| 1 | n/a | /* Math module -- standard C math library functions, pi and e */ |
|---|
| 2 | n/a | |
|---|
| 3 | n/a | /* Here are some comments from Tim Peters, extracted from the |
|---|
| 4 | n/a | discussion attached to http://bugs.python.org/issue1640. They |
|---|
| 5 | n/a | describe the general aims of the math module with respect to |
|---|
| 6 | n/a | special values, IEEE-754 floating-point exceptions, and Python |
|---|
| 7 | n/a | exceptions. |
|---|
| 8 | n/a | |
|---|
| 9 | n/a | These are the "spirit of 754" rules: |
|---|
| 10 | n/a | |
|---|
| 11 | n/a | 1. If the mathematical result is a real number, but of magnitude too |
|---|
| 12 | n/a | large to approximate by a machine float, overflow is signaled and the |
|---|
| 13 | n/a | result is an infinity (with the appropriate sign). |
|---|
| 14 | n/a | |
|---|
| 15 | n/a | 2. If the mathematical result is a real number, but of magnitude too |
|---|
| 16 | n/a | small to approximate by a machine float, underflow is signaled and the |
|---|
| 17 | n/a | result is a zero (with the appropriate sign). |
|---|
| 18 | n/a | |
|---|
| 19 | n/a | 3. At a singularity (a value x such that the limit of f(y) as y |
|---|
| 20 | n/a | approaches x exists and is an infinity), "divide by zero" is signaled |
|---|
| 21 | n/a | and the result is an infinity (with the appropriate sign). This is |
|---|
| 22 | n/a | complicated a little by that the left-side and right-side limits may |
|---|
| 23 | n/a | not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0 |
|---|
| 24 | n/a | from the positive or negative directions. In that specific case, the |
|---|
| 25 | n/a | sign of the zero determines the result of 1/0. |
|---|
| 26 | n/a | |
|---|
| 27 | n/a | 4. At a point where a function has no defined result in the extended |
|---|
| 28 | n/a | reals (i.e., the reals plus an infinity or two), invalid operation is |
|---|
| 29 | n/a | signaled and a NaN is returned. |
|---|
| 30 | n/a | |
|---|
| 31 | n/a | And these are what Python has historically /tried/ to do (but not |
|---|
| 32 | n/a | always successfully, as platform libm behavior varies a lot): |
|---|
| 33 | n/a | |
|---|
| 34 | n/a | For #1, raise OverflowError. |
|---|
| 35 | n/a | |
|---|
| 36 | n/a | For #2, return a zero (with the appropriate sign if that happens by |
|---|
| 37 | n/a | accident ;-)). |
|---|
| 38 | n/a | |
|---|
| 39 | n/a | For #3 and #4, raise ValueError. It may have made sense to raise |
|---|
| 40 | n/a | Python's ZeroDivisionError in #3, but historically that's only been |
|---|
| 41 | n/a | raised for division by zero and mod by zero. |
|---|
| 42 | n/a | |
|---|
| 43 | n/a | */ |
|---|
| 44 | n/a | |
|---|
| 45 | n/a | /* |
|---|
| 46 | n/a | In general, on an IEEE-754 platform the aim is to follow the C99 |
|---|
| 47 | n/a | standard, including Annex 'F', whenever possible. Where the |
|---|
| 48 | n/a | standard recommends raising the 'divide-by-zero' or 'invalid' |
|---|
| 49 | n/a | floating-point exceptions, Python should raise a ValueError. Where |
|---|
| 50 | n/a | the standard recommends raising 'overflow', Python should raise an |
|---|
| 51 | n/a | OverflowError. In all other circumstances a value should be |
|---|
| 52 | n/a | returned. |
|---|
| 53 | n/a | */ |
|---|
| 54 | n/a | |
|---|
| 55 | n/a | #include "Python.h" |
|---|
| 56 | n/a | #include "_math.h" |
|---|
| 57 | n/a | |
|---|
| 58 | n/a | #include "clinic/mathmodule.c.h" |
|---|
| 59 | n/a | |
|---|
| 60 | n/a | /*[clinic input] |
|---|
| 61 | n/a | module math |
|---|
| 62 | n/a | [clinic start generated code]*/ |
|---|
| 63 | n/a | /*[clinic end generated code: output=da39a3ee5e6b4b0d input=76bc7002685dd942]*/ |
|---|
| 64 | n/a | |
|---|
| 65 | n/a | |
|---|
| 66 | n/a | /* |
|---|
| 67 | n/a | sin(pi*x), giving accurate results for all finite x (especially x |
|---|
| 68 | n/a | integral or close to an integer). This is here for use in the |
|---|
| 69 | n/a | reflection formula for the gamma function. It conforms to IEEE |
|---|
| 70 | n/a | 754-2008 for finite arguments, but not for infinities or nans. |
|---|
| 71 | n/a | */ |
|---|
| 72 | n/a | |
|---|
| 73 | n/a | static const double pi = 3.141592653589793238462643383279502884197; |
|---|
| 74 | n/a | static const double sqrtpi = 1.772453850905516027298167483341145182798; |
|---|
| 75 | n/a | static const double logpi = 1.144729885849400174143427351353058711647; |
|---|
| 76 | n/a | |
|---|
| 77 | n/a | static double |
|---|
| 78 | n/a | sinpi(double x) |
|---|
| 79 | n/a | { |
|---|
| 80 | n/a | double y, r; |
|---|
| 81 | n/a | int n; |
|---|
| 82 | n/a | /* this function should only ever be called for finite arguments */ |
|---|
| 83 | n/a | assert(Py_IS_FINITE(x)); |
|---|
| 84 | n/a | y = fmod(fabs(x), 2.0); |
|---|
| 85 | n/a | n = (int)round(2.0*y); |
|---|
| 86 | n/a | assert(0 <= n && n <= 4); |
|---|
| 87 | n/a | switch (n) { |
|---|
| 88 | n/a | case 0: |
|---|
| 89 | n/a | r = sin(pi*y); |
|---|
| 90 | n/a | break; |
|---|
| 91 | n/a | case 1: |
|---|
| 92 | n/a | r = cos(pi*(y-0.5)); |
|---|
| 93 | n/a | break; |
|---|
| 94 | n/a | case 2: |
|---|
| 95 | n/a | /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give |
|---|
| 96 | n/a | -0.0 instead of 0.0 when y == 1.0. */ |
|---|
| 97 | n/a | r = sin(pi*(1.0-y)); |
|---|
| 98 | n/a | break; |
|---|
| 99 | n/a | case 3: |
|---|
| 100 | n/a | r = -cos(pi*(y-1.5)); |
|---|
| 101 | n/a | break; |
|---|
| 102 | n/a | case 4: |
|---|
| 103 | n/a | r = sin(pi*(y-2.0)); |
|---|
| 104 | n/a | break; |
|---|
| 105 | n/a | default: |
|---|
| 106 | n/a | assert(0); /* should never get here */ |
|---|
| 107 | n/a | r = -1.23e200; /* silence gcc warning */ |
|---|
| 108 | n/a | } |
|---|
| 109 | n/a | return copysign(1.0, x)*r; |
|---|
| 110 | n/a | } |
|---|
| 111 | n/a | |
|---|
| 112 | n/a | /* Implementation of the real gamma function. In extensive but non-exhaustive |
|---|
| 113 | n/a | random tests, this function proved accurate to within <= 10 ulps across the |
|---|
| 114 | n/a | entire float domain. Note that accuracy may depend on the quality of the |
|---|
| 115 | n/a | system math functions, the pow function in particular. Special cases |
|---|
| 116 | n/a | follow C99 annex F. The parameters and method are tailored to platforms |
|---|
| 117 | n/a | whose double format is the IEEE 754 binary64 format. |
|---|
| 118 | n/a | |
|---|
| 119 | n/a | Method: for x > 0.0 we use the Lanczos approximation with parameters N=13 |
|---|
| 120 | n/a | and g=6.024680040776729583740234375; these parameters are amongst those |
|---|
| 121 | n/a | used by the Boost library. Following Boost (again), we re-express the |
|---|
| 122 | n/a | Lanczos sum as a rational function, and compute it that way. The |
|---|
| 123 | n/a | coefficients below were computed independently using MPFR, and have been |
|---|
| 124 | n/a | double-checked against the coefficients in the Boost source code. |
|---|
| 125 | n/a | |
|---|
| 126 | n/a | For x < 0.0 we use the reflection formula. |
|---|
| 127 | n/a | |
|---|
| 128 | n/a | There's one minor tweak that deserves explanation: Lanczos' formula for |
|---|
| 129 | n/a | Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x |
|---|
| 130 | n/a | values, x+g-0.5 can be represented exactly. However, in cases where it |
|---|
| 131 | n/a | can't be represented exactly the small error in x+g-0.5 can be magnified |
|---|
| 132 | n/a | significantly by the pow and exp calls, especially for large x. A cheap |
|---|
| 133 | n/a | correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error |
|---|
| 134 | n/a | involved in the computation of x+g-0.5 (that is, e = computed value of |
|---|
| 135 | n/a | x+g-0.5 - exact value of x+g-0.5). Here's the proof: |
|---|
| 136 | n/a | |
|---|
| 137 | n/a | Correction factor |
|---|
| 138 | n/a | ----------------- |
|---|
| 139 | n/a | Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754 |
|---|
| 140 | n/a | double, and e is tiny. Then: |
|---|
| 141 | n/a | |
|---|
| 142 | n/a | pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e) |
|---|
| 143 | n/a | = pow(y, x-0.5)/exp(y) * C, |
|---|
| 144 | n/a | |
|---|
| 145 | n/a | where the correction_factor C is given by |
|---|
| 146 | n/a | |
|---|
| 147 | n/a | C = pow(1-e/y, x-0.5) * exp(e) |
|---|
| 148 | n/a | |
|---|
| 149 | n/a | Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so: |
|---|
| 150 | n/a | |
|---|
| 151 | n/a | C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y |
|---|
| 152 | n/a | |
|---|
| 153 | n/a | But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and |
|---|
| 154 | n/a | |
|---|
| 155 | n/a | pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y), |
|---|
| 156 | n/a | |
|---|
| 157 | n/a | Note that for accuracy, when computing r*C it's better to do |
|---|
| 158 | n/a | |
|---|
| 159 | n/a | r + e*g/y*r; |
|---|
| 160 | n/a | |
|---|
| 161 | n/a | than |
|---|
| 162 | n/a | |
|---|
| 163 | n/a | r * (1 + e*g/y); |
|---|
| 164 | n/a | |
|---|
| 165 | n/a | since the addition in the latter throws away most of the bits of |
|---|
| 166 | n/a | information in e*g/y. |
|---|
| 167 | n/a | */ |
|---|
| 168 | n/a | |
|---|
| 169 | n/a | #define LANCZOS_N 13 |
|---|
| 170 | n/a | static const double lanczos_g = 6.024680040776729583740234375; |
|---|
| 171 | n/a | static const double lanczos_g_minus_half = 5.524680040776729583740234375; |
|---|
| 172 | n/a | static const double lanczos_num_coeffs[LANCZOS_N] = { |
|---|
| 173 | n/a | 23531376880.410759688572007674451636754734846804940, |
|---|
| 174 | n/a | 42919803642.649098768957899047001988850926355848959, |
|---|
| 175 | n/a | 35711959237.355668049440185451547166705960488635843, |
|---|
| 176 | n/a | 17921034426.037209699919755754458931112671403265390, |
|---|
| 177 | n/a | 6039542586.3520280050642916443072979210699388420708, |
|---|
| 178 | n/a | 1439720407.3117216736632230727949123939715485786772, |
|---|
| 179 | n/a | 248874557.86205415651146038641322942321632125127801, |
|---|
| 180 | n/a | 31426415.585400194380614231628318205362874684987640, |
|---|
| 181 | n/a | 2876370.6289353724412254090516208496135991145378768, |
|---|
| 182 | n/a | 186056.26539522349504029498971604569928220784236328, |
|---|
| 183 | n/a | 8071.6720023658162106380029022722506138218516325024, |
|---|
| 184 | n/a | 210.82427775157934587250973392071336271166969580291, |
|---|
| 185 | n/a | 2.5066282746310002701649081771338373386264310793408 |
|---|
| 186 | n/a | }; |
|---|
| 187 | n/a | |
|---|
| 188 | n/a | /* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */ |
|---|
| 189 | n/a | static const double lanczos_den_coeffs[LANCZOS_N] = { |
|---|
| 190 | n/a | 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0, |
|---|
| 191 | n/a | 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0}; |
|---|
| 192 | n/a | |
|---|
| 193 | n/a | /* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */ |
|---|
| 194 | n/a | #define NGAMMA_INTEGRAL 23 |
|---|
| 195 | n/a | static const double gamma_integral[NGAMMA_INTEGRAL] = { |
|---|
| 196 | n/a | 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0, |
|---|
| 197 | n/a | 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0, |
|---|
| 198 | n/a | 1307674368000.0, 20922789888000.0, 355687428096000.0, |
|---|
| 199 | n/a | 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0, |
|---|
| 200 | n/a | 51090942171709440000.0, 1124000727777607680000.0, |
|---|
| 201 | n/a | }; |
|---|
| 202 | n/a | |
|---|
| 203 | n/a | /* Lanczos' sum L_g(x), for positive x */ |
|---|
| 204 | n/a | |
|---|
| 205 | n/a | static double |
|---|
| 206 | n/a | lanczos_sum(double x) |
|---|
| 207 | n/a | { |
|---|
| 208 | n/a | double num = 0.0, den = 0.0; |
|---|
| 209 | n/a | int i; |
|---|
| 210 | n/a | assert(x > 0.0); |
|---|
| 211 | n/a | /* evaluate the rational function lanczos_sum(x). For large |
|---|
| 212 | n/a | x, the obvious algorithm risks overflow, so we instead |
|---|
| 213 | n/a | rescale the denominator and numerator of the rational |
|---|
| 214 | n/a | function by x**(1-LANCZOS_N) and treat this as a |
|---|
| 215 | n/a | rational function in 1/x. This also reduces the error for |
|---|
| 216 | n/a | larger x values. The choice of cutoff point (5.0 below) is |
|---|
| 217 | n/a | somewhat arbitrary; in tests, smaller cutoff values than |
|---|
| 218 | n/a | this resulted in lower accuracy. */ |
|---|
| 219 | n/a | if (x < 5.0) { |
|---|
| 220 | n/a | for (i = LANCZOS_N; --i >= 0; ) { |
|---|
| 221 | n/a | num = num * x + lanczos_num_coeffs[i]; |
|---|
| 222 | n/a | den = den * x + lanczos_den_coeffs[i]; |
|---|
| 223 | n/a | } |
|---|
| 224 | n/a | } |
|---|
| 225 | n/a | else { |
|---|
| 226 | n/a | for (i = 0; i < LANCZOS_N; i++) { |
|---|
| 227 | n/a | num = num / x + lanczos_num_coeffs[i]; |
|---|
| 228 | n/a | den = den / x + lanczos_den_coeffs[i]; |
|---|
| 229 | n/a | } |
|---|
| 230 | n/a | } |
|---|
| 231 | n/a | return num/den; |
|---|
| 232 | n/a | } |
|---|
| 233 | n/a | |
|---|
| 234 | n/a | /* Constant for +infinity, generated in the same way as float('inf'). */ |
|---|
| 235 | n/a | |
|---|
| 236 | n/a | static double |
|---|
| 237 | n/a | m_inf(void) |
|---|
| 238 | n/a | { |
|---|
| 239 | n/a | #ifndef PY_NO_SHORT_FLOAT_REPR |
|---|
| 240 | n/a | return _Py_dg_infinity(0); |
|---|
| 241 | n/a | #else |
|---|
| 242 | n/a | return Py_HUGE_VAL; |
|---|
| 243 | n/a | #endif |
|---|
| 244 | n/a | } |
|---|
| 245 | n/a | |
|---|
| 246 | n/a | /* Constant nan value, generated in the same way as float('nan'). */ |
|---|
| 247 | n/a | /* We don't currently assume that Py_NAN is defined everywhere. */ |
|---|
| 248 | n/a | |
|---|
| 249 | n/a | #if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN) |
|---|
| 250 | n/a | |
|---|
| 251 | n/a | static double |
|---|
| 252 | n/a | m_nan(void) |
|---|
| 253 | n/a | { |
|---|
| 254 | n/a | #ifndef PY_NO_SHORT_FLOAT_REPR |
|---|
| 255 | n/a | return _Py_dg_stdnan(0); |
|---|
| 256 | n/a | #else |
|---|
| 257 | n/a | return Py_NAN; |
|---|
| 258 | n/a | #endif |
|---|
| 259 | n/a | } |
|---|
| 260 | n/a | |
|---|
| 261 | n/a | #endif |
|---|
| 262 | n/a | |
|---|
| 263 | n/a | static double |
|---|
| 264 | n/a | m_tgamma(double x) |
|---|
| 265 | n/a | { |
|---|
| 266 | n/a | double absx, r, y, z, sqrtpow; |
|---|
| 267 | n/a | |
|---|
| 268 | n/a | /* special cases */ |
|---|
| 269 | n/a | if (!Py_IS_FINITE(x)) { |
|---|
| 270 | n/a | if (Py_IS_NAN(x) || x > 0.0) |
|---|
| 271 | n/a | return x; /* tgamma(nan) = nan, tgamma(inf) = inf */ |
|---|
| 272 | n/a | else { |
|---|
| 273 | n/a | errno = EDOM; |
|---|
| 274 | n/a | return Py_NAN; /* tgamma(-inf) = nan, invalid */ |
|---|
| 275 | n/a | } |
|---|
| 276 | n/a | } |
|---|
| 277 | n/a | if (x == 0.0) { |
|---|
| 278 | n/a | errno = EDOM; |
|---|
| 279 | n/a | /* tgamma(+-0.0) = +-inf, divide-by-zero */ |
|---|
| 280 | n/a | return copysign(Py_HUGE_VAL, x); |
|---|
| 281 | n/a | } |
|---|
| 282 | n/a | |
|---|
| 283 | n/a | /* integer arguments */ |
|---|
| 284 | n/a | if (x == floor(x)) { |
|---|
| 285 | n/a | if (x < 0.0) { |
|---|
| 286 | n/a | errno = EDOM; /* tgamma(n) = nan, invalid for */ |
|---|
| 287 | n/a | return Py_NAN; /* negative integers n */ |
|---|
| 288 | n/a | } |
|---|
| 289 | n/a | if (x <= NGAMMA_INTEGRAL) |
|---|
| 290 | n/a | return gamma_integral[(int)x - 1]; |
|---|
| 291 | n/a | } |
|---|
| 292 | n/a | absx = fabs(x); |
|---|
| 293 | n/a | |
|---|
| 294 | n/a | /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */ |
|---|
| 295 | n/a | if (absx < 1e-20) { |
|---|
| 296 | n/a | r = 1.0/x; |
|---|
| 297 | n/a | if (Py_IS_INFINITY(r)) |
|---|
| 298 | n/a | errno = ERANGE; |
|---|
| 299 | n/a | return r; |
|---|
| 300 | n/a | } |
|---|
| 301 | n/a | |
|---|
| 302 | n/a | /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for |
|---|
| 303 | n/a | x > 200, and underflows to +-0.0 for x < -200, not a negative |
|---|
| 304 | n/a | integer. */ |
|---|
| 305 | n/a | if (absx > 200.0) { |
|---|
| 306 | n/a | if (x < 0.0) { |
|---|
| 307 | n/a | return 0.0/sinpi(x); |
|---|
| 308 | n/a | } |
|---|
| 309 | n/a | else { |
|---|
| 310 | n/a | errno = ERANGE; |
|---|
| 311 | n/a | return Py_HUGE_VAL; |
|---|
| 312 | n/a | } |
|---|
| 313 | n/a | } |
|---|
| 314 | n/a | |
|---|
| 315 | n/a | y = absx + lanczos_g_minus_half; |
|---|
| 316 | n/a | /* compute error in sum */ |
|---|
| 317 | n/a | if (absx > lanczos_g_minus_half) { |
|---|
| 318 | n/a | /* note: the correction can be foiled by an optimizing |
|---|
| 319 | n/a | compiler that (incorrectly) thinks that an expression like |
|---|
| 320 | n/a | a + b - a - b can be optimized to 0.0. This shouldn't |
|---|
| 321 | n/a | happen in a standards-conforming compiler. */ |
|---|
| 322 | n/a | double q = y - absx; |
|---|
| 323 | n/a | z = q - lanczos_g_minus_half; |
|---|
| 324 | n/a | } |
|---|
| 325 | n/a | else { |
|---|
| 326 | n/a | double q = y - lanczos_g_minus_half; |
|---|
| 327 | n/a | z = q - absx; |
|---|
| 328 | n/a | } |
|---|
| 329 | n/a | z = z * lanczos_g / y; |
|---|
| 330 | n/a | if (x < 0.0) { |
|---|
| 331 | n/a | r = -pi / sinpi(absx) / absx * exp(y) / lanczos_sum(absx); |
|---|
| 332 | n/a | r -= z * r; |
|---|
| 333 | n/a | if (absx < 140.0) { |
|---|
| 334 | n/a | r /= pow(y, absx - 0.5); |
|---|
| 335 | n/a | } |
|---|
| 336 | n/a | else { |
|---|
| 337 | n/a | sqrtpow = pow(y, absx / 2.0 - 0.25); |
|---|
| 338 | n/a | r /= sqrtpow; |
|---|
| 339 | n/a | r /= sqrtpow; |
|---|
| 340 | n/a | } |
|---|
| 341 | n/a | } |
|---|
| 342 | n/a | else { |
|---|
| 343 | n/a | r = lanczos_sum(absx) / exp(y); |
|---|
| 344 | n/a | r += z * r; |
|---|
| 345 | n/a | if (absx < 140.0) { |
|---|
| 346 | n/a | r *= pow(y, absx - 0.5); |
|---|
| 347 | n/a | } |
|---|
| 348 | n/a | else { |
|---|
| 349 | n/a | sqrtpow = pow(y, absx / 2.0 - 0.25); |
|---|
| 350 | n/a | r *= sqrtpow; |
|---|
| 351 | n/a | r *= sqrtpow; |
|---|
| 352 | n/a | } |
|---|
| 353 | n/a | } |
|---|
| 354 | n/a | if (Py_IS_INFINITY(r)) |
|---|
| 355 | n/a | errno = ERANGE; |
|---|
| 356 | n/a | return r; |
|---|
| 357 | n/a | } |
|---|
| 358 | n/a | |
|---|
| 359 | n/a | /* |
|---|
| 360 | n/a | lgamma: natural log of the absolute value of the Gamma function. |
|---|
| 361 | n/a | For large arguments, Lanczos' formula works extremely well here. |
|---|
| 362 | n/a | */ |
|---|
| 363 | n/a | |
|---|
| 364 | n/a | static double |
|---|
| 365 | n/a | m_lgamma(double x) |
|---|
| 366 | n/a | { |
|---|
| 367 | n/a | double r, absx; |
|---|
| 368 | n/a | |
|---|
| 369 | n/a | /* special cases */ |
|---|
| 370 | n/a | if (!Py_IS_FINITE(x)) { |
|---|
| 371 | n/a | if (Py_IS_NAN(x)) |
|---|
| 372 | n/a | return x; /* lgamma(nan) = nan */ |
|---|
| 373 | n/a | else |
|---|
| 374 | n/a | return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */ |
|---|
| 375 | n/a | } |
|---|
| 376 | n/a | |
|---|
| 377 | n/a | /* integer arguments */ |
|---|
| 378 | n/a | if (x == floor(x) && x <= 2.0) { |
|---|
| 379 | n/a | if (x <= 0.0) { |
|---|
| 380 | n/a | errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */ |
|---|
| 381 | n/a | return Py_HUGE_VAL; /* integers n <= 0 */ |
|---|
| 382 | n/a | } |
|---|
| 383 | n/a | else { |
|---|
| 384 | n/a | return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */ |
|---|
| 385 | n/a | } |
|---|
| 386 | n/a | } |
|---|
| 387 | n/a | |
|---|
| 388 | n/a | absx = fabs(x); |
|---|
| 389 | n/a | /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */ |
|---|
| 390 | n/a | if (absx < 1e-20) |
|---|
| 391 | n/a | return -log(absx); |
|---|
| 392 | n/a | |
|---|
| 393 | n/a | /* Lanczos' formula. We could save a fraction of a ulp in accuracy by |
|---|
| 394 | n/a | having a second set of numerator coefficients for lanczos_sum that |
|---|
| 395 | n/a | absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g |
|---|
| 396 | n/a | subtraction below; it's probably not worth it. */ |
|---|
| 397 | n/a | r = log(lanczos_sum(absx)) - lanczos_g; |
|---|
| 398 | n/a | r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1); |
|---|
| 399 | n/a | if (x < 0.0) |
|---|
| 400 | n/a | /* Use reflection formula to get value for negative x. */ |
|---|
| 401 | n/a | r = logpi - log(fabs(sinpi(absx))) - log(absx) - r; |
|---|
| 402 | n/a | if (Py_IS_INFINITY(r)) |
|---|
| 403 | n/a | errno = ERANGE; |
|---|
| 404 | n/a | return r; |
|---|
| 405 | n/a | } |
|---|
| 406 | n/a | |
|---|
| 407 | n/a | /* |
|---|
| 408 | n/a | Implementations of the error function erf(x) and the complementary error |
|---|
| 409 | n/a | function erfc(x). |
|---|
| 410 | n/a | |
|---|
| 411 | n/a | Method: we use a series approximation for erf for small x, and a continued |
|---|
| 412 | n/a | fraction approximation for erfc(x) for larger x; |
|---|
| 413 | n/a | combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x), |
|---|
| 414 | n/a | this gives us erf(x) and erfc(x) for all x. |
|---|
| 415 | n/a | |
|---|
| 416 | n/a | The series expansion used is: |
|---|
| 417 | n/a | |
|---|
| 418 | n/a | erf(x) = x*exp(-x*x)/sqrt(pi) * [ |
|---|
| 419 | n/a | 2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...] |
|---|
| 420 | n/a | |
|---|
| 421 | n/a | The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k). |
|---|
| 422 | n/a | This series converges well for smallish x, but slowly for larger x. |
|---|
| 423 | n/a | |
|---|
| 424 | n/a | The continued fraction expansion used is: |
|---|
| 425 | n/a | |
|---|
| 426 | n/a | erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - ) |
|---|
| 427 | n/a | 3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...] |
|---|
| 428 | n/a | |
|---|
| 429 | n/a | after the first term, the general term has the form: |
|---|
| 430 | n/a | |
|---|
| 431 | n/a | k*(k-0.5)/(2*k+0.5 + x**2 - ...). |
|---|
| 432 | n/a | |
|---|
| 433 | n/a | This expansion converges fast for larger x, but convergence becomes |
|---|
| 434 | n/a | infinitely slow as x approaches 0.0. The (somewhat naive) continued |
|---|
| 435 | n/a | fraction evaluation algorithm used below also risks overflow for large x; |
|---|
| 436 | n/a | but for large x, erfc(x) == 0.0 to within machine precision. (For |
|---|
| 437 | n/a | example, erfc(30.0) is approximately 2.56e-393). |
|---|
| 438 | n/a | |
|---|
| 439 | n/a | Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and |
|---|
| 440 | n/a | continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) < |
|---|
| 441 | n/a | ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the |
|---|
| 442 | n/a | numbers of terms to use for the relevant expansions. */ |
|---|
| 443 | n/a | |
|---|
| 444 | n/a | #define ERF_SERIES_CUTOFF 1.5 |
|---|
| 445 | n/a | #define ERF_SERIES_TERMS 25 |
|---|
| 446 | n/a | #define ERFC_CONTFRAC_CUTOFF 30.0 |
|---|
| 447 | n/a | #define ERFC_CONTFRAC_TERMS 50 |
|---|
| 448 | n/a | |
|---|
| 449 | n/a | /* |
|---|
| 450 | n/a | Error function, via power series. |
|---|
| 451 | n/a | |
|---|
| 452 | n/a | Given a finite float x, return an approximation to erf(x). |
|---|
| 453 | n/a | Converges reasonably fast for small x. |
|---|
| 454 | n/a | */ |
|---|
| 455 | n/a | |
|---|
| 456 | n/a | static double |
|---|
| 457 | n/a | m_erf_series(double x) |
|---|
| 458 | n/a | { |
|---|
| 459 | n/a | double x2, acc, fk, result; |
|---|
| 460 | n/a | int i, saved_errno; |
|---|
| 461 | n/a | |
|---|
| 462 | n/a | x2 = x * x; |
|---|
| 463 | n/a | acc = 0.0; |
|---|
| 464 | n/a | fk = (double)ERF_SERIES_TERMS + 0.5; |
|---|
| 465 | n/a | for (i = 0; i < ERF_SERIES_TERMS; i++) { |
|---|
| 466 | n/a | acc = 2.0 + x2 * acc / fk; |
|---|
| 467 | n/a | fk -= 1.0; |
|---|
| 468 | n/a | } |
|---|
| 469 | n/a | /* Make sure the exp call doesn't affect errno; |
|---|
| 470 | n/a | see m_erfc_contfrac for more. */ |
|---|
| 471 | n/a | saved_errno = errno; |
|---|
| 472 | n/a | result = acc * x * exp(-x2) / sqrtpi; |
|---|
| 473 | n/a | errno = saved_errno; |
|---|
| 474 | n/a | return result; |
|---|
| 475 | n/a | } |
|---|
| 476 | n/a | |
|---|
| 477 | n/a | /* |
|---|
| 478 | n/a | Complementary error function, via continued fraction expansion. |
|---|
| 479 | n/a | |
|---|
| 480 | n/a | Given a positive float x, return an approximation to erfc(x). Converges |
|---|
| 481 | n/a | reasonably fast for x large (say, x > 2.0), and should be safe from |
|---|
| 482 | n/a | overflow if x and nterms are not too large. On an IEEE 754 machine, with x |
|---|
| 483 | n/a | <= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller |
|---|
| 484 | n/a | than the smallest representable nonzero float. */ |
|---|
| 485 | n/a | |
|---|
| 486 | n/a | static double |
|---|
| 487 | n/a | m_erfc_contfrac(double x) |
|---|
| 488 | n/a | { |
|---|
| 489 | n/a | double x2, a, da, p, p_last, q, q_last, b, result; |
|---|
| 490 | n/a | int i, saved_errno; |
|---|
| 491 | n/a | |
|---|
| 492 | n/a | if (x >= ERFC_CONTFRAC_CUTOFF) |
|---|
| 493 | n/a | return 0.0; |
|---|
| 494 | n/a | |
|---|
| 495 | n/a | x2 = x*x; |
|---|
| 496 | n/a | a = 0.0; |
|---|
| 497 | n/a | da = 0.5; |
|---|
| 498 | n/a | p = 1.0; p_last = 0.0; |
|---|
| 499 | n/a | q = da + x2; q_last = 1.0; |
|---|
| 500 | n/a | for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) { |
|---|
| 501 | n/a | double temp; |
|---|
| 502 | n/a | a += da; |
|---|
| 503 | n/a | da += 2.0; |
|---|
| 504 | n/a | b = da + x2; |
|---|
| 505 | n/a | temp = p; p = b*p - a*p_last; p_last = temp; |
|---|
| 506 | n/a | temp = q; q = b*q - a*q_last; q_last = temp; |
|---|
| 507 | n/a | } |
|---|
| 508 | n/a | /* Issue #8986: On some platforms, exp sets errno on underflow to zero; |
|---|
| 509 | n/a | save the current errno value so that we can restore it later. */ |
|---|
| 510 | n/a | saved_errno = errno; |
|---|
| 511 | n/a | result = p / q * x * exp(-x2) / sqrtpi; |
|---|
| 512 | n/a | errno = saved_errno; |
|---|
| 513 | n/a | return result; |
|---|
| 514 | n/a | } |
|---|
| 515 | n/a | |
|---|
| 516 | n/a | /* Error function erf(x), for general x */ |
|---|
| 517 | n/a | |
|---|
| 518 | n/a | static double |
|---|
| 519 | n/a | m_erf(double x) |
|---|
| 520 | n/a | { |
|---|
| 521 | n/a | double absx, cf; |
|---|
| 522 | n/a | |
|---|
| 523 | n/a | if (Py_IS_NAN(x)) |
|---|
| 524 | n/a | return x; |
|---|
| 525 | n/a | absx = fabs(x); |
|---|
| 526 | n/a | if (absx < ERF_SERIES_CUTOFF) |
|---|
| 527 | n/a | return m_erf_series(x); |
|---|
| 528 | n/a | else { |
|---|
| 529 | n/a | cf = m_erfc_contfrac(absx); |
|---|
| 530 | n/a | return x > 0.0 ? 1.0 - cf : cf - 1.0; |
|---|
| 531 | n/a | } |
|---|
| 532 | n/a | } |
|---|
| 533 | n/a | |
|---|
| 534 | n/a | /* Complementary error function erfc(x), for general x. */ |
|---|
| 535 | n/a | |
|---|
| 536 | n/a | static double |
|---|
| 537 | n/a | m_erfc(double x) |
|---|
| 538 | n/a | { |
|---|
| 539 | n/a | double absx, cf; |
|---|
| 540 | n/a | |
|---|
| 541 | n/a | if (Py_IS_NAN(x)) |
|---|
| 542 | n/a | return x; |
|---|
| 543 | n/a | absx = fabs(x); |
|---|
| 544 | n/a | if (absx < ERF_SERIES_CUTOFF) |
|---|
| 545 | n/a | return 1.0 - m_erf_series(x); |
|---|
| 546 | n/a | else { |
|---|
| 547 | n/a | cf = m_erfc_contfrac(absx); |
|---|
| 548 | n/a | return x > 0.0 ? cf : 2.0 - cf; |
|---|
| 549 | n/a | } |
|---|
| 550 | n/a | } |
|---|
| 551 | n/a | |
|---|
| 552 | n/a | /* |
|---|
| 553 | n/a | wrapper for atan2 that deals directly with special cases before |
|---|
| 554 | n/a | delegating to the platform libm for the remaining cases. This |
|---|
| 555 | n/a | is necessary to get consistent behaviour across platforms. |
|---|
| 556 | n/a | Windows, FreeBSD and alpha Tru64 are amongst platforms that don't |
|---|
| 557 | n/a | always follow C99. |
|---|
| 558 | n/a | */ |
|---|
| 559 | n/a | |
|---|
| 560 | n/a | static double |
|---|
| 561 | n/a | m_atan2(double y, double x) |
|---|
| 562 | n/a | { |
|---|
| 563 | n/a | if (Py_IS_NAN(x) || Py_IS_NAN(y)) |
|---|
| 564 | n/a | return Py_NAN; |
|---|
| 565 | n/a | if (Py_IS_INFINITY(y)) { |
|---|
| 566 | n/a | if (Py_IS_INFINITY(x)) { |
|---|
| 567 | n/a | if (copysign(1., x) == 1.) |
|---|
| 568 | n/a | /* atan2(+-inf, +inf) == +-pi/4 */ |
|---|
| 569 | n/a | return copysign(0.25*Py_MATH_PI, y); |
|---|
| 570 | n/a | else |
|---|
| 571 | n/a | /* atan2(+-inf, -inf) == +-pi*3/4 */ |
|---|
| 572 | n/a | return copysign(0.75*Py_MATH_PI, y); |
|---|
| 573 | n/a | } |
|---|
| 574 | n/a | /* atan2(+-inf, x) == +-pi/2 for finite x */ |
|---|
| 575 | n/a | return copysign(0.5*Py_MATH_PI, y); |
|---|
| 576 | n/a | } |
|---|
| 577 | n/a | if (Py_IS_INFINITY(x) || y == 0.) { |
|---|
| 578 | n/a | if (copysign(1., x) == 1.) |
|---|
| 579 | n/a | /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */ |
|---|
| 580 | n/a | return copysign(0., y); |
|---|
| 581 | n/a | else |
|---|
| 582 | n/a | /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */ |
|---|
| 583 | n/a | return copysign(Py_MATH_PI, y); |
|---|
| 584 | n/a | } |
|---|
| 585 | n/a | return atan2(y, x); |
|---|
| 586 | n/a | } |
|---|
| 587 | n/a | |
|---|
| 588 | n/a | /* |
|---|
| 589 | n/a | Various platforms (Solaris, OpenBSD) do nonstandard things for log(0), |
|---|
| 590 | n/a | log(-ve), log(NaN). Here are wrappers for log and log10 that deal with |
|---|
| 591 | n/a | special values directly, passing positive non-special values through to |
|---|
| 592 | n/a | the system log/log10. |
|---|
| 593 | n/a | */ |
|---|
| 594 | n/a | |
|---|
| 595 | n/a | static double |
|---|
| 596 | n/a | m_log(double x) |
|---|
| 597 | n/a | { |
|---|
| 598 | n/a | if (Py_IS_FINITE(x)) { |
|---|
| 599 | n/a | if (x > 0.0) |
|---|
| 600 | n/a | return log(x); |
|---|
| 601 | n/a | errno = EDOM; |
|---|
| 602 | n/a | if (x == 0.0) |
|---|
| 603 | n/a | return -Py_HUGE_VAL; /* log(0) = -inf */ |
|---|
| 604 | n/a | else |
|---|
| 605 | n/a | return Py_NAN; /* log(-ve) = nan */ |
|---|
| 606 | n/a | } |
|---|
| 607 | n/a | else if (Py_IS_NAN(x)) |
|---|
| 608 | n/a | return x; /* log(nan) = nan */ |
|---|
| 609 | n/a | else if (x > 0.0) |
|---|
| 610 | n/a | return x; /* log(inf) = inf */ |
|---|
| 611 | n/a | else { |
|---|
| 612 | n/a | errno = EDOM; |
|---|
| 613 | n/a | return Py_NAN; /* log(-inf) = nan */ |
|---|
| 614 | n/a | } |
|---|
| 615 | n/a | } |
|---|
| 616 | n/a | |
|---|
| 617 | n/a | /* |
|---|
| 618 | n/a | log2: log to base 2. |
|---|
| 619 | n/a | |
|---|
| 620 | n/a | Uses an algorithm that should: |
|---|
| 621 | n/a | |
|---|
| 622 | n/a | (a) produce exact results for powers of 2, and |
|---|
| 623 | n/a | (b) give a monotonic log2 (for positive finite floats), |
|---|
| 624 | n/a | assuming that the system log is monotonic. |
|---|
| 625 | n/a | */ |
|---|
| 626 | n/a | |
|---|
| 627 | n/a | static double |
|---|
| 628 | n/a | m_log2(double x) |
|---|
| 629 | n/a | { |
|---|
| 630 | n/a | if (!Py_IS_FINITE(x)) { |
|---|
| 631 | n/a | if (Py_IS_NAN(x)) |
|---|
| 632 | n/a | return x; /* log2(nan) = nan */ |
|---|
| 633 | n/a | else if (x > 0.0) |
|---|
| 634 | n/a | return x; /* log2(+inf) = +inf */ |
|---|
| 635 | n/a | else { |
|---|
| 636 | n/a | errno = EDOM; |
|---|
| 637 | n/a | return Py_NAN; /* log2(-inf) = nan, invalid-operation */ |
|---|
| 638 | n/a | } |
|---|
| 639 | n/a | } |
|---|
| 640 | n/a | |
|---|
| 641 | n/a | if (x > 0.0) { |
|---|
| 642 | n/a | #ifdef HAVE_LOG2 |
|---|
| 643 | n/a | return log2(x); |
|---|
| 644 | n/a | #else |
|---|
| 645 | n/a | double m; |
|---|
| 646 | n/a | int e; |
|---|
| 647 | n/a | m = frexp(x, &e); |
|---|
| 648 | n/a | /* We want log2(m * 2**e) == log(m) / log(2) + e. Care is needed when |
|---|
| 649 | n/a | * x is just greater than 1.0: in that case e is 1, log(m) is negative, |
|---|
| 650 | n/a | * and we get significant cancellation error from the addition of |
|---|
| 651 | n/a | * log(m) / log(2) to e. The slight rewrite of the expression below |
|---|
| 652 | n/a | * avoids this problem. |
|---|
| 653 | n/a | */ |
|---|
| 654 | n/a | if (x >= 1.0) { |
|---|
| 655 | n/a | return log(2.0 * m) / log(2.0) + (e - 1); |
|---|
| 656 | n/a | } |
|---|
| 657 | n/a | else { |
|---|
| 658 | n/a | return log(m) / log(2.0) + e; |
|---|
| 659 | n/a | } |
|---|
| 660 | n/a | #endif |
|---|
| 661 | n/a | } |
|---|
| 662 | n/a | else if (x == 0.0) { |
|---|
| 663 | n/a | errno = EDOM; |
|---|
| 664 | n/a | return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */ |
|---|
| 665 | n/a | } |
|---|
| 666 | n/a | else { |
|---|
| 667 | n/a | errno = EDOM; |
|---|
| 668 | n/a | return Py_NAN; /* log2(-inf) = nan, invalid-operation */ |
|---|
| 669 | n/a | } |
|---|
| 670 | n/a | } |
|---|
| 671 | n/a | |
|---|
| 672 | n/a | static double |
|---|
| 673 | n/a | m_log10(double x) |
|---|
| 674 | n/a | { |
|---|
| 675 | n/a | if (Py_IS_FINITE(x)) { |
|---|
| 676 | n/a | if (x > 0.0) |
|---|
| 677 | n/a | return log10(x); |
|---|
| 678 | n/a | errno = EDOM; |
|---|
| 679 | n/a | if (x == 0.0) |
|---|
| 680 | n/a | return -Py_HUGE_VAL; /* log10(0) = -inf */ |
|---|
| 681 | n/a | else |
|---|
| 682 | n/a | return Py_NAN; /* log10(-ve) = nan */ |
|---|
| 683 | n/a | } |
|---|
| 684 | n/a | else if (Py_IS_NAN(x)) |
|---|
| 685 | n/a | return x; /* log10(nan) = nan */ |
|---|
| 686 | n/a | else if (x > 0.0) |
|---|
| 687 | n/a | return x; /* log10(inf) = inf */ |
|---|
| 688 | n/a | else { |
|---|
| 689 | n/a | errno = EDOM; |
|---|
| 690 | n/a | return Py_NAN; /* log10(-inf) = nan */ |
|---|
| 691 | n/a | } |
|---|
| 692 | n/a | } |
|---|
| 693 | n/a | |
|---|
| 694 | n/a | |
|---|
| 695 | n/a | /*[clinic input] |
|---|
| 696 | n/a | math.gcd |
|---|
| 697 | n/a | |
|---|
| 698 | n/a | x as a: object |
|---|
| 699 | n/a | y as b: object |
|---|
| 700 | n/a | / |
|---|
| 701 | n/a | |
|---|
| 702 | n/a | greatest common divisor of x and y |
|---|
| 703 | n/a | [clinic start generated code]*/ |
|---|
| 704 | n/a | |
|---|
| 705 | n/a | static PyObject * |
|---|
| 706 | n/a | math_gcd_impl(PyObject *module, PyObject *a, PyObject *b) |
|---|
| 707 | n/a | /*[clinic end generated code: output=7b2e0c151bd7a5d8 input=c2691e57fb2a98fa]*/ |
|---|
| 708 | n/a | { |
|---|
| 709 | n/a | PyObject *g; |
|---|
| 710 | n/a | |
|---|
| 711 | n/a | a = PyNumber_Index(a); |
|---|
| 712 | n/a | if (a == NULL) |
|---|
| 713 | n/a | return NULL; |
|---|
| 714 | n/a | b = PyNumber_Index(b); |
|---|
| 715 | n/a | if (b == NULL) { |
|---|
| 716 | n/a | Py_DECREF(a); |
|---|
| 717 | n/a | return NULL; |
|---|
| 718 | n/a | } |
|---|
| 719 | n/a | g = _PyLong_GCD(a, b); |
|---|
| 720 | n/a | Py_DECREF(a); |
|---|
| 721 | n/a | Py_DECREF(b); |
|---|
| 722 | n/a | return g; |
|---|
| 723 | n/a | } |
|---|
| 724 | n/a | |
|---|
| 725 | n/a | |
|---|
| 726 | n/a | /* Call is_error when errno != 0, and where x is the result libm |
|---|
| 727 | n/a | * returned. is_error will usually set up an exception and return |
|---|
| 728 | n/a | * true (1), but may return false (0) without setting up an exception. |
|---|
| 729 | n/a | */ |
|---|
| 730 | n/a | static int |
|---|
| 731 | n/a | is_error(double x) |
|---|
| 732 | n/a | { |
|---|
| 733 | n/a | int result = 1; /* presumption of guilt */ |
|---|
| 734 | n/a | assert(errno); /* non-zero errno is a precondition for calling */ |
|---|
| 735 | n/a | if (errno == EDOM) |
|---|
| 736 | n/a | PyErr_SetString(PyExc_ValueError, "math domain error"); |
|---|
| 737 | n/a | |
|---|
| 738 | n/a | else if (errno == ERANGE) { |
|---|
| 739 | n/a | /* ANSI C generally requires libm functions to set ERANGE |
|---|
| 740 | n/a | * on overflow, but also generally *allows* them to set |
|---|
| 741 | n/a | * ERANGE on underflow too. There's no consistency about |
|---|
| 742 | n/a | * the latter across platforms. |
|---|
| 743 | n/a | * Alas, C99 never requires that errno be set. |
|---|
| 744 | n/a | * Here we suppress the underflow errors (libm functions |
|---|
| 745 | n/a | * should return a zero on underflow, and +- HUGE_VAL on |
|---|
| 746 | n/a | * overflow, so testing the result for zero suffices to |
|---|
| 747 | n/a | * distinguish the cases). |
|---|
| 748 | n/a | * |
|---|
| 749 | n/a | * On some platforms (Ubuntu/ia64) it seems that errno can be |
|---|
| 750 | n/a | * set to ERANGE for subnormal results that do *not* underflow |
|---|
| 751 | n/a | * to zero. So to be safe, we'll ignore ERANGE whenever the |
|---|
| 752 | n/a | * function result is less than one in absolute value. |
|---|
| 753 | n/a | */ |
|---|
| 754 | n/a | if (fabs(x) < 1.0) |
|---|
| 755 | n/a | result = 0; |
|---|
| 756 | n/a | else |
|---|
| 757 | n/a | PyErr_SetString(PyExc_OverflowError, |
|---|
| 758 | n/a | "math range error"); |
|---|
| 759 | n/a | } |
|---|
| 760 | n/a | else |
|---|
| 761 | n/a | /* Unexpected math error */ |
|---|
| 762 | n/a | PyErr_SetFromErrno(PyExc_ValueError); |
|---|
| 763 | n/a | return result; |
|---|
| 764 | n/a | } |
|---|
| 765 | n/a | |
|---|
| 766 | n/a | /* |
|---|
| 767 | n/a | math_1 is used to wrap a libm function f that takes a double |
|---|
| 768 | n/a | argument and returns a double. |
|---|
| 769 | n/a | |
|---|
| 770 | n/a | The error reporting follows these rules, which are designed to do |
|---|
| 771 | n/a | the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 |
|---|
| 772 | n/a | platforms. |
|---|
| 773 | n/a | |
|---|
| 774 | n/a | - a NaN result from non-NaN inputs causes ValueError to be raised |
|---|
| 775 | n/a | - an infinite result from finite inputs causes OverflowError to be |
|---|
| 776 | n/a | raised if can_overflow is 1, or raises ValueError if can_overflow |
|---|
| 777 | n/a | is 0. |
|---|
| 778 | n/a | - if the result is finite and errno == EDOM then ValueError is |
|---|
| 779 | n/a | raised |
|---|
| 780 | n/a | - if the result is finite and nonzero and errno == ERANGE then |
|---|
| 781 | n/a | OverflowError is raised |
|---|
| 782 | n/a | |
|---|
| 783 | n/a | The last rule is used to catch overflow on platforms which follow |
|---|
| 784 | n/a | C89 but for which HUGE_VAL is not an infinity. |
|---|
| 785 | n/a | |
|---|
| 786 | n/a | For the majority of one-argument functions these rules are enough |
|---|
| 787 | n/a | to ensure that Python's functions behave as specified in 'Annex F' |
|---|
| 788 | n/a | of the C99 standard, with the 'invalid' and 'divide-by-zero' |
|---|
| 789 | n/a | floating-point exceptions mapping to Python's ValueError and the |
|---|
| 790 | n/a | 'overflow' floating-point exception mapping to OverflowError. |
|---|
| 791 | n/a | math_1 only works for functions that don't have singularities *and* |
|---|
| 792 | n/a | the possibility of overflow; fortunately, that covers everything we |
|---|
| 793 | n/a | care about right now. |
|---|
| 794 | n/a | */ |
|---|
| 795 | n/a | |
|---|
| 796 | n/a | static PyObject * |
|---|
| 797 | n/a | math_1_to_whatever(PyObject *arg, double (*func) (double), |
|---|
| 798 | n/a | PyObject *(*from_double_func) (double), |
|---|
| 799 | n/a | int can_overflow) |
|---|
| 800 | n/a | { |
|---|
| 801 | n/a | double x, r; |
|---|
| 802 | n/a | x = PyFloat_AsDouble(arg); |
|---|
| 803 | n/a | if (x == -1.0 && PyErr_Occurred()) |
|---|
| 804 | n/a | return NULL; |
|---|
| 805 | n/a | errno = 0; |
|---|
| 806 | n/a | PyFPE_START_PROTECT("in math_1", return 0); |
|---|
| 807 | n/a | r = (*func)(x); |
|---|
| 808 | n/a | PyFPE_END_PROTECT(r); |
|---|
| 809 | n/a | if (Py_IS_NAN(r) && !Py_IS_NAN(x)) { |
|---|
| 810 | n/a | PyErr_SetString(PyExc_ValueError, |
|---|
| 811 | n/a | "math domain error"); /* invalid arg */ |
|---|
| 812 | n/a | return NULL; |
|---|
| 813 | n/a | } |
|---|
| 814 | n/a | if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) { |
|---|
| 815 | n/a | if (can_overflow) |
|---|
| 816 | n/a | PyErr_SetString(PyExc_OverflowError, |
|---|
| 817 | n/a | "math range error"); /* overflow */ |
|---|
| 818 | n/a | else |
|---|
| 819 | n/a | PyErr_SetString(PyExc_ValueError, |
|---|
| 820 | n/a | "math domain error"); /* singularity */ |
|---|
| 821 | n/a | return NULL; |
|---|
| 822 | n/a | } |
|---|
| 823 | n/a | if (Py_IS_FINITE(r) && errno && is_error(r)) |
|---|
| 824 | n/a | /* this branch unnecessary on most platforms */ |
|---|
| 825 | n/a | return NULL; |
|---|
| 826 | n/a | |
|---|
| 827 | n/a | return (*from_double_func)(r); |
|---|
| 828 | n/a | } |
|---|
| 829 | n/a | |
|---|
| 830 | n/a | /* variant of math_1, to be used when the function being wrapped is known to |
|---|
| 831 | n/a | set errno properly (that is, errno = EDOM for invalid or divide-by-zero, |
|---|
| 832 | n/a | errno = ERANGE for overflow). */ |
|---|
| 833 | n/a | |
|---|
| 834 | n/a | static PyObject * |
|---|
| 835 | n/a | math_1a(PyObject *arg, double (*func) (double)) |
|---|
| 836 | n/a | { |
|---|
| 837 | n/a | double x, r; |
|---|
| 838 | n/a | x = PyFloat_AsDouble(arg); |
|---|
| 839 | n/a | if (x == -1.0 && PyErr_Occurred()) |
|---|
| 840 | n/a | return NULL; |
|---|
| 841 | n/a | errno = 0; |
|---|
| 842 | n/a | PyFPE_START_PROTECT("in math_1a", return 0); |
|---|
| 843 | n/a | r = (*func)(x); |
|---|
| 844 | n/a | PyFPE_END_PROTECT(r); |
|---|
| 845 | n/a | if (errno && is_error(r)) |
|---|
| 846 | n/a | return NULL; |
|---|
| 847 | n/a | return PyFloat_FromDouble(r); |
|---|
| 848 | n/a | } |
|---|
| 849 | n/a | |
|---|
| 850 | n/a | /* |
|---|
| 851 | n/a | math_2 is used to wrap a libm function f that takes two double |
|---|
| 852 | n/a | arguments and returns a double. |
|---|
| 853 | n/a | |
|---|
| 854 | n/a | The error reporting follows these rules, which are designed to do |
|---|
| 855 | n/a | the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 |
|---|
| 856 | n/a | platforms. |
|---|
| 857 | n/a | |
|---|
| 858 | n/a | - a NaN result from non-NaN inputs causes ValueError to be raised |
|---|
| 859 | n/a | - an infinite result from finite inputs causes OverflowError to be |
|---|
| 860 | n/a | raised. |
|---|
| 861 | n/a | - if the result is finite and errno == EDOM then ValueError is |
|---|
| 862 | n/a | raised |
|---|
| 863 | n/a | - if the result is finite and nonzero and errno == ERANGE then |
|---|
| 864 | n/a | OverflowError is raised |
|---|
| 865 | n/a | |
|---|
| 866 | n/a | The last rule is used to catch overflow on platforms which follow |
|---|
| 867 | n/a | C89 but for which HUGE_VAL is not an infinity. |
|---|
| 868 | n/a | |
|---|
| 869 | n/a | For most two-argument functions (copysign, fmod, hypot, atan2) |
|---|
| 870 | n/a | these rules are enough to ensure that Python's functions behave as |
|---|
| 871 | n/a | specified in 'Annex F' of the C99 standard, with the 'invalid' and |
|---|
| 872 | n/a | 'divide-by-zero' floating-point exceptions mapping to Python's |
|---|
| 873 | n/a | ValueError and the 'overflow' floating-point exception mapping to |
|---|
| 874 | n/a | OverflowError. |
|---|
| 875 | n/a | */ |
|---|
| 876 | n/a | |
|---|
| 877 | n/a | static PyObject * |
|---|
| 878 | n/a | math_1(PyObject *arg, double (*func) (double), int can_overflow) |
|---|
| 879 | n/a | { |
|---|
| 880 | n/a | return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow); |
|---|
| 881 | n/a | } |
|---|
| 882 | n/a | |
|---|
| 883 | n/a | static PyObject * |
|---|
| 884 | n/a | math_1_to_int(PyObject *arg, double (*func) (double), int can_overflow) |
|---|
| 885 | n/a | { |
|---|
| 886 | n/a | return math_1_to_whatever(arg, func, PyLong_FromDouble, can_overflow); |
|---|
| 887 | n/a | } |
|---|
| 888 | n/a | |
|---|
| 889 | n/a | static PyObject * |
|---|
| 890 | n/a | math_2(PyObject *args, double (*func) (double, double), const char *funcname) |
|---|
| 891 | n/a | { |
|---|
| 892 | n/a | PyObject *ox, *oy; |
|---|
| 893 | n/a | double x, y, r; |
|---|
| 894 | n/a | if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy)) |
|---|
| 895 | n/a | return NULL; |
|---|
| 896 | n/a | x = PyFloat_AsDouble(ox); |
|---|
| 897 | n/a | y = PyFloat_AsDouble(oy); |
|---|
| 898 | n/a | if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) |
|---|
| 899 | n/a | return NULL; |
|---|
| 900 | n/a | errno = 0; |
|---|
| 901 | n/a | PyFPE_START_PROTECT("in math_2", return 0); |
|---|
| 902 | n/a | r = (*func)(x, y); |
|---|
| 903 | n/a | PyFPE_END_PROTECT(r); |
|---|
| 904 | n/a | if (Py_IS_NAN(r)) { |
|---|
| 905 | n/a | if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) |
|---|
| 906 | n/a | errno = EDOM; |
|---|
| 907 | n/a | else |
|---|
| 908 | n/a | errno = 0; |
|---|
| 909 | n/a | } |
|---|
| 910 | n/a | else if (Py_IS_INFINITY(r)) { |
|---|
| 911 | n/a | if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) |
|---|
| 912 | n/a | errno = ERANGE; |
|---|
| 913 | n/a | else |
|---|
| 914 | n/a | errno = 0; |
|---|
| 915 | n/a | } |
|---|
| 916 | n/a | if (errno && is_error(r)) |
|---|
| 917 | n/a | return NULL; |
|---|
| 918 | n/a | else |
|---|
| 919 | n/a | return PyFloat_FromDouble(r); |
|---|
| 920 | n/a | } |
|---|
| 921 | n/a | |
|---|
| 922 | n/a | #define FUNC1(funcname, func, can_overflow, docstring) \ |
|---|
| 923 | n/a | static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ |
|---|
| 924 | n/a | return math_1(args, func, can_overflow); \ |
|---|
| 925 | n/a | }\ |
|---|
| 926 | n/a | PyDoc_STRVAR(math_##funcname##_doc, docstring); |
|---|
| 927 | n/a | |
|---|
| 928 | n/a | #define FUNC1A(funcname, func, docstring) \ |
|---|
| 929 | n/a | static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ |
|---|
| 930 | n/a | return math_1a(args, func); \ |
|---|
| 931 | n/a | }\ |
|---|
| 932 | n/a | PyDoc_STRVAR(math_##funcname##_doc, docstring); |
|---|
| 933 | n/a | |
|---|
| 934 | n/a | #define FUNC2(funcname, func, docstring) \ |
|---|
| 935 | n/a | static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ |
|---|
| 936 | n/a | return math_2(args, func, #funcname); \ |
|---|
| 937 | n/a | }\ |
|---|
| 938 | n/a | PyDoc_STRVAR(math_##funcname##_doc, docstring); |
|---|
| 939 | n/a | |
|---|
| 940 | n/a | FUNC1(acos, acos, 0, |
|---|
| 941 | n/a | "acos($module, x, /)\n--\n\n" |
|---|
| 942 | n/a | "Return the arc cosine (measured in radians) of x.") |
|---|
| 943 | n/a | FUNC1(acosh, m_acosh, 0, |
|---|
| 944 | n/a | "acosh($module, x, /)\n--\n\n" |
|---|
| 945 | n/a | "Return the inverse hyperbolic cosine of x.") |
|---|
| 946 | n/a | FUNC1(asin, asin, 0, |
|---|
| 947 | n/a | "asin($module, x, /)\n--\n\n" |
|---|
| 948 | n/a | "Return the arc sine (measured in radians) of x.") |
|---|
| 949 | n/a | FUNC1(asinh, m_asinh, 0, |
|---|
| 950 | n/a | "asinh($module, x, /)\n--\n\n" |
|---|
| 951 | n/a | "Return the inverse hyperbolic sine of x.") |
|---|
| 952 | n/a | FUNC1(atan, atan, 0, |
|---|
| 953 | n/a | "atan($module, x, /)\n--\n\n" |
|---|
| 954 | n/a | "Return the arc tangent (measured in radians) of x.") |
|---|
| 955 | n/a | FUNC2(atan2, m_atan2, |
|---|
| 956 | n/a | "atan2($module, y, x, /)\n--\n\n" |
|---|
| 957 | n/a | "Return the arc tangent (measured in radians) of y/x.\n\n" |
|---|
| 958 | n/a | "Unlike atan(y/x), the signs of both x and y are considered.") |
|---|
| 959 | n/a | FUNC1(atanh, m_atanh, 0, |
|---|
| 960 | n/a | "atanh($module, x, /)\n--\n\n" |
|---|
| 961 | n/a | "Return the inverse hyperbolic tangent of x.") |
|---|
| 962 | n/a | |
|---|
| 963 | n/a | /*[clinic input] |
|---|
| 964 | n/a | math.ceil |
|---|
| 965 | n/a | |
|---|
| 966 | n/a | x as number: object |
|---|
| 967 | n/a | / |
|---|
| 968 | n/a | |
|---|
| 969 | n/a | Return the ceiling of x as an Integral. |
|---|
| 970 | n/a | |
|---|
| 971 | n/a | This is the smallest integer >= x. |
|---|
| 972 | n/a | [clinic start generated code]*/ |
|---|
| 973 | n/a | |
|---|
| 974 | n/a | static PyObject * |
|---|
| 975 | n/a | math_ceil(PyObject *module, PyObject *number) |
|---|
| 976 | n/a | /*[clinic end generated code: output=6c3b8a78bc201c67 input=2725352806399cab]*/ |
|---|
| 977 | n/a | { |
|---|
| 978 | n/a | _Py_IDENTIFIER(__ceil__); |
|---|
| 979 | n/a | PyObject *method, *result; |
|---|
| 980 | n/a | |
|---|
| 981 | n/a | method = _PyObject_LookupSpecial(number, &PyId___ceil__); |
|---|
| 982 | n/a | if (method == NULL) { |
|---|
| 983 | n/a | if (PyErr_Occurred()) |
|---|
| 984 | n/a | return NULL; |
|---|
| 985 | n/a | return math_1_to_int(number, ceil, 0); |
|---|
| 986 | n/a | } |
|---|
| 987 | n/a | result = _PyObject_CallNoArg(method); |
|---|
| 988 | n/a | Py_DECREF(method); |
|---|
| 989 | n/a | return result; |
|---|
| 990 | n/a | } |
|---|
| 991 | n/a | |
|---|
| 992 | n/a | FUNC2(copysign, copysign, |
|---|
| 993 | n/a | "copysign($module, x, y, /)\n--\n\n" |
|---|
| 994 | n/a | "Return a float with the magnitude (absolute value) of x but the sign of y.\n\n" |
|---|
| 995 | n/a | "On platforms that support signed zeros, copysign(1.0, -0.0)\n" |
|---|
| 996 | n/a | "returns -1.0.\n") |
|---|
| 997 | n/a | FUNC1(cos, cos, 0, |
|---|
| 998 | n/a | "cos($module, x, /)\n--\n\n" |
|---|
| 999 | n/a | "Return the cosine of x (measured in radians).") |
|---|
| 1000 | n/a | FUNC1(cosh, cosh, 1, |
|---|
| 1001 | n/a | "cosh($module, x, /)\n--\n\n" |
|---|
| 1002 | n/a | "Return the hyperbolic cosine of x.") |
|---|
| 1003 | n/a | FUNC1A(erf, m_erf, |
|---|
| 1004 | n/a | "erf($module, x, /)\n--\n\n" |
|---|
| 1005 | n/a | "Error function at x.") |
|---|
| 1006 | n/a | FUNC1A(erfc, m_erfc, |
|---|
| 1007 | n/a | "erfc($module, x, /)\n--\n\n" |
|---|
| 1008 | n/a | "Complementary error function at x.") |
|---|
| 1009 | n/a | FUNC1(exp, exp, 1, |
|---|
| 1010 | n/a | "exp($module, x, /)\n--\n\n" |
|---|
| 1011 | n/a | "Return e raised to the power of x.") |
|---|
| 1012 | n/a | FUNC1(expm1, m_expm1, 1, |
|---|
| 1013 | n/a | "expm1($module, x, /)\n--\n\n" |
|---|
| 1014 | n/a | "Return exp(x)-1.\n\n" |
|---|
| 1015 | n/a | "This function avoids the loss of precision involved in the direct " |
|---|
| 1016 | n/a | "evaluation of exp(x)-1 for small x.") |
|---|
| 1017 | n/a | FUNC1(fabs, fabs, 0, |
|---|
| 1018 | n/a | "fabs($module, x, /)\n--\n\n" |
|---|
| 1019 | n/a | "Return the absolute value of the float x.") |
|---|
| 1020 | n/a | |
|---|
| 1021 | n/a | /*[clinic input] |
|---|
| 1022 | n/a | math.floor |
|---|
| 1023 | n/a | |
|---|
| 1024 | n/a | x as number: object |
|---|
| 1025 | n/a | / |
|---|
| 1026 | n/a | |
|---|
| 1027 | n/a | Return the floor of x as an Integral. |
|---|
| 1028 | n/a | |
|---|
| 1029 | n/a | This is the largest integer <= x. |
|---|
| 1030 | n/a | [clinic start generated code]*/ |
|---|
| 1031 | n/a | |
|---|
| 1032 | n/a | static PyObject * |
|---|
| 1033 | n/a | math_floor(PyObject *module, PyObject *number) |
|---|
| 1034 | n/a | /*[clinic end generated code: output=c6a65c4884884b8a input=63af6b5d7ebcc3d6]*/ |
|---|
| 1035 | n/a | { |
|---|
| 1036 | n/a | _Py_IDENTIFIER(__floor__); |
|---|
| 1037 | n/a | PyObject *method, *result; |
|---|
| 1038 | n/a | |
|---|
| 1039 | n/a | method = _PyObject_LookupSpecial(number, &PyId___floor__); |
|---|
| 1040 | n/a | if (method == NULL) { |
|---|
| 1041 | n/a | if (PyErr_Occurred()) |
|---|
| 1042 | n/a | return NULL; |
|---|
| 1043 | n/a | return math_1_to_int(number, floor, 0); |
|---|
| 1044 | n/a | } |
|---|
| 1045 | n/a | result = _PyObject_CallNoArg(method); |
|---|
| 1046 | n/a | Py_DECREF(method); |
|---|
| 1047 | n/a | return result; |
|---|
| 1048 | n/a | } |
|---|
| 1049 | n/a | |
|---|
| 1050 | n/a | FUNC1A(gamma, m_tgamma, |
|---|
| 1051 | n/a | "gamma($module, x, /)\n--\n\n" |
|---|
| 1052 | n/a | "Gamma function at x.") |
|---|
| 1053 | n/a | FUNC1A(lgamma, m_lgamma, |
|---|
| 1054 | n/a | "lgamma($module, x, /)\n--\n\n" |
|---|
| 1055 | n/a | "Natural logarithm of absolute value of Gamma function at x.") |
|---|
| 1056 | n/a | FUNC1(log1p, m_log1p, 0, |
|---|
| 1057 | n/a | "log1p($module, x, /)\n--\n\n" |
|---|
| 1058 | n/a | "Return the natural logarithm of 1+x (base e).\n\n" |
|---|
| 1059 | n/a | "The result is computed in a way which is accurate for x near zero.") |
|---|
| 1060 | n/a | FUNC1(sin, sin, 0, |
|---|
| 1061 | n/a | "sin($module, x, /)\n--\n\n" |
|---|
| 1062 | n/a | "Return the sine of x (measured in radians).") |
|---|
| 1063 | n/a | FUNC1(sinh, sinh, 1, |
|---|
| 1064 | n/a | "sinh($module, x, /)\n--\n\n" |
|---|
| 1065 | n/a | "Return the hyperbolic sine of x.") |
|---|
| 1066 | n/a | FUNC1(sqrt, sqrt, 0, |
|---|
| 1067 | n/a | "sqrt($module, x, /)\n--\n\n" |
|---|
| 1068 | n/a | "Return the square root of x.") |
|---|
| 1069 | n/a | FUNC1(tan, tan, 0, |
|---|
| 1070 | n/a | "tan($module, x, /)\n--\n\n" |
|---|
| 1071 | n/a | "Return the tangent of x (measured in radians).") |
|---|
| 1072 | n/a | FUNC1(tanh, tanh, 0, |
|---|
| 1073 | n/a | "tanh($module, x, /)\n--\n\n" |
|---|
| 1074 | n/a | "Return the hyperbolic tangent of x.") |
|---|
| 1075 | n/a | |
|---|
| 1076 | n/a | /* Precision summation function as msum() by Raymond Hettinger in |
|---|
| 1077 | n/a | <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>, |
|---|
| 1078 | n/a | enhanced with the exact partials sum and roundoff from Mark |
|---|
| 1079 | n/a | Dickinson's post at <http://bugs.python.org/file10357/msum4.py>. |
|---|
| 1080 | n/a | See those links for more details, proofs and other references. |
|---|
| 1081 | n/a | |
|---|
| 1082 | n/a | Note 1: IEEE 754R floating point semantics are assumed, |
|---|
| 1083 | n/a | but the current implementation does not re-establish special |
|---|
| 1084 | n/a | value semantics across iterations (i.e. handling -Inf + Inf). |
|---|
| 1085 | n/a | |
|---|
| 1086 | n/a | Note 2: No provision is made for intermediate overflow handling; |
|---|
| 1087 | n/a | therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while |
|---|
| 1088 | n/a | sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the |
|---|
| 1089 | n/a | overflow of the first partial sum. |
|---|
| 1090 | n/a | |
|---|
| 1091 | n/a | Note 3: The intermediate values lo, yr, and hi are declared volatile so |
|---|
| 1092 | n/a | aggressive compilers won't algebraically reduce lo to always be exactly 0.0. |
|---|
| 1093 | n/a | Also, the volatile declaration forces the values to be stored in memory as |
|---|
| 1094 | n/a | regular doubles instead of extended long precision (80-bit) values. This |
|---|
| 1095 | n/a | prevents double rounding because any addition or subtraction of two doubles |
|---|
| 1096 | n/a | can be resolved exactly into double-sized hi and lo values. As long as the |
|---|
| 1097 | n/a | hi value gets forced into a double before yr and lo are computed, the extra |
|---|
| 1098 | n/a | bits in downstream extended precision operations (x87 for example) will be |
|---|
| 1099 | n/a | exactly zero and therefore can be losslessly stored back into a double, |
|---|
| 1100 | n/a | thereby preventing double rounding. |
|---|
| 1101 | n/a | |
|---|
| 1102 | n/a | Note 4: A similar implementation is in Modules/cmathmodule.c. |
|---|
| 1103 | n/a | Be sure to update both when making changes. |
|---|
| 1104 | n/a | |
|---|
| 1105 | n/a | Note 5: The signature of math.fsum() differs from builtins.sum() |
|---|
| 1106 | n/a | because the start argument doesn't make sense in the context of |
|---|
| 1107 | n/a | accurate summation. Since the partials table is collapsed before |
|---|
| 1108 | n/a | returning a result, sum(seq2, start=sum(seq1)) may not equal the |
|---|
| 1109 | n/a | accurate result returned by sum(itertools.chain(seq1, seq2)). |
|---|
| 1110 | n/a | */ |
|---|
| 1111 | n/a | |
|---|
| 1112 | n/a | #define NUM_PARTIALS 32 /* initial partials array size, on stack */ |
|---|
| 1113 | n/a | |
|---|
| 1114 | n/a | /* Extend the partials array p[] by doubling its size. */ |
|---|
| 1115 | n/a | static int /* non-zero on error */ |
|---|
| 1116 | n/a | _fsum_realloc(double **p_ptr, Py_ssize_t n, |
|---|
| 1117 | n/a | double *ps, Py_ssize_t *m_ptr) |
|---|
| 1118 | n/a | { |
|---|
| 1119 | n/a | void *v = NULL; |
|---|
| 1120 | n/a | Py_ssize_t m = *m_ptr; |
|---|
| 1121 | n/a | |
|---|
| 1122 | n/a | m += m; /* double */ |
|---|
| 1123 | n/a | if (n < m && (size_t)m < ((size_t)PY_SSIZE_T_MAX / sizeof(double))) { |
|---|
| 1124 | n/a | double *p = *p_ptr; |
|---|
| 1125 | n/a | if (p == ps) { |
|---|
| 1126 | n/a | v = PyMem_Malloc(sizeof(double) * m); |
|---|
| 1127 | n/a | if (v != NULL) |
|---|
| 1128 | n/a | memcpy(v, ps, sizeof(double) * n); |
|---|
| 1129 | n/a | } |
|---|
| 1130 | n/a | else |
|---|
| 1131 | n/a | v = PyMem_Realloc(p, sizeof(double) * m); |
|---|
| 1132 | n/a | } |
|---|
| 1133 | n/a | if (v == NULL) { /* size overflow or no memory */ |
|---|
| 1134 | n/a | PyErr_SetString(PyExc_MemoryError, "math.fsum partials"); |
|---|
| 1135 | n/a | return 1; |
|---|
| 1136 | n/a | } |
|---|
| 1137 | n/a | *p_ptr = (double*) v; |
|---|
| 1138 | n/a | *m_ptr = m; |
|---|
| 1139 | n/a | return 0; |
|---|
| 1140 | n/a | } |
|---|
| 1141 | n/a | |
|---|
| 1142 | n/a | /* Full precision summation of a sequence of floats. |
|---|
| 1143 | n/a | |
|---|
| 1144 | n/a | def msum(iterable): |
|---|
| 1145 | n/a | partials = [] # sorted, non-overlapping partial sums |
|---|
| 1146 | n/a | for x in iterable: |
|---|
| 1147 | n/a | i = 0 |
|---|
| 1148 | n/a | for y in partials: |
|---|
| 1149 | n/a | if abs(x) < abs(y): |
|---|
| 1150 | n/a | x, y = y, x |
|---|
| 1151 | n/a | hi = x + y |
|---|
| 1152 | n/a | lo = y - (hi - x) |
|---|
| 1153 | n/a | if lo: |
|---|
| 1154 | n/a | partials[i] = lo |
|---|
| 1155 | n/a | i += 1 |
|---|
| 1156 | n/a | x = hi |
|---|
| 1157 | n/a | partials[i:] = [x] |
|---|
| 1158 | n/a | return sum_exact(partials) |
|---|
| 1159 | n/a | |
|---|
| 1160 | n/a | Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo |
|---|
| 1161 | n/a | are exactly equal to x+y. The inner loop applies hi/lo summation to each |
|---|
| 1162 | n/a | partial so that the list of partial sums remains exact. |
|---|
| 1163 | n/a | |
|---|
| 1164 | n/a | Sum_exact() adds the partial sums exactly and correctly rounds the final |
|---|
| 1165 | n/a | result (using the round-half-to-even rule). The items in partials remain |
|---|
| 1166 | n/a | non-zero, non-special, non-overlapping and strictly increasing in |
|---|
| 1167 | n/a | magnitude, but possibly not all having the same sign. |
|---|
| 1168 | n/a | |
|---|
| 1169 | n/a | Depends on IEEE 754 arithmetic guarantees and half-even rounding. |
|---|
| 1170 | n/a | */ |
|---|
| 1171 | n/a | |
|---|
| 1172 | n/a | /*[clinic input] |
|---|
| 1173 | n/a | math.fsum |
|---|
| 1174 | n/a | |
|---|
| 1175 | n/a | seq: object |
|---|
| 1176 | n/a | / |
|---|
| 1177 | n/a | |
|---|
| 1178 | n/a | Return an accurate floating point sum of values in the iterable seq. |
|---|
| 1179 | n/a | |
|---|
| 1180 | n/a | Assumes IEEE-754 floating point arithmetic. |
|---|
| 1181 | n/a | [clinic start generated code]*/ |
|---|
| 1182 | n/a | |
|---|
| 1183 | n/a | static PyObject * |
|---|
| 1184 | n/a | math_fsum(PyObject *module, PyObject *seq) |
|---|
| 1185 | n/a | /*[clinic end generated code: output=ba5c672b87fe34fc input=c51b7d8caf6f6e82]*/ |
|---|
| 1186 | n/a | { |
|---|
| 1187 | n/a | PyObject *item, *iter, *sum = NULL; |
|---|
| 1188 | n/a | Py_ssize_t i, j, n = 0, m = NUM_PARTIALS; |
|---|
| 1189 | n/a | double x, y, t, ps[NUM_PARTIALS], *p = ps; |
|---|
| 1190 | n/a | double xsave, special_sum = 0.0, inf_sum = 0.0; |
|---|
| 1191 | n/a | volatile double hi, yr, lo; |
|---|
| 1192 | n/a | |
|---|
| 1193 | n/a | iter = PyObject_GetIter(seq); |
|---|
| 1194 | n/a | if (iter == NULL) |
|---|
| 1195 | n/a | return NULL; |
|---|
| 1196 | n/a | |
|---|
| 1197 | n/a | PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL) |
|---|
| 1198 | n/a | |
|---|
| 1199 | n/a | for(;;) { /* for x in iterable */ |
|---|
| 1200 | n/a | assert(0 <= n && n <= m); |
|---|
| 1201 | n/a | assert((m == NUM_PARTIALS && p == ps) || |
|---|
| 1202 | n/a | (m > NUM_PARTIALS && p != NULL)); |
|---|
| 1203 | n/a | |
|---|
| 1204 | n/a | item = PyIter_Next(iter); |
|---|
| 1205 | n/a | if (item == NULL) { |
|---|
| 1206 | n/a | if (PyErr_Occurred()) |
|---|
| 1207 | n/a | goto _fsum_error; |
|---|
| 1208 | n/a | break; |
|---|
| 1209 | n/a | } |
|---|
| 1210 | n/a | x = PyFloat_AsDouble(item); |
|---|
| 1211 | n/a | Py_DECREF(item); |
|---|
| 1212 | n/a | if (PyErr_Occurred()) |
|---|
| 1213 | n/a | goto _fsum_error; |
|---|
| 1214 | n/a | |
|---|
| 1215 | n/a | xsave = x; |
|---|
| 1216 | n/a | for (i = j = 0; j < n; j++) { /* for y in partials */ |
|---|
| 1217 | n/a | y = p[j]; |
|---|
| 1218 | n/a | if (fabs(x) < fabs(y)) { |
|---|
| 1219 | n/a | t = x; x = y; y = t; |
|---|
| 1220 | n/a | } |
|---|
| 1221 | n/a | hi = x + y; |
|---|
| 1222 | n/a | yr = hi - x; |
|---|
| 1223 | n/a | lo = y - yr; |
|---|
| 1224 | n/a | if (lo != 0.0) |
|---|
| 1225 | n/a | p[i++] = lo; |
|---|
| 1226 | n/a | x = hi; |
|---|
| 1227 | n/a | } |
|---|
| 1228 | n/a | |
|---|
| 1229 | n/a | n = i; /* ps[i:] = [x] */ |
|---|
| 1230 | n/a | if (x != 0.0) { |
|---|
| 1231 | n/a | if (! Py_IS_FINITE(x)) { |
|---|
| 1232 | n/a | /* a nonfinite x could arise either as |
|---|
| 1233 | n/a | a result of intermediate overflow, or |
|---|
| 1234 | n/a | as a result of a nan or inf in the |
|---|
| 1235 | n/a | summands */ |
|---|
| 1236 | n/a | if (Py_IS_FINITE(xsave)) { |
|---|
| 1237 | n/a | PyErr_SetString(PyExc_OverflowError, |
|---|
| 1238 | n/a | "intermediate overflow in fsum"); |
|---|
| 1239 | n/a | goto _fsum_error; |
|---|
| 1240 | n/a | } |
|---|
| 1241 | n/a | if (Py_IS_INFINITY(xsave)) |
|---|
| 1242 | n/a | inf_sum += xsave; |
|---|
| 1243 | n/a | special_sum += xsave; |
|---|
| 1244 | n/a | /* reset partials */ |
|---|
| 1245 | n/a | n = 0; |
|---|
| 1246 | n/a | } |
|---|
| 1247 | n/a | else if (n >= m && _fsum_realloc(&p, n, ps, &m)) |
|---|
| 1248 | n/a | goto _fsum_error; |
|---|
| 1249 | n/a | else |
|---|
| 1250 | n/a | p[n++] = x; |
|---|
| 1251 | n/a | } |
|---|
| 1252 | n/a | } |
|---|
| 1253 | n/a | |
|---|
| 1254 | n/a | if (special_sum != 0.0) { |
|---|
| 1255 | n/a | if (Py_IS_NAN(inf_sum)) |
|---|
| 1256 | n/a | PyErr_SetString(PyExc_ValueError, |
|---|
| 1257 | n/a | "-inf + inf in fsum"); |
|---|
| 1258 | n/a | else |
|---|
| 1259 | n/a | sum = PyFloat_FromDouble(special_sum); |
|---|
| 1260 | n/a | goto _fsum_error; |
|---|
| 1261 | n/a | } |
|---|
| 1262 | n/a | |
|---|
| 1263 | n/a | hi = 0.0; |
|---|
| 1264 | n/a | if (n > 0) { |
|---|
| 1265 | n/a | hi = p[--n]; |
|---|
| 1266 | n/a | /* sum_exact(ps, hi) from the top, stop when the sum becomes |
|---|
| 1267 | n/a | inexact. */ |
|---|
| 1268 | n/a | while (n > 0) { |
|---|
| 1269 | n/a | x = hi; |
|---|
| 1270 | n/a | y = p[--n]; |
|---|
| 1271 | n/a | assert(fabs(y) < fabs(x)); |
|---|
| 1272 | n/a | hi = x + y; |
|---|
| 1273 | n/a | yr = hi - x; |
|---|
| 1274 | n/a | lo = y - yr; |
|---|
| 1275 | n/a | if (lo != 0.0) |
|---|
| 1276 | n/a | break; |
|---|
| 1277 | n/a | } |
|---|
| 1278 | n/a | /* Make half-even rounding work across multiple partials. |
|---|
| 1279 | n/a | Needed so that sum([1e-16, 1, 1e16]) will round-up the last |
|---|
| 1280 | n/a | digit to two instead of down to zero (the 1e-16 makes the 1 |
|---|
| 1281 | n/a | slightly closer to two). With a potential 1 ULP rounding |
|---|
| 1282 | n/a | error fixed-up, math.fsum() can guarantee commutativity. */ |
|---|
| 1283 | n/a | if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) || |
|---|
| 1284 | n/a | (lo > 0.0 && p[n-1] > 0.0))) { |
|---|
| 1285 | n/a | y = lo * 2.0; |
|---|
| 1286 | n/a | x = hi + y; |
|---|
| 1287 | n/a | yr = x - hi; |
|---|
| 1288 | n/a | if (y == yr) |
|---|
| 1289 | n/a | hi = x; |
|---|
| 1290 | n/a | } |
|---|
| 1291 | n/a | } |
|---|
| 1292 | n/a | sum = PyFloat_FromDouble(hi); |
|---|
| 1293 | n/a | |
|---|
| 1294 | n/a | _fsum_error: |
|---|
| 1295 | n/a | PyFPE_END_PROTECT(hi) |
|---|
| 1296 | n/a | Py_DECREF(iter); |
|---|
| 1297 | n/a | if (p != ps) |
|---|
| 1298 | n/a | PyMem_Free(p); |
|---|
| 1299 | n/a | return sum; |
|---|
| 1300 | n/a | } |
|---|
| 1301 | n/a | |
|---|
| 1302 | n/a | #undef NUM_PARTIALS |
|---|
| 1303 | n/a | |
|---|
| 1304 | n/a | |
|---|
| 1305 | n/a | /* Return the smallest integer k such that n < 2**k, or 0 if n == 0. |
|---|
| 1306 | n/a | * Equivalent to floor(lg(x))+1. Also equivalent to: bitwidth_of_type - |
|---|
| 1307 | n/a | * count_leading_zero_bits(x) |
|---|
| 1308 | n/a | */ |
|---|
| 1309 | n/a | |
|---|
| 1310 | n/a | /* XXX: This routine does more or less the same thing as |
|---|
| 1311 | n/a | * bits_in_digit() in Objects/longobject.c. Someday it would be nice to |
|---|
| 1312 | n/a | * consolidate them. On BSD, there's a library function called fls() |
|---|
| 1313 | n/a | * that we could use, and GCC provides __builtin_clz(). |
|---|
| 1314 | n/a | */ |
|---|
| 1315 | n/a | |
|---|
| 1316 | n/a | static unsigned long |
|---|
| 1317 | n/a | bit_length(unsigned long n) |
|---|
| 1318 | n/a | { |
|---|
| 1319 | n/a | unsigned long len = 0; |
|---|
| 1320 | n/a | while (n != 0) { |
|---|
| 1321 | n/a | ++len; |
|---|
| 1322 | n/a | n >>= 1; |
|---|
| 1323 | n/a | } |
|---|
| 1324 | n/a | return len; |
|---|
| 1325 | n/a | } |
|---|
| 1326 | n/a | |
|---|
| 1327 | n/a | static unsigned long |
|---|
| 1328 | n/a | count_set_bits(unsigned long n) |
|---|
| 1329 | n/a | { |
|---|
| 1330 | n/a | unsigned long count = 0; |
|---|
| 1331 | n/a | while (n != 0) { |
|---|
| 1332 | n/a | ++count; |
|---|
| 1333 | n/a | n &= n - 1; /* clear least significant bit */ |
|---|
| 1334 | n/a | } |
|---|
| 1335 | n/a | return count; |
|---|
| 1336 | n/a | } |
|---|
| 1337 | n/a | |
|---|
| 1338 | n/a | /* Divide-and-conquer factorial algorithm |
|---|
| 1339 | n/a | * |
|---|
| 1340 | n/a | * Based on the formula and pseudo-code provided at: |
|---|
| 1341 | n/a | * http://www.luschny.de/math/factorial/binarysplitfact.html |
|---|
| 1342 | n/a | * |
|---|
| 1343 | n/a | * Faster algorithms exist, but they're more complicated and depend on |
|---|
| 1344 | n/a | * a fast prime factorization algorithm. |
|---|
| 1345 | n/a | * |
|---|
| 1346 | n/a | * Notes on the algorithm |
|---|
| 1347 | n/a | * ---------------------- |
|---|
| 1348 | n/a | * |
|---|
| 1349 | n/a | * factorial(n) is written in the form 2**k * m, with m odd. k and m are |
|---|
| 1350 | n/a | * computed separately, and then combined using a left shift. |
|---|
| 1351 | n/a | * |
|---|
| 1352 | n/a | * The function factorial_odd_part computes the odd part m (i.e., the greatest |
|---|
| 1353 | n/a | * odd divisor) of factorial(n), using the formula: |
|---|
| 1354 | n/a | * |
|---|
| 1355 | n/a | * factorial_odd_part(n) = |
|---|
| 1356 | n/a | * |
|---|
| 1357 | n/a | * product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j |
|---|
| 1358 | n/a | * |
|---|
| 1359 | n/a | * Example: factorial_odd_part(20) = |
|---|
| 1360 | n/a | * |
|---|
| 1361 | n/a | * (1) * |
|---|
| 1362 | n/a | * (1) * |
|---|
| 1363 | n/a | * (1 * 3 * 5) * |
|---|
| 1364 | n/a | * (1 * 3 * 5 * 7 * 9) |
|---|
| 1365 | n/a | * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19) |
|---|
| 1366 | n/a | * |
|---|
| 1367 | n/a | * Here i goes from large to small: the first term corresponds to i=4 (any |
|---|
| 1368 | n/a | * larger i gives an empty product), and the last term corresponds to i=0. |
|---|
| 1369 | n/a | * Each term can be computed from the last by multiplying by the extra odd |
|---|
| 1370 | n/a | * numbers required: e.g., to get from the penultimate term to the last one, |
|---|
| 1371 | n/a | * we multiply by (11 * 13 * 15 * 17 * 19). |
|---|
| 1372 | n/a | * |
|---|
| 1373 | n/a | * To see a hint of why this formula works, here are the same numbers as above |
|---|
| 1374 | n/a | * but with the even parts (i.e., the appropriate powers of 2) included. For |
|---|
| 1375 | n/a | * each subterm in the product for i, we multiply that subterm by 2**i: |
|---|
| 1376 | n/a | * |
|---|
| 1377 | n/a | * factorial(20) = |
|---|
| 1378 | n/a | * |
|---|
| 1379 | n/a | * (16) * |
|---|
| 1380 | n/a | * (8) * |
|---|
| 1381 | n/a | * (4 * 12 * 20) * |
|---|
| 1382 | n/a | * (2 * 6 * 10 * 14 * 18) * |
|---|
| 1383 | n/a | * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19) |
|---|
| 1384 | n/a | * |
|---|
| 1385 | n/a | * The factorial_partial_product function computes the product of all odd j in |
|---|
| 1386 | n/a | * range(start, stop) for given start and stop. It's used to compute the |
|---|
| 1387 | n/a | * partial products like (11 * 13 * 15 * 17 * 19) in the example above. It |
|---|
| 1388 | n/a | * operates recursively, repeatedly splitting the range into two roughly equal |
|---|
| 1389 | n/a | * pieces until the subranges are small enough to be computed using only C |
|---|
| 1390 | n/a | * integer arithmetic. |
|---|
| 1391 | n/a | * |
|---|
| 1392 | n/a | * The two-valuation k (i.e., the exponent of the largest power of 2 dividing |
|---|
| 1393 | n/a | * the factorial) is computed independently in the main math_factorial |
|---|
| 1394 | n/a | * function. By standard results, its value is: |
|---|
| 1395 | n/a | * |
|---|
| 1396 | n/a | * two_valuation = n//2 + n//4 + n//8 + .... |
|---|
| 1397 | n/a | * |
|---|
| 1398 | n/a | * It can be shown (e.g., by complete induction on n) that two_valuation is |
|---|
| 1399 | n/a | * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of |
|---|
| 1400 | n/a | * '1'-bits in the binary expansion of n. |
|---|
| 1401 | n/a | */ |
|---|
| 1402 | n/a | |
|---|
| 1403 | n/a | /* factorial_partial_product: Compute product(range(start, stop, 2)) using |
|---|
| 1404 | n/a | * divide and conquer. Assumes start and stop are odd and stop > start. |
|---|
| 1405 | n/a | * max_bits must be >= bit_length(stop - 2). */ |
|---|
| 1406 | n/a | |
|---|
| 1407 | n/a | static PyObject * |
|---|
| 1408 | n/a | factorial_partial_product(unsigned long start, unsigned long stop, |
|---|
| 1409 | n/a | unsigned long max_bits) |
|---|
| 1410 | n/a | { |
|---|
| 1411 | n/a | unsigned long midpoint, num_operands; |
|---|
| 1412 | n/a | PyObject *left = NULL, *right = NULL, *result = NULL; |
|---|
| 1413 | n/a | |
|---|
| 1414 | n/a | /* If the return value will fit an unsigned long, then we can |
|---|
| 1415 | n/a | * multiply in a tight, fast loop where each multiply is O(1). |
|---|
| 1416 | n/a | * Compute an upper bound on the number of bits required to store |
|---|
| 1417 | n/a | * the answer. |
|---|
| 1418 | n/a | * |
|---|
| 1419 | n/a | * Storing some integer z requires floor(lg(z))+1 bits, which is |
|---|
| 1420 | n/a | * conveniently the value returned by bit_length(z). The |
|---|
| 1421 | n/a | * product x*y will require at most |
|---|
| 1422 | n/a | * bit_length(x) + bit_length(y) bits to store, based |
|---|
| 1423 | n/a | * on the idea that lg product = lg x + lg y. |
|---|
| 1424 | n/a | * |
|---|
| 1425 | n/a | * We know that stop - 2 is the largest number to be multiplied. From |
|---|
| 1426 | n/a | * there, we have: bit_length(answer) <= num_operands * |
|---|
| 1427 | n/a | * bit_length(stop - 2) |
|---|
| 1428 | n/a | */ |
|---|
| 1429 | n/a | |
|---|
| 1430 | n/a | num_operands = (stop - start) / 2; |
|---|
| 1431 | n/a | /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the |
|---|
| 1432 | n/a | * unlikely case of an overflow in num_operands * max_bits. */ |
|---|
| 1433 | n/a | if (num_operands <= 8 * SIZEOF_LONG && |
|---|
| 1434 | n/a | num_operands * max_bits <= 8 * SIZEOF_LONG) { |
|---|
| 1435 | n/a | unsigned long j, total; |
|---|
| 1436 | n/a | for (total = start, j = start + 2; j < stop; j += 2) |
|---|
| 1437 | n/a | total *= j; |
|---|
| 1438 | n/a | return PyLong_FromUnsignedLong(total); |
|---|
| 1439 | n/a | } |
|---|
| 1440 | n/a | |
|---|
| 1441 | n/a | /* find midpoint of range(start, stop), rounded up to next odd number. */ |
|---|
| 1442 | n/a | midpoint = (start + num_operands) | 1; |
|---|
| 1443 | n/a | left = factorial_partial_product(start, midpoint, |
|---|
| 1444 | n/a | bit_length(midpoint - 2)); |
|---|
| 1445 | n/a | if (left == NULL) |
|---|
| 1446 | n/a | goto error; |
|---|
| 1447 | n/a | right = factorial_partial_product(midpoint, stop, max_bits); |
|---|
| 1448 | n/a | if (right == NULL) |
|---|
| 1449 | n/a | goto error; |
|---|
| 1450 | n/a | result = PyNumber_Multiply(left, right); |
|---|
| 1451 | n/a | |
|---|
| 1452 | n/a | error: |
|---|
| 1453 | n/a | Py_XDECREF(left); |
|---|
| 1454 | n/a | Py_XDECREF(right); |
|---|
| 1455 | n/a | return result; |
|---|
| 1456 | n/a | } |
|---|
| 1457 | n/a | |
|---|
| 1458 | n/a | /* factorial_odd_part: compute the odd part of factorial(n). */ |
|---|
| 1459 | n/a | |
|---|
| 1460 | n/a | static PyObject * |
|---|
| 1461 | n/a | factorial_odd_part(unsigned long n) |
|---|
| 1462 | n/a | { |
|---|
| 1463 | n/a | long i; |
|---|
| 1464 | n/a | unsigned long v, lower, upper; |
|---|
| 1465 | n/a | PyObject *partial, *tmp, *inner, *outer; |
|---|
| 1466 | n/a | |
|---|
| 1467 | n/a | inner = PyLong_FromLong(1); |
|---|
| 1468 | n/a | if (inner == NULL) |
|---|
| 1469 | n/a | return NULL; |
|---|
| 1470 | n/a | outer = inner; |
|---|
| 1471 | n/a | Py_INCREF(outer); |
|---|
| 1472 | n/a | |
|---|
| 1473 | n/a | upper = 3; |
|---|
| 1474 | n/a | for (i = bit_length(n) - 2; i >= 0; i--) { |
|---|
| 1475 | n/a | v = n >> i; |
|---|
| 1476 | n/a | if (v <= 2) |
|---|
| 1477 | n/a | continue; |
|---|
| 1478 | n/a | lower = upper; |
|---|
| 1479 | n/a | /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */ |
|---|
| 1480 | n/a | upper = (v + 1) | 1; |
|---|
| 1481 | n/a | /* Here inner is the product of all odd integers j in the range (0, |
|---|
| 1482 | n/a | n/2**(i+1)]. The factorial_partial_product call below gives the |
|---|
| 1483 | n/a | product of all odd integers j in the range (n/2**(i+1), n/2**i]. */ |
|---|
| 1484 | n/a | partial = factorial_partial_product(lower, upper, bit_length(upper-2)); |
|---|
| 1485 | n/a | /* inner *= partial */ |
|---|
| 1486 | n/a | if (partial == NULL) |
|---|
| 1487 | n/a | goto error; |
|---|
| 1488 | n/a | tmp = PyNumber_Multiply(inner, partial); |
|---|
| 1489 | n/a | Py_DECREF(partial); |
|---|
| 1490 | n/a | if (tmp == NULL) |
|---|
| 1491 | n/a | goto error; |
|---|
| 1492 | n/a | Py_DECREF(inner); |
|---|
| 1493 | n/a | inner = tmp; |
|---|
| 1494 | n/a | /* Now inner is the product of all odd integers j in the range (0, |
|---|
| 1495 | n/a | n/2**i], giving the inner product in the formula above. */ |
|---|
| 1496 | n/a | |
|---|
| 1497 | n/a | /* outer *= inner; */ |
|---|
| 1498 | n/a | tmp = PyNumber_Multiply(outer, inner); |
|---|
| 1499 | n/a | if (tmp == NULL) |
|---|
| 1500 | n/a | goto error; |
|---|
| 1501 | n/a | Py_DECREF(outer); |
|---|
| 1502 | n/a | outer = tmp; |
|---|
| 1503 | n/a | } |
|---|
| 1504 | n/a | Py_DECREF(inner); |
|---|
| 1505 | n/a | return outer; |
|---|
| 1506 | n/a | |
|---|
| 1507 | n/a | error: |
|---|
| 1508 | n/a | Py_DECREF(outer); |
|---|
| 1509 | n/a | Py_DECREF(inner); |
|---|
| 1510 | n/a | return NULL; |
|---|
| 1511 | n/a | } |
|---|
| 1512 | n/a | |
|---|
| 1513 | n/a | |
|---|
| 1514 | n/a | /* Lookup table for small factorial values */ |
|---|
| 1515 | n/a | |
|---|
| 1516 | n/a | static const unsigned long SmallFactorials[] = { |
|---|
| 1517 | n/a | 1, 1, 2, 6, 24, 120, 720, 5040, 40320, |
|---|
| 1518 | n/a | 362880, 3628800, 39916800, 479001600, |
|---|
| 1519 | n/a | #if SIZEOF_LONG >= 8 |
|---|
| 1520 | n/a | 6227020800, 87178291200, 1307674368000, |
|---|
| 1521 | n/a | 20922789888000, 355687428096000, 6402373705728000, |
|---|
| 1522 | n/a | 121645100408832000, 2432902008176640000 |
|---|
| 1523 | n/a | #endif |
|---|
| 1524 | n/a | }; |
|---|
| 1525 | n/a | |
|---|
| 1526 | n/a | /*[clinic input] |
|---|
| 1527 | n/a | math.factorial |
|---|
| 1528 | n/a | |
|---|
| 1529 | n/a | x as arg: object |
|---|
| 1530 | n/a | / |
|---|
| 1531 | n/a | |
|---|
| 1532 | n/a | Find x!. |
|---|
| 1533 | n/a | |
|---|
| 1534 | n/a | Raise a ValueError if x is negative or non-integral. |
|---|
| 1535 | n/a | [clinic start generated code]*/ |
|---|
| 1536 | n/a | |
|---|
| 1537 | n/a | static PyObject * |
|---|
| 1538 | n/a | math_factorial(PyObject *module, PyObject *arg) |
|---|
| 1539 | n/a | /*[clinic end generated code: output=6686f26fae00e9ca input=6d1c8105c0d91fb4]*/ |
|---|
| 1540 | n/a | { |
|---|
| 1541 | n/a | long x; |
|---|
| 1542 | n/a | int overflow; |
|---|
| 1543 | n/a | PyObject *result, *odd_part, *two_valuation; |
|---|
| 1544 | n/a | |
|---|
| 1545 | n/a | if (PyFloat_Check(arg)) { |
|---|
| 1546 | n/a | PyObject *lx; |
|---|
| 1547 | n/a | double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg); |
|---|
| 1548 | n/a | if (!(Py_IS_FINITE(dx) && dx == floor(dx))) { |
|---|
| 1549 | n/a | PyErr_SetString(PyExc_ValueError, |
|---|
| 1550 | n/a | "factorial() only accepts integral values"); |
|---|
| 1551 | n/a | return NULL; |
|---|
| 1552 | n/a | } |
|---|
| 1553 | n/a | lx = PyLong_FromDouble(dx); |
|---|
| 1554 | n/a | if (lx == NULL) |
|---|
| 1555 | n/a | return NULL; |
|---|
| 1556 | n/a | x = PyLong_AsLongAndOverflow(lx, &overflow); |
|---|
| 1557 | n/a | Py_DECREF(lx); |
|---|
| 1558 | n/a | } |
|---|
| 1559 | n/a | else |
|---|
| 1560 | n/a | x = PyLong_AsLongAndOverflow(arg, &overflow); |
|---|
| 1561 | n/a | |
|---|
| 1562 | n/a | if (x == -1 && PyErr_Occurred()) { |
|---|
| 1563 | n/a | return NULL; |
|---|
| 1564 | n/a | } |
|---|
| 1565 | n/a | else if (overflow == 1) { |
|---|
| 1566 | n/a | PyErr_Format(PyExc_OverflowError, |
|---|
| 1567 | n/a | "factorial() argument should not exceed %ld", |
|---|
| 1568 | n/a | LONG_MAX); |
|---|
| 1569 | n/a | return NULL; |
|---|
| 1570 | n/a | } |
|---|
| 1571 | n/a | else if (overflow == -1 || x < 0) { |
|---|
| 1572 | n/a | PyErr_SetString(PyExc_ValueError, |
|---|
| 1573 | n/a | "factorial() not defined for negative values"); |
|---|
| 1574 | n/a | return NULL; |
|---|
| 1575 | n/a | } |
|---|
| 1576 | n/a | |
|---|
| 1577 | n/a | /* use lookup table if x is small */ |
|---|
| 1578 | n/a | if (x < (long)Py_ARRAY_LENGTH(SmallFactorials)) |
|---|
| 1579 | n/a | return PyLong_FromUnsignedLong(SmallFactorials[x]); |
|---|
| 1580 | n/a | |
|---|
| 1581 | n/a | /* else express in the form odd_part * 2**two_valuation, and compute as |
|---|
| 1582 | n/a | odd_part << two_valuation. */ |
|---|
| 1583 | n/a | odd_part = factorial_odd_part(x); |
|---|
| 1584 | n/a | if (odd_part == NULL) |
|---|
| 1585 | n/a | return NULL; |
|---|
| 1586 | n/a | two_valuation = PyLong_FromLong(x - count_set_bits(x)); |
|---|
| 1587 | n/a | if (two_valuation == NULL) { |
|---|
| 1588 | n/a | Py_DECREF(odd_part); |
|---|
| 1589 | n/a | return NULL; |
|---|
| 1590 | n/a | } |
|---|
| 1591 | n/a | result = PyNumber_Lshift(odd_part, two_valuation); |
|---|
| 1592 | n/a | Py_DECREF(two_valuation); |
|---|
| 1593 | n/a | Py_DECREF(odd_part); |
|---|
| 1594 | n/a | return result; |
|---|
| 1595 | n/a | } |
|---|
| 1596 | n/a | |
|---|
| 1597 | n/a | |
|---|
| 1598 | n/a | /*[clinic input] |
|---|
| 1599 | n/a | math.trunc |
|---|
| 1600 | n/a | |
|---|
| 1601 | n/a | x: object |
|---|
| 1602 | n/a | / |
|---|
| 1603 | n/a | |
|---|
| 1604 | n/a | Truncates the Real x to the nearest Integral toward 0. |
|---|
| 1605 | n/a | |
|---|
| 1606 | n/a | Uses the __trunc__ magic method. |
|---|
| 1607 | n/a | [clinic start generated code]*/ |
|---|
| 1608 | n/a | |
|---|
| 1609 | n/a | static PyObject * |
|---|
| 1610 | n/a | math_trunc(PyObject *module, PyObject *x) |
|---|
| 1611 | n/a | /*[clinic end generated code: output=34b9697b707e1031 input=2168b34e0a09134d]*/ |
|---|
| 1612 | n/a | { |
|---|
| 1613 | n/a | _Py_IDENTIFIER(__trunc__); |
|---|
| 1614 | n/a | PyObject *trunc, *result; |
|---|
| 1615 | n/a | |
|---|
| 1616 | n/a | if (Py_TYPE(x)->tp_dict == NULL) { |
|---|
| 1617 | n/a | if (PyType_Ready(Py_TYPE(x)) < 0) |
|---|
| 1618 | n/a | return NULL; |
|---|
| 1619 | n/a | } |
|---|
| 1620 | n/a | |
|---|
| 1621 | n/a | trunc = _PyObject_LookupSpecial(x, &PyId___trunc__); |
|---|
| 1622 | n/a | if (trunc == NULL) { |
|---|
| 1623 | n/a | if (!PyErr_Occurred()) |
|---|
| 1624 | n/a | PyErr_Format(PyExc_TypeError, |
|---|
| 1625 | n/a | "type %.100s doesn't define __trunc__ method", |
|---|
| 1626 | n/a | Py_TYPE(x)->tp_name); |
|---|
| 1627 | n/a | return NULL; |
|---|
| 1628 | n/a | } |
|---|
| 1629 | n/a | result = _PyObject_CallNoArg(trunc); |
|---|
| 1630 | n/a | Py_DECREF(trunc); |
|---|
| 1631 | n/a | return result; |
|---|
| 1632 | n/a | } |
|---|
| 1633 | n/a | |
|---|
| 1634 | n/a | |
|---|
| 1635 | n/a | /*[clinic input] |
|---|
| 1636 | n/a | math.frexp |
|---|
| 1637 | n/a | |
|---|
| 1638 | n/a | x: double |
|---|
| 1639 | n/a | / |
|---|
| 1640 | n/a | |
|---|
| 1641 | n/a | Return the mantissa and exponent of x, as pair (m, e). |
|---|
| 1642 | n/a | |
|---|
| 1643 | n/a | m is a float and e is an int, such that x = m * 2.**e. |
|---|
| 1644 | n/a | If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0. |
|---|
| 1645 | n/a | [clinic start generated code]*/ |
|---|
| 1646 | n/a | |
|---|
| 1647 | n/a | static PyObject * |
|---|
| 1648 | n/a | math_frexp_impl(PyObject *module, double x) |
|---|
| 1649 | n/a | /*[clinic end generated code: output=03e30d252a15ad4a input=96251c9e208bc6e9]*/ |
|---|
| 1650 | n/a | { |
|---|
| 1651 | n/a | int i; |
|---|
| 1652 | n/a | /* deal with special cases directly, to sidestep platform |
|---|
| 1653 | n/a | differences */ |
|---|
| 1654 | n/a | if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) { |
|---|
| 1655 | n/a | i = 0; |
|---|
| 1656 | n/a | } |
|---|
| 1657 | n/a | else { |
|---|
| 1658 | n/a | PyFPE_START_PROTECT("in math_frexp", return 0); |
|---|
| 1659 | n/a | x = frexp(x, &i); |
|---|
| 1660 | n/a | PyFPE_END_PROTECT(x); |
|---|
| 1661 | n/a | } |
|---|
| 1662 | n/a | return Py_BuildValue("(di)", x, i); |
|---|
| 1663 | n/a | } |
|---|
| 1664 | n/a | |
|---|
| 1665 | n/a | |
|---|
| 1666 | n/a | /*[clinic input] |
|---|
| 1667 | n/a | math.ldexp |
|---|
| 1668 | n/a | |
|---|
| 1669 | n/a | x: double |
|---|
| 1670 | n/a | i: object |
|---|
| 1671 | n/a | / |
|---|
| 1672 | n/a | |
|---|
| 1673 | n/a | Return x * (2**i). |
|---|
| 1674 | n/a | |
|---|
| 1675 | n/a | This is essentially the inverse of frexp(). |
|---|
| 1676 | n/a | [clinic start generated code]*/ |
|---|
| 1677 | n/a | |
|---|
| 1678 | n/a | static PyObject * |
|---|
| 1679 | n/a | math_ldexp_impl(PyObject *module, double x, PyObject *i) |
|---|
| 1680 | n/a | /*[clinic end generated code: output=b6892f3c2df9cc6a input=17d5970c1a40a8c1]*/ |
|---|
| 1681 | n/a | { |
|---|
| 1682 | n/a | double r; |
|---|
| 1683 | n/a | long exp; |
|---|
| 1684 | n/a | int overflow; |
|---|
| 1685 | n/a | |
|---|
| 1686 | n/a | if (PyLong_Check(i)) { |
|---|
| 1687 | n/a | /* on overflow, replace exponent with either LONG_MAX |
|---|
| 1688 | n/a | or LONG_MIN, depending on the sign. */ |
|---|
| 1689 | n/a | exp = PyLong_AsLongAndOverflow(i, &overflow); |
|---|
| 1690 | n/a | if (exp == -1 && PyErr_Occurred()) |
|---|
| 1691 | n/a | return NULL; |
|---|
| 1692 | n/a | if (overflow) |
|---|
| 1693 | n/a | exp = overflow < 0 ? LONG_MIN : LONG_MAX; |
|---|
| 1694 | n/a | } |
|---|
| 1695 | n/a | else { |
|---|
| 1696 | n/a | PyErr_SetString(PyExc_TypeError, |
|---|
| 1697 | n/a | "Expected an int as second argument to ldexp."); |
|---|
| 1698 | n/a | return NULL; |
|---|
| 1699 | n/a | } |
|---|
| 1700 | n/a | |
|---|
| 1701 | n/a | if (x == 0. || !Py_IS_FINITE(x)) { |
|---|
| 1702 | n/a | /* NaNs, zeros and infinities are returned unchanged */ |
|---|
| 1703 | n/a | r = x; |
|---|
| 1704 | n/a | errno = 0; |
|---|
| 1705 | n/a | } else if (exp > INT_MAX) { |
|---|
| 1706 | n/a | /* overflow */ |
|---|
| 1707 | n/a | r = copysign(Py_HUGE_VAL, x); |
|---|
| 1708 | n/a | errno = ERANGE; |
|---|
| 1709 | n/a | } else if (exp < INT_MIN) { |
|---|
| 1710 | n/a | /* underflow to +-0 */ |
|---|
| 1711 | n/a | r = copysign(0., x); |
|---|
| 1712 | n/a | errno = 0; |
|---|
| 1713 | n/a | } else { |
|---|
| 1714 | n/a | errno = 0; |
|---|
| 1715 | n/a | PyFPE_START_PROTECT("in math_ldexp", return 0); |
|---|
| 1716 | n/a | r = ldexp(x, (int)exp); |
|---|
| 1717 | n/a | PyFPE_END_PROTECT(r); |
|---|
| 1718 | n/a | if (Py_IS_INFINITY(r)) |
|---|
| 1719 | n/a | errno = ERANGE; |
|---|
| 1720 | n/a | } |
|---|
| 1721 | n/a | |
|---|
| 1722 | n/a | if (errno && is_error(r)) |
|---|
| 1723 | n/a | return NULL; |
|---|
| 1724 | n/a | return PyFloat_FromDouble(r); |
|---|
| 1725 | n/a | } |
|---|
| 1726 | n/a | |
|---|
| 1727 | n/a | |
|---|
| 1728 | n/a | /*[clinic input] |
|---|
| 1729 | n/a | math.modf |
|---|
| 1730 | n/a | |
|---|
| 1731 | n/a | x: double |
|---|
| 1732 | n/a | / |
|---|
| 1733 | n/a | |
|---|
| 1734 | n/a | Return the fractional and integer parts of x. |
|---|
| 1735 | n/a | |
|---|
| 1736 | n/a | Both results carry the sign of x and are floats. |
|---|
| 1737 | n/a | [clinic start generated code]*/ |
|---|
| 1738 | n/a | |
|---|
| 1739 | n/a | static PyObject * |
|---|
| 1740 | n/a | math_modf_impl(PyObject *module, double x) |
|---|
| 1741 | n/a | /*[clinic end generated code: output=90cee0260014c3c0 input=b4cfb6786afd9035]*/ |
|---|
| 1742 | n/a | { |
|---|
| 1743 | n/a | double y; |
|---|
| 1744 | n/a | /* some platforms don't do the right thing for NaNs and |
|---|
| 1745 | n/a | infinities, so we take care of special cases directly. */ |
|---|
| 1746 | n/a | if (!Py_IS_FINITE(x)) { |
|---|
| 1747 | n/a | if (Py_IS_INFINITY(x)) |
|---|
| 1748 | n/a | return Py_BuildValue("(dd)", copysign(0., x), x); |
|---|
| 1749 | n/a | else if (Py_IS_NAN(x)) |
|---|
| 1750 | n/a | return Py_BuildValue("(dd)", x, x); |
|---|
| 1751 | n/a | } |
|---|
| 1752 | n/a | |
|---|
| 1753 | n/a | errno = 0; |
|---|
| 1754 | n/a | PyFPE_START_PROTECT("in math_modf", return 0); |
|---|
| 1755 | n/a | x = modf(x, &y); |
|---|
| 1756 | n/a | PyFPE_END_PROTECT(x); |
|---|
| 1757 | n/a | return Py_BuildValue("(dd)", x, y); |
|---|
| 1758 | n/a | } |
|---|
| 1759 | n/a | |
|---|
| 1760 | n/a | |
|---|
| 1761 | n/a | /* A decent logarithm is easy to compute even for huge ints, but libm can't |
|---|
| 1762 | n/a | do that by itself -- loghelper can. func is log or log10, and name is |
|---|
| 1763 | n/a | "log" or "log10". Note that overflow of the result isn't possible: an int |
|---|
| 1764 | n/a | can contain no more than INT_MAX * SHIFT bits, so has value certainly less |
|---|
| 1765 | n/a | than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is |
|---|
| 1766 | n/a | small enough to fit in an IEEE single. log and log10 are even smaller. |
|---|
| 1767 | n/a | However, intermediate overflow is possible for an int if the number of bits |
|---|
| 1768 | n/a | in that int is larger than PY_SSIZE_T_MAX. */ |
|---|
| 1769 | n/a | |
|---|
| 1770 | n/a | static PyObject* |
|---|
| 1771 | n/a | loghelper(PyObject* arg, double (*func)(double), const char *funcname) |
|---|
| 1772 | n/a | { |
|---|
| 1773 | n/a | /* If it is int, do it ourselves. */ |
|---|
| 1774 | n/a | if (PyLong_Check(arg)) { |
|---|
| 1775 | n/a | double x, result; |
|---|
| 1776 | n/a | Py_ssize_t e; |
|---|
| 1777 | n/a | |
|---|
| 1778 | n/a | /* Negative or zero inputs give a ValueError. */ |
|---|
| 1779 | n/a | if (Py_SIZE(arg) <= 0) { |
|---|
| 1780 | n/a | PyErr_SetString(PyExc_ValueError, |
|---|
| 1781 | n/a | "math domain error"); |
|---|
| 1782 | n/a | return NULL; |
|---|
| 1783 | n/a | } |
|---|
| 1784 | n/a | |
|---|
| 1785 | n/a | x = PyLong_AsDouble(arg); |
|---|
| 1786 | n/a | if (x == -1.0 && PyErr_Occurred()) { |
|---|
| 1787 | n/a | if (!PyErr_ExceptionMatches(PyExc_OverflowError)) |
|---|
| 1788 | n/a | return NULL; |
|---|
| 1789 | n/a | /* Here the conversion to double overflowed, but it's possible |
|---|
| 1790 | n/a | to compute the log anyway. Clear the exception and continue. */ |
|---|
| 1791 | n/a | PyErr_Clear(); |
|---|
| 1792 | n/a | x = _PyLong_Frexp((PyLongObject *)arg, &e); |
|---|
| 1793 | n/a | if (x == -1.0 && PyErr_Occurred()) |
|---|
| 1794 | n/a | return NULL; |
|---|
| 1795 | n/a | /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */ |
|---|
| 1796 | n/a | result = func(x) + func(2.0) * e; |
|---|
| 1797 | n/a | } |
|---|
| 1798 | n/a | else |
|---|
| 1799 | n/a | /* Successfully converted x to a double. */ |
|---|
| 1800 | n/a | result = func(x); |
|---|
| 1801 | n/a | return PyFloat_FromDouble(result); |
|---|
| 1802 | n/a | } |
|---|
| 1803 | n/a | |
|---|
| 1804 | n/a | /* Else let libm handle it by itself. */ |
|---|
| 1805 | n/a | return math_1(arg, func, 0); |
|---|
| 1806 | n/a | } |
|---|
| 1807 | n/a | |
|---|
| 1808 | n/a | |
|---|
| 1809 | n/a | /*[clinic input] |
|---|
| 1810 | n/a | math.log |
|---|
| 1811 | n/a | |
|---|
| 1812 | n/a | x: object |
|---|
| 1813 | n/a | [ |
|---|
| 1814 | n/a | base: object(c_default="NULL") = math.e |
|---|
| 1815 | n/a | ] |
|---|
| 1816 | n/a | / |
|---|
| 1817 | n/a | |
|---|
| 1818 | n/a | Return the logarithm of x to the given base. |
|---|
| 1819 | n/a | |
|---|
| 1820 | n/a | If the base not specified, returns the natural logarithm (base e) of x. |
|---|
| 1821 | n/a | [clinic start generated code]*/ |
|---|
| 1822 | n/a | |
|---|
| 1823 | n/a | static PyObject * |
|---|
| 1824 | n/a | math_log_impl(PyObject *module, PyObject *x, int group_right_1, |
|---|
| 1825 | n/a | PyObject *base) |
|---|
| 1826 | n/a | /*[clinic end generated code: output=7b5a39e526b73fc9 input=0f62d5726cbfebbd]*/ |
|---|
| 1827 | n/a | { |
|---|
| 1828 | n/a | PyObject *num, *den; |
|---|
| 1829 | n/a | PyObject *ans; |
|---|
| 1830 | n/a | |
|---|
| 1831 | n/a | num = loghelper(x, m_log, "log"); |
|---|
| 1832 | n/a | if (num == NULL || base == NULL) |
|---|
| 1833 | n/a | return num; |
|---|
| 1834 | n/a | |
|---|
| 1835 | n/a | den = loghelper(base, m_log, "log"); |
|---|
| 1836 | n/a | if (den == NULL) { |
|---|
| 1837 | n/a | Py_DECREF(num); |
|---|
| 1838 | n/a | return NULL; |
|---|
| 1839 | n/a | } |
|---|
| 1840 | n/a | |
|---|
| 1841 | n/a | ans = PyNumber_TrueDivide(num, den); |
|---|
| 1842 | n/a | Py_DECREF(num); |
|---|
| 1843 | n/a | Py_DECREF(den); |
|---|
| 1844 | n/a | return ans; |
|---|
| 1845 | n/a | } |
|---|
| 1846 | n/a | |
|---|
| 1847 | n/a | |
|---|
| 1848 | n/a | /*[clinic input] |
|---|
| 1849 | n/a | math.log2 |
|---|
| 1850 | n/a | |
|---|
| 1851 | n/a | x: object |
|---|
| 1852 | n/a | / |
|---|
| 1853 | n/a | |
|---|
| 1854 | n/a | Return the base 2 logarithm of x. |
|---|
| 1855 | n/a | [clinic start generated code]*/ |
|---|
| 1856 | n/a | |
|---|
| 1857 | n/a | static PyObject * |
|---|
| 1858 | n/a | math_log2(PyObject *module, PyObject *x) |
|---|
| 1859 | n/a | /*[clinic end generated code: output=5425899a4d5d6acb input=08321262bae4f39b]*/ |
|---|
| 1860 | n/a | { |
|---|
| 1861 | n/a | return loghelper(x, m_log2, "log2"); |
|---|
| 1862 | n/a | } |
|---|
| 1863 | n/a | |
|---|
| 1864 | n/a | |
|---|
| 1865 | n/a | /*[clinic input] |
|---|
| 1866 | n/a | math.log10 |
|---|
| 1867 | n/a | |
|---|
| 1868 | n/a | x: object |
|---|
| 1869 | n/a | / |
|---|
| 1870 | n/a | |
|---|
| 1871 | n/a | Return the base 10 logarithm of x. |
|---|
| 1872 | n/a | [clinic start generated code]*/ |
|---|
| 1873 | n/a | |
|---|
| 1874 | n/a | static PyObject * |
|---|
| 1875 | n/a | math_log10(PyObject *module, PyObject *x) |
|---|
| 1876 | n/a | /*[clinic end generated code: output=be72a64617df9c6f input=b2469d02c6469e53]*/ |
|---|
| 1877 | n/a | { |
|---|
| 1878 | n/a | return loghelper(x, m_log10, "log10"); |
|---|
| 1879 | n/a | } |
|---|
| 1880 | n/a | |
|---|
| 1881 | n/a | |
|---|
| 1882 | n/a | /*[clinic input] |
|---|
| 1883 | n/a | math.fmod |
|---|
| 1884 | n/a | |
|---|
| 1885 | n/a | x: double |
|---|
| 1886 | n/a | y: double |
|---|
| 1887 | n/a | / |
|---|
| 1888 | n/a | |
|---|
| 1889 | n/a | Return fmod(x, y), according to platform C. |
|---|
| 1890 | n/a | |
|---|
| 1891 | n/a | x % y may differ. |
|---|
| 1892 | n/a | [clinic start generated code]*/ |
|---|
| 1893 | n/a | |
|---|
| 1894 | n/a | static PyObject * |
|---|
| 1895 | n/a | math_fmod_impl(PyObject *module, double x, double y) |
|---|
| 1896 | n/a | /*[clinic end generated code: output=7559d794343a27b5 input=4f84caa8cfc26a03]*/ |
|---|
| 1897 | n/a | { |
|---|
| 1898 | n/a | double r; |
|---|
| 1899 | n/a | /* fmod(x, +/-Inf) returns x for finite x. */ |
|---|
| 1900 | n/a | if (Py_IS_INFINITY(y) && Py_IS_FINITE(x)) |
|---|
| 1901 | n/a | return PyFloat_FromDouble(x); |
|---|
| 1902 | n/a | errno = 0; |
|---|
| 1903 | n/a | PyFPE_START_PROTECT("in math_fmod", return 0); |
|---|
| 1904 | n/a | r = fmod(x, y); |
|---|
| 1905 | n/a | PyFPE_END_PROTECT(r); |
|---|
| 1906 | n/a | if (Py_IS_NAN(r)) { |
|---|
| 1907 | n/a | if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) |
|---|
| 1908 | n/a | errno = EDOM; |
|---|
| 1909 | n/a | else |
|---|
| 1910 | n/a | errno = 0; |
|---|
| 1911 | n/a | } |
|---|
| 1912 | n/a | if (errno && is_error(r)) |
|---|
| 1913 | n/a | return NULL; |
|---|
| 1914 | n/a | else |
|---|
| 1915 | n/a | return PyFloat_FromDouble(r); |
|---|
| 1916 | n/a | } |
|---|
| 1917 | n/a | |
|---|
| 1918 | n/a | |
|---|
| 1919 | n/a | /*[clinic input] |
|---|
| 1920 | n/a | math.hypot |
|---|
| 1921 | n/a | |
|---|
| 1922 | n/a | x: double |
|---|
| 1923 | n/a | y: double |
|---|
| 1924 | n/a | / |
|---|
| 1925 | n/a | |
|---|
| 1926 | n/a | Return the Euclidean distance, sqrt(x*x + y*y). |
|---|
| 1927 | n/a | [clinic start generated code]*/ |
|---|
| 1928 | n/a | |
|---|
| 1929 | n/a | static PyObject * |
|---|
| 1930 | n/a | math_hypot_impl(PyObject *module, double x, double y) |
|---|
| 1931 | n/a | /*[clinic end generated code: output=b7686e5be468ef87 input=7f8eea70406474aa]*/ |
|---|
| 1932 | n/a | { |
|---|
| 1933 | n/a | double r; |
|---|
| 1934 | n/a | /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */ |
|---|
| 1935 | n/a | if (Py_IS_INFINITY(x)) |
|---|
| 1936 | n/a | return PyFloat_FromDouble(fabs(x)); |
|---|
| 1937 | n/a | if (Py_IS_INFINITY(y)) |
|---|
| 1938 | n/a | return PyFloat_FromDouble(fabs(y)); |
|---|
| 1939 | n/a | errno = 0; |
|---|
| 1940 | n/a | PyFPE_START_PROTECT("in math_hypot", return 0); |
|---|
| 1941 | n/a | r = hypot(x, y); |
|---|
| 1942 | n/a | PyFPE_END_PROTECT(r); |
|---|
| 1943 | n/a | if (Py_IS_NAN(r)) { |
|---|
| 1944 | n/a | if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) |
|---|
| 1945 | n/a | errno = EDOM; |
|---|
| 1946 | n/a | else |
|---|
| 1947 | n/a | errno = 0; |
|---|
| 1948 | n/a | } |
|---|
| 1949 | n/a | else if (Py_IS_INFINITY(r)) { |
|---|
| 1950 | n/a | if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) |
|---|
| 1951 | n/a | errno = ERANGE; |
|---|
| 1952 | n/a | else |
|---|
| 1953 | n/a | errno = 0; |
|---|
| 1954 | n/a | } |
|---|
| 1955 | n/a | if (errno && is_error(r)) |
|---|
| 1956 | n/a | return NULL; |
|---|
| 1957 | n/a | else |
|---|
| 1958 | n/a | return PyFloat_FromDouble(r); |
|---|
| 1959 | n/a | } |
|---|
| 1960 | n/a | |
|---|
| 1961 | n/a | |
|---|
| 1962 | n/a | /* pow can't use math_2, but needs its own wrapper: the problem is |
|---|
| 1963 | n/a | that an infinite result can arise either as a result of overflow |
|---|
| 1964 | n/a | (in which case OverflowError should be raised) or as a result of |
|---|
| 1965 | n/a | e.g. 0.**-5. (for which ValueError needs to be raised.) |
|---|
| 1966 | n/a | */ |
|---|
| 1967 | n/a | |
|---|
| 1968 | n/a | /*[clinic input] |
|---|
| 1969 | n/a | math.pow |
|---|
| 1970 | n/a | |
|---|
| 1971 | n/a | x: double |
|---|
| 1972 | n/a | y: double |
|---|
| 1973 | n/a | / |
|---|
| 1974 | n/a | |
|---|
| 1975 | n/a | Return x**y (x to the power of y). |
|---|
| 1976 | n/a | [clinic start generated code]*/ |
|---|
| 1977 | n/a | |
|---|
| 1978 | n/a | static PyObject * |
|---|
| 1979 | n/a | math_pow_impl(PyObject *module, double x, double y) |
|---|
| 1980 | n/a | /*[clinic end generated code: output=fff93e65abccd6b0 input=c26f1f6075088bfd]*/ |
|---|
| 1981 | n/a | { |
|---|
| 1982 | n/a | double r; |
|---|
| 1983 | n/a | int odd_y; |
|---|
| 1984 | n/a | |
|---|
| 1985 | n/a | /* deal directly with IEEE specials, to cope with problems on various |
|---|
| 1986 | n/a | platforms whose semantics don't exactly match C99 */ |
|---|
| 1987 | n/a | r = 0.; /* silence compiler warning */ |
|---|
| 1988 | n/a | if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) { |
|---|
| 1989 | n/a | errno = 0; |
|---|
| 1990 | n/a | if (Py_IS_NAN(x)) |
|---|
| 1991 | n/a | r = y == 0. ? 1. : x; /* NaN**0 = 1 */ |
|---|
| 1992 | n/a | else if (Py_IS_NAN(y)) |
|---|
| 1993 | n/a | r = x == 1. ? 1. : y; /* 1**NaN = 1 */ |
|---|
| 1994 | n/a | else if (Py_IS_INFINITY(x)) { |
|---|
| 1995 | n/a | odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0; |
|---|
| 1996 | n/a | if (y > 0.) |
|---|
| 1997 | n/a | r = odd_y ? x : fabs(x); |
|---|
| 1998 | n/a | else if (y == 0.) |
|---|
| 1999 | n/a | r = 1.; |
|---|
| 2000 | n/a | else /* y < 0. */ |
|---|
| 2001 | n/a | r = odd_y ? copysign(0., x) : 0.; |
|---|
| 2002 | n/a | } |
|---|
| 2003 | n/a | else if (Py_IS_INFINITY(y)) { |
|---|
| 2004 | n/a | if (fabs(x) == 1.0) |
|---|
| 2005 | n/a | r = 1.; |
|---|
| 2006 | n/a | else if (y > 0. && fabs(x) > 1.0) |
|---|
| 2007 | n/a | r = y; |
|---|
| 2008 | n/a | else if (y < 0. && fabs(x) < 1.0) { |
|---|
| 2009 | n/a | r = -y; /* result is +inf */ |
|---|
| 2010 | n/a | if (x == 0.) /* 0**-inf: divide-by-zero */ |
|---|
| 2011 | n/a | errno = EDOM; |
|---|
| 2012 | n/a | } |
|---|
| 2013 | n/a | else |
|---|
| 2014 | n/a | r = 0.; |
|---|
| 2015 | n/a | } |
|---|
| 2016 | n/a | } |
|---|
| 2017 | n/a | else { |
|---|
| 2018 | n/a | /* let libm handle finite**finite */ |
|---|
| 2019 | n/a | errno = 0; |
|---|
| 2020 | n/a | PyFPE_START_PROTECT("in math_pow", return 0); |
|---|
| 2021 | n/a | r = pow(x, y); |
|---|
| 2022 | n/a | PyFPE_END_PROTECT(r); |
|---|
| 2023 | n/a | /* a NaN result should arise only from (-ve)**(finite |
|---|
| 2024 | n/a | non-integer); in this case we want to raise ValueError. */ |
|---|
| 2025 | n/a | if (!Py_IS_FINITE(r)) { |
|---|
| 2026 | n/a | if (Py_IS_NAN(r)) { |
|---|
| 2027 | n/a | errno = EDOM; |
|---|
| 2028 | n/a | } |
|---|
| 2029 | n/a | /* |
|---|
| 2030 | n/a | an infinite result here arises either from: |
|---|
| 2031 | n/a | (A) (+/-0.)**negative (-> divide-by-zero) |
|---|
| 2032 | n/a | (B) overflow of x**y with x and y finite |
|---|
| 2033 | n/a | */ |
|---|
| 2034 | n/a | else if (Py_IS_INFINITY(r)) { |
|---|
| 2035 | n/a | if (x == 0.) |
|---|
| 2036 | n/a | errno = EDOM; |
|---|
| 2037 | n/a | else |
|---|
| 2038 | n/a | errno = ERANGE; |
|---|
| 2039 | n/a | } |
|---|
| 2040 | n/a | } |
|---|
| 2041 | n/a | } |
|---|
| 2042 | n/a | |
|---|
| 2043 | n/a | if (errno && is_error(r)) |
|---|
| 2044 | n/a | return NULL; |
|---|
| 2045 | n/a | else |
|---|
| 2046 | n/a | return PyFloat_FromDouble(r); |
|---|
| 2047 | n/a | } |
|---|
| 2048 | n/a | |
|---|
| 2049 | n/a | |
|---|
| 2050 | n/a | static const double degToRad = Py_MATH_PI / 180.0; |
|---|
| 2051 | n/a | static const double radToDeg = 180.0 / Py_MATH_PI; |
|---|
| 2052 | n/a | |
|---|
| 2053 | n/a | /*[clinic input] |
|---|
| 2054 | n/a | math.degrees |
|---|
| 2055 | n/a | |
|---|
| 2056 | n/a | x: double |
|---|
| 2057 | n/a | / |
|---|
| 2058 | n/a | |
|---|
| 2059 | n/a | Convert angle x from radians to degrees. |
|---|
| 2060 | n/a | [clinic start generated code]*/ |
|---|
| 2061 | n/a | |
|---|
| 2062 | n/a | static PyObject * |
|---|
| 2063 | n/a | math_degrees_impl(PyObject *module, double x) |
|---|
| 2064 | n/a | /*[clinic end generated code: output=7fea78b294acd12f input=81e016555d6e3660]*/ |
|---|
| 2065 | n/a | { |
|---|
| 2066 | n/a | return PyFloat_FromDouble(x * radToDeg); |
|---|
| 2067 | n/a | } |
|---|
| 2068 | n/a | |
|---|
| 2069 | n/a | |
|---|
| 2070 | n/a | /*[clinic input] |
|---|
| 2071 | n/a | math.radians |
|---|
| 2072 | n/a | |
|---|
| 2073 | n/a | x: double |
|---|
| 2074 | n/a | / |
|---|
| 2075 | n/a | |
|---|
| 2076 | n/a | Convert angle x from degrees to radians. |
|---|
| 2077 | n/a | [clinic start generated code]*/ |
|---|
| 2078 | n/a | |
|---|
| 2079 | n/a | static PyObject * |
|---|
| 2080 | n/a | math_radians_impl(PyObject *module, double x) |
|---|
| 2081 | n/a | /*[clinic end generated code: output=34daa47caf9b1590 input=91626fc489fe3d63]*/ |
|---|
| 2082 | n/a | { |
|---|
| 2083 | n/a | return PyFloat_FromDouble(x * degToRad); |
|---|
| 2084 | n/a | } |
|---|
| 2085 | n/a | |
|---|
| 2086 | n/a | |
|---|
| 2087 | n/a | /*[clinic input] |
|---|
| 2088 | n/a | math.isfinite |
|---|
| 2089 | n/a | |
|---|
| 2090 | n/a | x: double |
|---|
| 2091 | n/a | / |
|---|
| 2092 | n/a | |
|---|
| 2093 | n/a | Return True if x is neither an infinity nor a NaN, and False otherwise. |
|---|
| 2094 | n/a | [clinic start generated code]*/ |
|---|
| 2095 | n/a | |
|---|
| 2096 | n/a | static PyObject * |
|---|
| 2097 | n/a | math_isfinite_impl(PyObject *module, double x) |
|---|
| 2098 | n/a | /*[clinic end generated code: output=8ba1f396440c9901 input=46967d254812e54a]*/ |
|---|
| 2099 | n/a | { |
|---|
| 2100 | n/a | return PyBool_FromLong((long)Py_IS_FINITE(x)); |
|---|
| 2101 | n/a | } |
|---|
| 2102 | n/a | |
|---|
| 2103 | n/a | |
|---|
| 2104 | n/a | /*[clinic input] |
|---|
| 2105 | n/a | math.isnan |
|---|
| 2106 | n/a | |
|---|
| 2107 | n/a | x: double |
|---|
| 2108 | n/a | / |
|---|
| 2109 | n/a | |
|---|
| 2110 | n/a | Return True if x is a NaN (not a number), and False otherwise. |
|---|
| 2111 | n/a | [clinic start generated code]*/ |
|---|
| 2112 | n/a | |
|---|
| 2113 | n/a | static PyObject * |
|---|
| 2114 | n/a | math_isnan_impl(PyObject *module, double x) |
|---|
| 2115 | n/a | /*[clinic end generated code: output=f537b4d6df878c3e input=935891e66083f46a]*/ |
|---|
| 2116 | n/a | { |
|---|
| 2117 | n/a | return PyBool_FromLong((long)Py_IS_NAN(x)); |
|---|
| 2118 | n/a | } |
|---|
| 2119 | n/a | |
|---|
| 2120 | n/a | |
|---|
| 2121 | n/a | /*[clinic input] |
|---|
| 2122 | n/a | math.isinf |
|---|
| 2123 | n/a | |
|---|
| 2124 | n/a | x: double |
|---|
| 2125 | n/a | / |
|---|
| 2126 | n/a | |
|---|
| 2127 | n/a | Return True if x is a positive or negative infinity, and False otherwise. |
|---|
| 2128 | n/a | [clinic start generated code]*/ |
|---|
| 2129 | n/a | |
|---|
| 2130 | n/a | static PyObject * |
|---|
| 2131 | n/a | math_isinf_impl(PyObject *module, double x) |
|---|
| 2132 | n/a | /*[clinic end generated code: output=9f00cbec4de7b06b input=32630e4212cf961f]*/ |
|---|
| 2133 | n/a | { |
|---|
| 2134 | n/a | return PyBool_FromLong((long)Py_IS_INFINITY(x)); |
|---|
| 2135 | n/a | } |
|---|
| 2136 | n/a | |
|---|
| 2137 | n/a | |
|---|
| 2138 | n/a | /*[clinic input] |
|---|
| 2139 | n/a | math.isclose -> bool |
|---|
| 2140 | n/a | |
|---|
| 2141 | n/a | a: double |
|---|
| 2142 | n/a | b: double |
|---|
| 2143 | n/a | * |
|---|
| 2144 | n/a | rel_tol: double = 1e-09 |
|---|
| 2145 | n/a | maximum difference for being considered "close", relative to the |
|---|
| 2146 | n/a | magnitude of the input values |
|---|
| 2147 | n/a | abs_tol: double = 0.0 |
|---|
| 2148 | n/a | maximum difference for being considered "close", regardless of the |
|---|
| 2149 | n/a | magnitude of the input values |
|---|
| 2150 | n/a | |
|---|
| 2151 | n/a | Determine whether two floating point numbers are close in value. |
|---|
| 2152 | n/a | |
|---|
| 2153 | n/a | Return True if a is close in value to b, and False otherwise. |
|---|
| 2154 | n/a | |
|---|
| 2155 | n/a | For the values to be considered close, the difference between them |
|---|
| 2156 | n/a | must be smaller than at least one of the tolerances. |
|---|
| 2157 | n/a | |
|---|
| 2158 | n/a | -inf, inf and NaN behave similarly to the IEEE 754 Standard. That |
|---|
| 2159 | n/a | is, NaN is not close to anything, even itself. inf and -inf are |
|---|
| 2160 | n/a | only close to themselves. |
|---|
| 2161 | n/a | [clinic start generated code]*/ |
|---|
| 2162 | n/a | |
|---|
| 2163 | n/a | static int |
|---|
| 2164 | n/a | math_isclose_impl(PyObject *module, double a, double b, double rel_tol, |
|---|
| 2165 | n/a | double abs_tol) |
|---|
| 2166 | n/a | /*[clinic end generated code: output=b73070207511952d input=f28671871ea5bfba]*/ |
|---|
| 2167 | n/a | { |
|---|
| 2168 | n/a | double diff = 0.0; |
|---|
| 2169 | n/a | |
|---|
| 2170 | n/a | /* sanity check on the inputs */ |
|---|
| 2171 | n/a | if (rel_tol < 0.0 || abs_tol < 0.0 ) { |
|---|
| 2172 | n/a | PyErr_SetString(PyExc_ValueError, |
|---|
| 2173 | n/a | "tolerances must be non-negative"); |
|---|
| 2174 | n/a | return -1; |
|---|
| 2175 | n/a | } |
|---|
| 2176 | n/a | |
|---|
| 2177 | n/a | if ( a == b ) { |
|---|
| 2178 | n/a | /* short circuit exact equality -- needed to catch two infinities of |
|---|
| 2179 | n/a | the same sign. And perhaps speeds things up a bit sometimes. |
|---|
| 2180 | n/a | */ |
|---|
| 2181 | n/a | return 1; |
|---|
| 2182 | n/a | } |
|---|
| 2183 | n/a | |
|---|
| 2184 | n/a | /* This catches the case of two infinities of opposite sign, or |
|---|
| 2185 | n/a | one infinity and one finite number. Two infinities of opposite |
|---|
| 2186 | n/a | sign would otherwise have an infinite relative tolerance. |
|---|
| 2187 | n/a | Two infinities of the same sign are caught by the equality check |
|---|
| 2188 | n/a | above. |
|---|
| 2189 | n/a | */ |
|---|
| 2190 | n/a | |
|---|
| 2191 | n/a | if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) { |
|---|
| 2192 | n/a | return 0; |
|---|
| 2193 | n/a | } |
|---|
| 2194 | n/a | |
|---|
| 2195 | n/a | /* now do the regular computation |
|---|
| 2196 | n/a | this is essentially the "weak" test from the Boost library |
|---|
| 2197 | n/a | */ |
|---|
| 2198 | n/a | |
|---|
| 2199 | n/a | diff = fabs(b - a); |
|---|
| 2200 | n/a | |
|---|
| 2201 | n/a | return (((diff <= fabs(rel_tol * b)) || |
|---|
| 2202 | n/a | (diff <= fabs(rel_tol * a))) || |
|---|
| 2203 | n/a | (diff <= abs_tol)); |
|---|
| 2204 | n/a | } |
|---|
| 2205 | n/a | |
|---|
| 2206 | n/a | |
|---|
| 2207 | n/a | static PyMethodDef math_methods[] = { |
|---|
| 2208 | n/a | {"acos", math_acos, METH_O, math_acos_doc}, |
|---|
| 2209 | n/a | {"acosh", math_acosh, METH_O, math_acosh_doc}, |
|---|
| 2210 | n/a | {"asin", math_asin, METH_O, math_asin_doc}, |
|---|
| 2211 | n/a | {"asinh", math_asinh, METH_O, math_asinh_doc}, |
|---|
| 2212 | n/a | {"atan", math_atan, METH_O, math_atan_doc}, |
|---|
| 2213 | n/a | {"atan2", math_atan2, METH_VARARGS, math_atan2_doc}, |
|---|
| 2214 | n/a | {"atanh", math_atanh, METH_O, math_atanh_doc}, |
|---|
| 2215 | n/a | MATH_CEIL_METHODDEF |
|---|
| 2216 | n/a | {"copysign", math_copysign, METH_VARARGS, math_copysign_doc}, |
|---|
| 2217 | n/a | {"cos", math_cos, METH_O, math_cos_doc}, |
|---|
| 2218 | n/a | {"cosh", math_cosh, METH_O, math_cosh_doc}, |
|---|
| 2219 | n/a | MATH_DEGREES_METHODDEF |
|---|
| 2220 | n/a | {"erf", math_erf, METH_O, math_erf_doc}, |
|---|
| 2221 | n/a | {"erfc", math_erfc, METH_O, math_erfc_doc}, |
|---|
| 2222 | n/a | {"exp", math_exp, METH_O, math_exp_doc}, |
|---|
| 2223 | n/a | {"expm1", math_expm1, METH_O, math_expm1_doc}, |
|---|
| 2224 | n/a | {"fabs", math_fabs, METH_O, math_fabs_doc}, |
|---|
| 2225 | n/a | MATH_FACTORIAL_METHODDEF |
|---|
| 2226 | n/a | MATH_FLOOR_METHODDEF |
|---|
| 2227 | n/a | MATH_FMOD_METHODDEF |
|---|
| 2228 | n/a | MATH_FREXP_METHODDEF |
|---|
| 2229 | n/a | MATH_FSUM_METHODDEF |
|---|
| 2230 | n/a | {"gamma", math_gamma, METH_O, math_gamma_doc}, |
|---|
| 2231 | n/a | MATH_GCD_METHODDEF |
|---|
| 2232 | n/a | MATH_HYPOT_METHODDEF |
|---|
| 2233 | n/a | MATH_ISCLOSE_METHODDEF |
|---|
| 2234 | n/a | MATH_ISFINITE_METHODDEF |
|---|
| 2235 | n/a | MATH_ISINF_METHODDEF |
|---|
| 2236 | n/a | MATH_ISNAN_METHODDEF |
|---|
| 2237 | n/a | MATH_LDEXP_METHODDEF |
|---|
| 2238 | n/a | {"lgamma", math_lgamma, METH_O, math_lgamma_doc}, |
|---|
| 2239 | n/a | MATH_LOG_METHODDEF |
|---|
| 2240 | n/a | {"log1p", math_log1p, METH_O, math_log1p_doc}, |
|---|
| 2241 | n/a | MATH_LOG10_METHODDEF |
|---|
| 2242 | n/a | MATH_LOG2_METHODDEF |
|---|
| 2243 | n/a | MATH_MODF_METHODDEF |
|---|
| 2244 | n/a | MATH_POW_METHODDEF |
|---|
| 2245 | n/a | MATH_RADIANS_METHODDEF |
|---|
| 2246 | n/a | {"sin", math_sin, METH_O, math_sin_doc}, |
|---|
| 2247 | n/a | {"sinh", math_sinh, METH_O, math_sinh_doc}, |
|---|
| 2248 | n/a | {"sqrt", math_sqrt, METH_O, math_sqrt_doc}, |
|---|
| 2249 | n/a | {"tan", math_tan, METH_O, math_tan_doc}, |
|---|
| 2250 | n/a | {"tanh", math_tanh, METH_O, math_tanh_doc}, |
|---|
| 2251 | n/a | MATH_TRUNC_METHODDEF |
|---|
| 2252 | n/a | {NULL, NULL} /* sentinel */ |
|---|
| 2253 | n/a | }; |
|---|
| 2254 | n/a | |
|---|
| 2255 | n/a | |
|---|
| 2256 | n/a | PyDoc_STRVAR(module_doc, |
|---|
| 2257 | n/a | "This module is always available. It provides access to the\n" |
|---|
| 2258 | n/a | "mathematical functions defined by the C standard."); |
|---|
| 2259 | n/a | |
|---|
| 2260 | n/a | |
|---|
| 2261 | n/a | static struct PyModuleDef mathmodule = { |
|---|
| 2262 | n/a | PyModuleDef_HEAD_INIT, |
|---|
| 2263 | n/a | "math", |
|---|
| 2264 | n/a | module_doc, |
|---|
| 2265 | n/a | -1, |
|---|
| 2266 | n/a | math_methods, |
|---|
| 2267 | n/a | NULL, |
|---|
| 2268 | n/a | NULL, |
|---|
| 2269 | n/a | NULL, |
|---|
| 2270 | n/a | NULL |
|---|
| 2271 | n/a | }; |
|---|
| 2272 | n/a | |
|---|
| 2273 | n/a | PyMODINIT_FUNC |
|---|
| 2274 | n/a | PyInit_math(void) |
|---|
| 2275 | n/a | { |
|---|
| 2276 | n/a | PyObject *m; |
|---|
| 2277 | n/a | |
|---|
| 2278 | n/a | m = PyModule_Create(&mathmodule); |
|---|
| 2279 | n/a | if (m == NULL) |
|---|
| 2280 | n/a | goto finally; |
|---|
| 2281 | n/a | |
|---|
| 2282 | n/a | PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI)); |
|---|
| 2283 | n/a | PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E)); |
|---|
| 2284 | n/a | PyModule_AddObject(m, "tau", PyFloat_FromDouble(Py_MATH_TAU)); /* 2pi */ |
|---|
| 2285 | n/a | PyModule_AddObject(m, "inf", PyFloat_FromDouble(m_inf())); |
|---|
| 2286 | n/a | #if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN) |
|---|
| 2287 | n/a | PyModule_AddObject(m, "nan", PyFloat_FromDouble(m_nan())); |
|---|
| 2288 | n/a | #endif |
|---|
| 2289 | n/a | |
|---|
| 2290 | n/a | finally: |
|---|
| 2291 | n/a | return m; |
|---|
| 2292 | n/a | } |
|---|