 | n/a | /* Insert a new node into the tree. |
|---|
| 29 | n/a | (*root) is modified to point to the new root. */ |
|---|
| 30 | n/a | void |
|---|
| 31 | n/a | RotatingTree_Add(rotating_node_t **root, rotating_node_t *node) |
|---|
| 32 | n/a | { |
|---|
| 33 | n/a | while (*root != NULL) { |
|---|
| 34 | n/a | if (KEY_LOWER_THAN(node->key, (*root)->key)) |
|---|
| 35 | n/a | root = &((*root)->left); |
|---|
| 36 | n/a | else |
|---|
| 37 | n/a | root = &((*root)->right); |
|---|
| 38 | n/a | } |
|---|
| 39 | n/a | node->left = NULL; |
|---|
| 40 | n/a | node->right = NULL; |
|---|
| 41 | n/a | *root = node; |
|---|
| 42 | n/a | } |
|---|
| 43 | n/a | |
|---|
| 44 | n/a | /* Locate the node with the given key. This is the most complicated |
|---|
| 45 | n/a | function because it occasionally rebalances the tree to move the |
|---|
| 46 | n/a | resulting node closer to the root. */ |
|---|
| 47 | n/a | rotating_node_t * |
|---|
| 48 | n/a | RotatingTree_Get(rotating_node_t **root, void *key) |
|---|
| 49 | n/a | { |
|---|
| 50 | n/a | if (randombits(3) != 4) { |
|---|
| 51 | n/a | /* Fast path, no rebalancing */ |
|---|
| 52 | n/a | rotating_node_t *node = *root; |
|---|
| 53 | n/a | while (node != NULL) { |
|---|
| 54 | n/a | if (node->key == key) |
|---|
| 55 | n/a | return node; |
|---|
| 56 | n/a | if (KEY_LOWER_THAN(key, node->key)) |
|---|
| 57 | n/a | node = node->left; |
|---|
| 58 | n/a | else |
|---|
| 59 | n/a | node = node->right; |
|---|
| 60 | n/a | } |
|---|
| 61 | n/a | return NULL; |
|---|
| 62 | n/a | } |
|---|
| 63 | n/a | else { |
|---|
| 64 | n/a | rotating_node_t **pnode = root; |
|---|
| 65 | n/a | rotating_node_t *node = *pnode; |
|---|
| 66 | n/a | rotating_node_t *next; |
|---|
| 67 | n/a | int rotate; |
|---|
| 68 | n/a | if (node == NULL) |
|---|
| 69 | n/a | return NULL; |
|---|
| 70 | n/a | while (1) { |
|---|
| 71 | n/a | if (node->key == key) |
|---|
| 72 | n/a | return node; |
|---|
| 73 | n/a | rotate = !randombits(1); |
|---|
| 74 | n/a | if (KEY_LOWER_THAN(key, node->key)) { |
|---|
| 75 | n/a | next = node->left; |
|---|
| 76 | n/a | if (next == NULL) |
|---|
| 77 | n/a | return NULL; |
|---|
| 78 | n/a | if (rotate) { |
|---|
| 79 | n/a | node->left = next->right; |
|---|
| 80 | n/a | next->right = node; |
|---|
| 81 | n/a | *pnode = next; |
|---|
| 82 | n/a | } |
|---|
| 83 | n/a | else |
|---|
| 84 | n/a | pnode = &(node->left); |
|---|
| 85 | n/a | } |
|---|
| 86 | n/a | else { |
|---|
| 87 | n/a | next = node->right; |
|---|
| 88 | n/a | if (next == NULL) |
|---|
| 89 | n/a | return NULL; |
|---|
| 90 | n/a | if (rotate) { |
|---|
| 91 | n/a | node->right = next->left; |
|---|
| 92 | n/a | next->left = node; |
|---|
| 93 | n/a | *pnode = next; |
|---|
| 94 | n/a | } |
|---|
| 95 | n/a | else |
|---|
| 96 | n/a | pnode = &(node->right); |
|---|
| 97 | n/a | } |
|---|
| 98 | n/a | node = next; |
|---|
| 99 | n/a | } |
|---|
| 100 | n/a | } |
|---|
| 101 | n/a | } |
|---|
| 102 | n/a | |
|---|
| 103 | n/a | /* Enumerate all nodes in the tree. The callback enumfn() should return |
|---|
| 104 | n/a | zero to continue the enumeration, or non-zero to interrupt it. |
|---|
| 105 | n/a | A non-zero value is directly returned by RotatingTree_Enum(). */ |
|---|
| 106 | n/a | int |
|---|
| 107 | n/a | RotatingTree_Enum(rotating_node_t *root, rotating_tree_enum_fn enumfn, |
|---|
| 108 | n/a | void *arg) |
|---|
| 109 | n/a | { |
|---|
| 110 | n/a | int result; |
|---|
| 111 | n/a | rotating_node_t *node; |
|---|
| 112 | n/a | while (root != NULL) { |
|---|
| 113 | n/a | result = RotatingTree_Enum(root->left, enumfn, arg); |
|---|
| 114 | n/a | if (result != 0) return result; |
|---|
| 115 | n/a | node = root->right; |
|---|
| 116 | n/a | result = enumfn(root, arg); |
|---|
| 117 | n/a | if (result != 0) return result; |
|---|
| 118 | n/a | root = node; |
|---|
| 119 | n/a | } |
|---|
| 120 | n/a | return 0; |
|---|
| 121 | n/a | } |
|---|