1 | n/a | /* Math module -- standard C math library functions, pi and e */ |
---|
2 | n/a | |
---|
3 | n/a | /* Here are some comments from Tim Peters, extracted from the |
---|
4 | n/a | discussion attached to http://bugs.python.org/issue1640. They |
---|
5 | n/a | describe the general aims of the math module with respect to |
---|
6 | n/a | special values, IEEE-754 floating-point exceptions, and Python |
---|
7 | n/a | exceptions. |
---|
8 | n/a | |
---|
9 | n/a | These are the "spirit of 754" rules: |
---|
10 | n/a | |
---|
11 | n/a | 1. If the mathematical result is a real number, but of magnitude too |
---|
12 | n/a | large to approximate by a machine float, overflow is signaled and the |
---|
13 | n/a | result is an infinity (with the appropriate sign). |
---|
14 | n/a | |
---|
15 | n/a | 2. If the mathematical result is a real number, but of magnitude too |
---|
16 | n/a | small to approximate by a machine float, underflow is signaled and the |
---|
17 | n/a | result is a zero (with the appropriate sign). |
---|
18 | n/a | |
---|
19 | n/a | 3. At a singularity (a value x such that the limit of f(y) as y |
---|
20 | n/a | approaches x exists and is an infinity), "divide by zero" is signaled |
---|
21 | n/a | and the result is an infinity (with the appropriate sign). This is |
---|
22 | n/a | complicated a little by that the left-side and right-side limits may |
---|
23 | n/a | not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0 |
---|
24 | n/a | from the positive or negative directions. In that specific case, the |
---|
25 | n/a | sign of the zero determines the result of 1/0. |
---|
26 | n/a | |
---|
27 | n/a | 4. At a point where a function has no defined result in the extended |
---|
28 | n/a | reals (i.e., the reals plus an infinity or two), invalid operation is |
---|
29 | n/a | signaled and a NaN is returned. |
---|
30 | n/a | |
---|
31 | n/a | And these are what Python has historically /tried/ to do (but not |
---|
32 | n/a | always successfully, as platform libm behavior varies a lot): |
---|
33 | n/a | |
---|
34 | n/a | For #1, raise OverflowError. |
---|
35 | n/a | |
---|
36 | n/a | For #2, return a zero (with the appropriate sign if that happens by |
---|
37 | n/a | accident ;-)). |
---|
38 | n/a | |
---|
39 | n/a | For #3 and #4, raise ValueError. It may have made sense to raise |
---|
40 | n/a | Python's ZeroDivisionError in #3, but historically that's only been |
---|
41 | n/a | raised for division by zero and mod by zero. |
---|
42 | n/a | |
---|
43 | n/a | */ |
---|
44 | n/a | |
---|
45 | n/a | /* |
---|
46 | n/a | In general, on an IEEE-754 platform the aim is to follow the C99 |
---|
47 | n/a | standard, including Annex 'F', whenever possible. Where the |
---|
48 | n/a | standard recommends raising the 'divide-by-zero' or 'invalid' |
---|
49 | n/a | floating-point exceptions, Python should raise a ValueError. Where |
---|
50 | n/a | the standard recommends raising 'overflow', Python should raise an |
---|
51 | n/a | OverflowError. In all other circumstances a value should be |
---|
52 | n/a | returned. |
---|
53 | n/a | */ |
---|
54 | n/a | |
---|
55 | n/a | #include "Python.h" |
---|
56 | n/a | #include "_math.h" |
---|
57 | n/a | |
---|
58 | n/a | #include "clinic/mathmodule.c.h" |
---|
59 | n/a | |
---|
60 | n/a | /*[clinic input] |
---|
61 | n/a | module math |
---|
62 | n/a | [clinic start generated code]*/ |
---|
63 | n/a | /*[clinic end generated code: output=da39a3ee5e6b4b0d input=76bc7002685dd942]*/ |
---|
64 | n/a | |
---|
65 | n/a | |
---|
66 | n/a | /* |
---|
67 | n/a | sin(pi*x), giving accurate results for all finite x (especially x |
---|
68 | n/a | integral or close to an integer). This is here for use in the |
---|
69 | n/a | reflection formula for the gamma function. It conforms to IEEE |
---|
70 | n/a | 754-2008 for finite arguments, but not for infinities or nans. |
---|
71 | n/a | */ |
---|
72 | n/a | |
---|
73 | n/a | static const double pi = 3.141592653589793238462643383279502884197; |
---|
74 | n/a | static const double sqrtpi = 1.772453850905516027298167483341145182798; |
---|
75 | n/a | static const double logpi = 1.144729885849400174143427351353058711647; |
---|
76 | n/a | |
---|
77 | n/a | static double |
---|
78 | n/a | sinpi(double x) |
---|
79 | n/a | { |
---|
80 | n/a | double y, r; |
---|
81 | n/a | int n; |
---|
82 | n/a | /* this function should only ever be called for finite arguments */ |
---|
83 | n/a | assert(Py_IS_FINITE(x)); |
---|
84 | n/a | y = fmod(fabs(x), 2.0); |
---|
85 | n/a | n = (int)round(2.0*y); |
---|
86 | n/a | assert(0 <= n && n <= 4); |
---|
87 | n/a | switch (n) { |
---|
88 | n/a | case 0: |
---|
89 | n/a | r = sin(pi*y); |
---|
90 | n/a | break; |
---|
91 | n/a | case 1: |
---|
92 | n/a | r = cos(pi*(y-0.5)); |
---|
93 | n/a | break; |
---|
94 | n/a | case 2: |
---|
95 | n/a | /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give |
---|
96 | n/a | -0.0 instead of 0.0 when y == 1.0. */ |
---|
97 | n/a | r = sin(pi*(1.0-y)); |
---|
98 | n/a | break; |
---|
99 | n/a | case 3: |
---|
100 | n/a | r = -cos(pi*(y-1.5)); |
---|
101 | n/a | break; |
---|
102 | n/a | case 4: |
---|
103 | n/a | r = sin(pi*(y-2.0)); |
---|
104 | n/a | break; |
---|
105 | n/a | default: |
---|
106 | n/a | assert(0); /* should never get here */ |
---|
107 | n/a | r = -1.23e200; /* silence gcc warning */ |
---|
108 | n/a | } |
---|
109 | n/a | return copysign(1.0, x)*r; |
---|
110 | n/a | } |
---|
111 | n/a | |
---|
112 | n/a | /* Implementation of the real gamma function. In extensive but non-exhaustive |
---|
113 | n/a | random tests, this function proved accurate to within <= 10 ulps across the |
---|
114 | n/a | entire float domain. Note that accuracy may depend on the quality of the |
---|
115 | n/a | system math functions, the pow function in particular. Special cases |
---|
116 | n/a | follow C99 annex F. The parameters and method are tailored to platforms |
---|
117 | n/a | whose double format is the IEEE 754 binary64 format. |
---|
118 | n/a | |
---|
119 | n/a | Method: for x > 0.0 we use the Lanczos approximation with parameters N=13 |
---|
120 | n/a | and g=6.024680040776729583740234375; these parameters are amongst those |
---|
121 | n/a | used by the Boost library. Following Boost (again), we re-express the |
---|
122 | n/a | Lanczos sum as a rational function, and compute it that way. The |
---|
123 | n/a | coefficients below were computed independently using MPFR, and have been |
---|
124 | n/a | double-checked against the coefficients in the Boost source code. |
---|
125 | n/a | |
---|
126 | n/a | For x < 0.0 we use the reflection formula. |
---|
127 | n/a | |
---|
128 | n/a | There's one minor tweak that deserves explanation: Lanczos' formula for |
---|
129 | n/a | Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x |
---|
130 | n/a | values, x+g-0.5 can be represented exactly. However, in cases where it |
---|
131 | n/a | can't be represented exactly the small error in x+g-0.5 can be magnified |
---|
132 | n/a | significantly by the pow and exp calls, especially for large x. A cheap |
---|
133 | n/a | correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error |
---|
134 | n/a | involved in the computation of x+g-0.5 (that is, e = computed value of |
---|
135 | n/a | x+g-0.5 - exact value of x+g-0.5). Here's the proof: |
---|
136 | n/a | |
---|
137 | n/a | Correction factor |
---|
138 | n/a | ----------------- |
---|
139 | n/a | Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754 |
---|
140 | n/a | double, and e is tiny. Then: |
---|
141 | n/a | |
---|
142 | n/a | pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e) |
---|
143 | n/a | = pow(y, x-0.5)/exp(y) * C, |
---|
144 | n/a | |
---|
145 | n/a | where the correction_factor C is given by |
---|
146 | n/a | |
---|
147 | n/a | C = pow(1-e/y, x-0.5) * exp(e) |
---|
148 | n/a | |
---|
149 | n/a | Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so: |
---|
150 | n/a | |
---|
151 | n/a | C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y |
---|
152 | n/a | |
---|
153 | n/a | But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and |
---|
154 | n/a | |
---|
155 | n/a | pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y), |
---|
156 | n/a | |
---|
157 | n/a | Note that for accuracy, when computing r*C it's better to do |
---|
158 | n/a | |
---|
159 | n/a | r + e*g/y*r; |
---|
160 | n/a | |
---|
161 | n/a | than |
---|
162 | n/a | |
---|
163 | n/a | r * (1 + e*g/y); |
---|
164 | n/a | |
---|
165 | n/a | since the addition in the latter throws away most of the bits of |
---|
166 | n/a | information in e*g/y. |
---|
167 | n/a | */ |
---|
168 | n/a | |
---|
169 | n/a | #define LANCZOS_N 13 |
---|
170 | n/a | static const double lanczos_g = 6.024680040776729583740234375; |
---|
171 | n/a | static const double lanczos_g_minus_half = 5.524680040776729583740234375; |
---|
172 | n/a | static const double lanczos_num_coeffs[LANCZOS_N] = { |
---|
173 | n/a | 23531376880.410759688572007674451636754734846804940, |
---|
174 | n/a | 42919803642.649098768957899047001988850926355848959, |
---|
175 | n/a | 35711959237.355668049440185451547166705960488635843, |
---|
176 | n/a | 17921034426.037209699919755754458931112671403265390, |
---|
177 | n/a | 6039542586.3520280050642916443072979210699388420708, |
---|
178 | n/a | 1439720407.3117216736632230727949123939715485786772, |
---|
179 | n/a | 248874557.86205415651146038641322942321632125127801, |
---|
180 | n/a | 31426415.585400194380614231628318205362874684987640, |
---|
181 | n/a | 2876370.6289353724412254090516208496135991145378768, |
---|
182 | n/a | 186056.26539522349504029498971604569928220784236328, |
---|
183 | n/a | 8071.6720023658162106380029022722506138218516325024, |
---|
184 | n/a | 210.82427775157934587250973392071336271166969580291, |
---|
185 | n/a | 2.5066282746310002701649081771338373386264310793408 |
---|
186 | n/a | }; |
---|
187 | n/a | |
---|
188 | n/a | /* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */ |
---|
189 | n/a | static const double lanczos_den_coeffs[LANCZOS_N] = { |
---|
190 | n/a | 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0, |
---|
191 | n/a | 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0}; |
---|
192 | n/a | |
---|
193 | n/a | /* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */ |
---|
194 | n/a | #define NGAMMA_INTEGRAL 23 |
---|
195 | n/a | static const double gamma_integral[NGAMMA_INTEGRAL] = { |
---|
196 | n/a | 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0, |
---|
197 | n/a | 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0, |
---|
198 | n/a | 1307674368000.0, 20922789888000.0, 355687428096000.0, |
---|
199 | n/a | 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0, |
---|
200 | n/a | 51090942171709440000.0, 1124000727777607680000.0, |
---|
201 | n/a | }; |
---|
202 | n/a | |
---|
203 | n/a | /* Lanczos' sum L_g(x), for positive x */ |
---|
204 | n/a | |
---|
205 | n/a | static double |
---|
206 | n/a | lanczos_sum(double x) |
---|
207 | n/a | { |
---|
208 | n/a | double num = 0.0, den = 0.0; |
---|
209 | n/a | int i; |
---|
210 | n/a | assert(x > 0.0); |
---|
211 | n/a | /* evaluate the rational function lanczos_sum(x). For large |
---|
212 | n/a | x, the obvious algorithm risks overflow, so we instead |
---|
213 | n/a | rescale the denominator and numerator of the rational |
---|
214 | n/a | function by x**(1-LANCZOS_N) and treat this as a |
---|
215 | n/a | rational function in 1/x. This also reduces the error for |
---|
216 | n/a | larger x values. The choice of cutoff point (5.0 below) is |
---|
217 | n/a | somewhat arbitrary; in tests, smaller cutoff values than |
---|
218 | n/a | this resulted in lower accuracy. */ |
---|
219 | n/a | if (x < 5.0) { |
---|
220 | n/a | for (i = LANCZOS_N; --i >= 0; ) { |
---|
221 | n/a | num = num * x + lanczos_num_coeffs[i]; |
---|
222 | n/a | den = den * x + lanczos_den_coeffs[i]; |
---|
223 | n/a | } |
---|
224 | n/a | } |
---|
225 | n/a | else { |
---|
226 | n/a | for (i = 0; i < LANCZOS_N; i++) { |
---|
227 | n/a | num = num / x + lanczos_num_coeffs[i]; |
---|
228 | n/a | den = den / x + lanczos_den_coeffs[i]; |
---|
229 | n/a | } |
---|
230 | n/a | } |
---|
231 | n/a | return num/den; |
---|
232 | n/a | } |
---|
233 | n/a | |
---|
234 | n/a | /* Constant for +infinity, generated in the same way as float('inf'). */ |
---|
235 | n/a | |
---|
236 | n/a | static double |
---|
237 | n/a | m_inf(void) |
---|
238 | n/a | { |
---|
239 | n/a | #ifndef PY_NO_SHORT_FLOAT_REPR |
---|
240 | n/a | return _Py_dg_infinity(0); |
---|
241 | n/a | #else |
---|
242 | n/a | return Py_HUGE_VAL; |
---|
243 | n/a | #endif |
---|
244 | n/a | } |
---|
245 | n/a | |
---|
246 | n/a | /* Constant nan value, generated in the same way as float('nan'). */ |
---|
247 | n/a | /* We don't currently assume that Py_NAN is defined everywhere. */ |
---|
248 | n/a | |
---|
249 | n/a | #if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN) |
---|
250 | n/a | |
---|
251 | n/a | static double |
---|
252 | n/a | m_nan(void) |
---|
253 | n/a | { |
---|
254 | n/a | #ifndef PY_NO_SHORT_FLOAT_REPR |
---|
255 | n/a | return _Py_dg_stdnan(0); |
---|
256 | n/a | #else |
---|
257 | n/a | return Py_NAN; |
---|
258 | n/a | #endif |
---|
259 | n/a | } |
---|
260 | n/a | |
---|
261 | n/a | #endif |
---|
262 | n/a | |
---|
263 | n/a | static double |
---|
264 | n/a | m_tgamma(double x) |
---|
265 | n/a | { |
---|
266 | n/a | double absx, r, y, z, sqrtpow; |
---|
267 | n/a | |
---|
268 | n/a | /* special cases */ |
---|
269 | n/a | if (!Py_IS_FINITE(x)) { |
---|
270 | n/a | if (Py_IS_NAN(x) || x > 0.0) |
---|
271 | n/a | return x; /* tgamma(nan) = nan, tgamma(inf) = inf */ |
---|
272 | n/a | else { |
---|
273 | n/a | errno = EDOM; |
---|
274 | n/a | return Py_NAN; /* tgamma(-inf) = nan, invalid */ |
---|
275 | n/a | } |
---|
276 | n/a | } |
---|
277 | n/a | if (x == 0.0) { |
---|
278 | n/a | errno = EDOM; |
---|
279 | n/a | /* tgamma(+-0.0) = +-inf, divide-by-zero */ |
---|
280 | n/a | return copysign(Py_HUGE_VAL, x); |
---|
281 | n/a | } |
---|
282 | n/a | |
---|
283 | n/a | /* integer arguments */ |
---|
284 | n/a | if (x == floor(x)) { |
---|
285 | n/a | if (x < 0.0) { |
---|
286 | n/a | errno = EDOM; /* tgamma(n) = nan, invalid for */ |
---|
287 | n/a | return Py_NAN; /* negative integers n */ |
---|
288 | n/a | } |
---|
289 | n/a | if (x <= NGAMMA_INTEGRAL) |
---|
290 | n/a | return gamma_integral[(int)x - 1]; |
---|
291 | n/a | } |
---|
292 | n/a | absx = fabs(x); |
---|
293 | n/a | |
---|
294 | n/a | /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */ |
---|
295 | n/a | if (absx < 1e-20) { |
---|
296 | n/a | r = 1.0/x; |
---|
297 | n/a | if (Py_IS_INFINITY(r)) |
---|
298 | n/a | errno = ERANGE; |
---|
299 | n/a | return r; |
---|
300 | n/a | } |
---|
301 | n/a | |
---|
302 | n/a | /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for |
---|
303 | n/a | x > 200, and underflows to +-0.0 for x < -200, not a negative |
---|
304 | n/a | integer. */ |
---|
305 | n/a | if (absx > 200.0) { |
---|
306 | n/a | if (x < 0.0) { |
---|
307 | n/a | return 0.0/sinpi(x); |
---|
308 | n/a | } |
---|
309 | n/a | else { |
---|
310 | n/a | errno = ERANGE; |
---|
311 | n/a | return Py_HUGE_VAL; |
---|
312 | n/a | } |
---|
313 | n/a | } |
---|
314 | n/a | |
---|
315 | n/a | y = absx + lanczos_g_minus_half; |
---|
316 | n/a | /* compute error in sum */ |
---|
317 | n/a | if (absx > lanczos_g_minus_half) { |
---|
318 | n/a | /* note: the correction can be foiled by an optimizing |
---|
319 | n/a | compiler that (incorrectly) thinks that an expression like |
---|
320 | n/a | a + b - a - b can be optimized to 0.0. This shouldn't |
---|
321 | n/a | happen in a standards-conforming compiler. */ |
---|
322 | n/a | double q = y - absx; |
---|
323 | n/a | z = q - lanczos_g_minus_half; |
---|
324 | n/a | } |
---|
325 | n/a | else { |
---|
326 | n/a | double q = y - lanczos_g_minus_half; |
---|
327 | n/a | z = q - absx; |
---|
328 | n/a | } |
---|
329 | n/a | z = z * lanczos_g / y; |
---|
330 | n/a | if (x < 0.0) { |
---|
331 | n/a | r = -pi / sinpi(absx) / absx * exp(y) / lanczos_sum(absx); |
---|
332 | n/a | r -= z * r; |
---|
333 | n/a | if (absx < 140.0) { |
---|
334 | n/a | r /= pow(y, absx - 0.5); |
---|
335 | n/a | } |
---|
336 | n/a | else { |
---|
337 | n/a | sqrtpow = pow(y, absx / 2.0 - 0.25); |
---|
338 | n/a | r /= sqrtpow; |
---|
339 | n/a | r /= sqrtpow; |
---|
340 | n/a | } |
---|
341 | n/a | } |
---|
342 | n/a | else { |
---|
343 | n/a | r = lanczos_sum(absx) / exp(y); |
---|
344 | n/a | r += z * r; |
---|
345 | n/a | if (absx < 140.0) { |
---|
346 | n/a | r *= pow(y, absx - 0.5); |
---|
347 | n/a | } |
---|
348 | n/a | else { |
---|
349 | n/a | sqrtpow = pow(y, absx / 2.0 - 0.25); |
---|
350 | n/a | r *= sqrtpow; |
---|
351 | n/a | r *= sqrtpow; |
---|
352 | n/a | } |
---|
353 | n/a | } |
---|
354 | n/a | if (Py_IS_INFINITY(r)) |
---|
355 | n/a | errno = ERANGE; |
---|
356 | n/a | return r; |
---|
357 | n/a | } |
---|
358 | n/a | |
---|
359 | n/a | /* |
---|
360 | n/a | lgamma: natural log of the absolute value of the Gamma function. |
---|
361 | n/a | For large arguments, Lanczos' formula works extremely well here. |
---|
362 | n/a | */ |
---|
363 | n/a | |
---|
364 | n/a | static double |
---|
365 | n/a | m_lgamma(double x) |
---|
366 | n/a | { |
---|
367 | n/a | double r, absx; |
---|
368 | n/a | |
---|
369 | n/a | /* special cases */ |
---|
370 | n/a | if (!Py_IS_FINITE(x)) { |
---|
371 | n/a | if (Py_IS_NAN(x)) |
---|
372 | n/a | return x; /* lgamma(nan) = nan */ |
---|
373 | n/a | else |
---|
374 | n/a | return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */ |
---|
375 | n/a | } |
---|
376 | n/a | |
---|
377 | n/a | /* integer arguments */ |
---|
378 | n/a | if (x == floor(x) && x <= 2.0) { |
---|
379 | n/a | if (x <= 0.0) { |
---|
380 | n/a | errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */ |
---|
381 | n/a | return Py_HUGE_VAL; /* integers n <= 0 */ |
---|
382 | n/a | } |
---|
383 | n/a | else { |
---|
384 | n/a | return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */ |
---|
385 | n/a | } |
---|
386 | n/a | } |
---|
387 | n/a | |
---|
388 | n/a | absx = fabs(x); |
---|
389 | n/a | /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */ |
---|
390 | n/a | if (absx < 1e-20) |
---|
391 | n/a | return -log(absx); |
---|
392 | n/a | |
---|
393 | n/a | /* Lanczos' formula. We could save a fraction of a ulp in accuracy by |
---|
394 | n/a | having a second set of numerator coefficients for lanczos_sum that |
---|
395 | n/a | absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g |
---|
396 | n/a | subtraction below; it's probably not worth it. */ |
---|
397 | n/a | r = log(lanczos_sum(absx)) - lanczos_g; |
---|
398 | n/a | r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1); |
---|
399 | n/a | if (x < 0.0) |
---|
400 | n/a | /* Use reflection formula to get value for negative x. */ |
---|
401 | n/a | r = logpi - log(fabs(sinpi(absx))) - log(absx) - r; |
---|
402 | n/a | if (Py_IS_INFINITY(r)) |
---|
403 | n/a | errno = ERANGE; |
---|
404 | n/a | return r; |
---|
405 | n/a | } |
---|
406 | n/a | |
---|
407 | n/a | /* |
---|
408 | n/a | Implementations of the error function erf(x) and the complementary error |
---|
409 | n/a | function erfc(x). |
---|
410 | n/a | |
---|
411 | n/a | Method: we use a series approximation for erf for small x, and a continued |
---|
412 | n/a | fraction approximation for erfc(x) for larger x; |
---|
413 | n/a | combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x), |
---|
414 | n/a | this gives us erf(x) and erfc(x) for all x. |
---|
415 | n/a | |
---|
416 | n/a | The series expansion used is: |
---|
417 | n/a | |
---|
418 | n/a | erf(x) = x*exp(-x*x)/sqrt(pi) * [ |
---|
419 | n/a | 2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...] |
---|
420 | n/a | |
---|
421 | n/a | The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k). |
---|
422 | n/a | This series converges well for smallish x, but slowly for larger x. |
---|
423 | n/a | |
---|
424 | n/a | The continued fraction expansion used is: |
---|
425 | n/a | |
---|
426 | n/a | erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - ) |
---|
427 | n/a | 3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...] |
---|
428 | n/a | |
---|
429 | n/a | after the first term, the general term has the form: |
---|
430 | n/a | |
---|
431 | n/a | k*(k-0.5)/(2*k+0.5 + x**2 - ...). |
---|
432 | n/a | |
---|
433 | n/a | This expansion converges fast for larger x, but convergence becomes |
---|
434 | n/a | infinitely slow as x approaches 0.0. The (somewhat naive) continued |
---|
435 | n/a | fraction evaluation algorithm used below also risks overflow for large x; |
---|
436 | n/a | but for large x, erfc(x) == 0.0 to within machine precision. (For |
---|
437 | n/a | example, erfc(30.0) is approximately 2.56e-393). |
---|
438 | n/a | |
---|
439 | n/a | Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and |
---|
440 | n/a | continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) < |
---|
441 | n/a | ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the |
---|
442 | n/a | numbers of terms to use for the relevant expansions. */ |
---|
443 | n/a | |
---|
444 | n/a | #define ERF_SERIES_CUTOFF 1.5 |
---|
445 | n/a | #define ERF_SERIES_TERMS 25 |
---|
446 | n/a | #define ERFC_CONTFRAC_CUTOFF 30.0 |
---|
447 | n/a | #define ERFC_CONTFRAC_TERMS 50 |
---|
448 | n/a | |
---|
449 | n/a | /* |
---|
450 | n/a | Error function, via power series. |
---|
451 | n/a | |
---|
452 | n/a | Given a finite float x, return an approximation to erf(x). |
---|
453 | n/a | Converges reasonably fast for small x. |
---|
454 | n/a | */ |
---|
455 | n/a | |
---|
456 | n/a | static double |
---|
457 | n/a | m_erf_series(double x) |
---|
458 | n/a | { |
---|
459 | n/a | double x2, acc, fk, result; |
---|
460 | n/a | int i, saved_errno; |
---|
461 | n/a | |
---|
462 | n/a | x2 = x * x; |
---|
463 | n/a | acc = 0.0; |
---|
464 | n/a | fk = (double)ERF_SERIES_TERMS + 0.5; |
---|
465 | n/a | for (i = 0; i < ERF_SERIES_TERMS; i++) { |
---|
466 | n/a | acc = 2.0 + x2 * acc / fk; |
---|
467 | n/a | fk -= 1.0; |
---|
468 | n/a | } |
---|
469 | n/a | /* Make sure the exp call doesn't affect errno; |
---|
470 | n/a | see m_erfc_contfrac for more. */ |
---|
471 | n/a | saved_errno = errno; |
---|
472 | n/a | result = acc * x * exp(-x2) / sqrtpi; |
---|
473 | n/a | errno = saved_errno; |
---|
474 | n/a | return result; |
---|
475 | n/a | } |
---|
476 | n/a | |
---|
477 | n/a | /* |
---|
478 | n/a | Complementary error function, via continued fraction expansion. |
---|
479 | n/a | |
---|
480 | n/a | Given a positive float x, return an approximation to erfc(x). Converges |
---|
481 | n/a | reasonably fast for x large (say, x > 2.0), and should be safe from |
---|
482 | n/a | overflow if x and nterms are not too large. On an IEEE 754 machine, with x |
---|
483 | n/a | <= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller |
---|
484 | n/a | than the smallest representable nonzero float. */ |
---|
485 | n/a | |
---|
486 | n/a | static double |
---|
487 | n/a | m_erfc_contfrac(double x) |
---|
488 | n/a | { |
---|
489 | n/a | double x2, a, da, p, p_last, q, q_last, b, result; |
---|
490 | n/a | int i, saved_errno; |
---|
491 | n/a | |
---|
492 | n/a | if (x >= ERFC_CONTFRAC_CUTOFF) |
---|
493 | n/a | return 0.0; |
---|
494 | n/a | |
---|
495 | n/a | x2 = x*x; |
---|
496 | n/a | a = 0.0; |
---|
497 | n/a | da = 0.5; |
---|
498 | n/a | p = 1.0; p_last = 0.0; |
---|
499 | n/a | q = da + x2; q_last = 1.0; |
---|
500 | n/a | for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) { |
---|
501 | n/a | double temp; |
---|
502 | n/a | a += da; |
---|
503 | n/a | da += 2.0; |
---|
504 | n/a | b = da + x2; |
---|
505 | n/a | temp = p; p = b*p - a*p_last; p_last = temp; |
---|
506 | n/a | temp = q; q = b*q - a*q_last; q_last = temp; |
---|
507 | n/a | } |
---|
508 | n/a | /* Issue #8986: On some platforms, exp sets errno on underflow to zero; |
---|
509 | n/a | save the current errno value so that we can restore it later. */ |
---|
510 | n/a | saved_errno = errno; |
---|
511 | n/a | result = p / q * x * exp(-x2) / sqrtpi; |
---|
512 | n/a | errno = saved_errno; |
---|
513 | n/a | return result; |
---|
514 | n/a | } |
---|
515 | n/a | |
---|
516 | n/a | /* Error function erf(x), for general x */ |
---|
517 | n/a | |
---|
518 | n/a | static double |
---|
519 | n/a | m_erf(double x) |
---|
520 | n/a | { |
---|
521 | n/a | double absx, cf; |
---|
522 | n/a | |
---|
523 | n/a | if (Py_IS_NAN(x)) |
---|
524 | n/a | return x; |
---|
525 | n/a | absx = fabs(x); |
---|
526 | n/a | if (absx < ERF_SERIES_CUTOFF) |
---|
527 | n/a | return m_erf_series(x); |
---|
528 | n/a | else { |
---|
529 | n/a | cf = m_erfc_contfrac(absx); |
---|
530 | n/a | return x > 0.0 ? 1.0 - cf : cf - 1.0; |
---|
531 | n/a | } |
---|
532 | n/a | } |
---|
533 | n/a | |
---|
534 | n/a | /* Complementary error function erfc(x), for general x. */ |
---|
535 | n/a | |
---|
536 | n/a | static double |
---|
537 | n/a | m_erfc(double x) |
---|
538 | n/a | { |
---|
539 | n/a | double absx, cf; |
---|
540 | n/a | |
---|
541 | n/a | if (Py_IS_NAN(x)) |
---|
542 | n/a | return x; |
---|
543 | n/a | absx = fabs(x); |
---|
544 | n/a | if (absx < ERF_SERIES_CUTOFF) |
---|
545 | n/a | return 1.0 - m_erf_series(x); |
---|
546 | n/a | else { |
---|
547 | n/a | cf = m_erfc_contfrac(absx); |
---|
548 | n/a | return x > 0.0 ? cf : 2.0 - cf; |
---|
549 | n/a | } |
---|
550 | n/a | } |
---|
551 | n/a | |
---|
552 | n/a | /* |
---|
553 | n/a | wrapper for atan2 that deals directly with special cases before |
---|
554 | n/a | delegating to the platform libm for the remaining cases. This |
---|
555 | n/a | is necessary to get consistent behaviour across platforms. |
---|
556 | n/a | Windows, FreeBSD and alpha Tru64 are amongst platforms that don't |
---|
557 | n/a | always follow C99. |
---|
558 | n/a | */ |
---|
559 | n/a | |
---|
560 | n/a | static double |
---|
561 | n/a | m_atan2(double y, double x) |
---|
562 | n/a | { |
---|
563 | n/a | if (Py_IS_NAN(x) || Py_IS_NAN(y)) |
---|
564 | n/a | return Py_NAN; |
---|
565 | n/a | if (Py_IS_INFINITY(y)) { |
---|
566 | n/a | if (Py_IS_INFINITY(x)) { |
---|
567 | n/a | if (copysign(1., x) == 1.) |
---|
568 | n/a | /* atan2(+-inf, +inf) == +-pi/4 */ |
---|
569 | n/a | return copysign(0.25*Py_MATH_PI, y); |
---|
570 | n/a | else |
---|
571 | n/a | /* atan2(+-inf, -inf) == +-pi*3/4 */ |
---|
572 | n/a | return copysign(0.75*Py_MATH_PI, y); |
---|
573 | n/a | } |
---|
574 | n/a | /* atan2(+-inf, x) == +-pi/2 for finite x */ |
---|
575 | n/a | return copysign(0.5*Py_MATH_PI, y); |
---|
576 | n/a | } |
---|
577 | n/a | if (Py_IS_INFINITY(x) || y == 0.) { |
---|
578 | n/a | if (copysign(1., x) == 1.) |
---|
579 | n/a | /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */ |
---|
580 | n/a | return copysign(0., y); |
---|
581 | n/a | else |
---|
582 | n/a | /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */ |
---|
583 | n/a | return copysign(Py_MATH_PI, y); |
---|
584 | n/a | } |
---|
585 | n/a | return atan2(y, x); |
---|
586 | n/a | } |
---|
587 | n/a | |
---|
588 | n/a | /* |
---|
589 | n/a | Various platforms (Solaris, OpenBSD) do nonstandard things for log(0), |
---|
590 | n/a | log(-ve), log(NaN). Here are wrappers for log and log10 that deal with |
---|
591 | n/a | special values directly, passing positive non-special values through to |
---|
592 | n/a | the system log/log10. |
---|
593 | n/a | */ |
---|
594 | n/a | |
---|
595 | n/a | static double |
---|
596 | n/a | m_log(double x) |
---|
597 | n/a | { |
---|
598 | n/a | if (Py_IS_FINITE(x)) { |
---|
599 | n/a | if (x > 0.0) |
---|
600 | n/a | return log(x); |
---|
601 | n/a | errno = EDOM; |
---|
602 | n/a | if (x == 0.0) |
---|
603 | n/a | return -Py_HUGE_VAL; /* log(0) = -inf */ |
---|
604 | n/a | else |
---|
605 | n/a | return Py_NAN; /* log(-ve) = nan */ |
---|
606 | n/a | } |
---|
607 | n/a | else if (Py_IS_NAN(x)) |
---|
608 | n/a | return x; /* log(nan) = nan */ |
---|
609 | n/a | else if (x > 0.0) |
---|
610 | n/a | return x; /* log(inf) = inf */ |
---|
611 | n/a | else { |
---|
612 | n/a | errno = EDOM; |
---|
613 | n/a | return Py_NAN; /* log(-inf) = nan */ |
---|
614 | n/a | } |
---|
615 | n/a | } |
---|
616 | n/a | |
---|
617 | n/a | /* |
---|
618 | n/a | log2: log to base 2. |
---|
619 | n/a | |
---|
620 | n/a | Uses an algorithm that should: |
---|
621 | n/a | |
---|
622 | n/a | (a) produce exact results for powers of 2, and |
---|
623 | n/a | (b) give a monotonic log2 (for positive finite floats), |
---|
624 | n/a | assuming that the system log is monotonic. |
---|
625 | n/a | */ |
---|
626 | n/a | |
---|
627 | n/a | static double |
---|
628 | n/a | m_log2(double x) |
---|
629 | n/a | { |
---|
630 | n/a | if (!Py_IS_FINITE(x)) { |
---|
631 | n/a | if (Py_IS_NAN(x)) |
---|
632 | n/a | return x; /* log2(nan) = nan */ |
---|
633 | n/a | else if (x > 0.0) |
---|
634 | n/a | return x; /* log2(+inf) = +inf */ |
---|
635 | n/a | else { |
---|
636 | n/a | errno = EDOM; |
---|
637 | n/a | return Py_NAN; /* log2(-inf) = nan, invalid-operation */ |
---|
638 | n/a | } |
---|
639 | n/a | } |
---|
640 | n/a | |
---|
641 | n/a | if (x > 0.0) { |
---|
642 | n/a | #ifdef HAVE_LOG2 |
---|
643 | n/a | return log2(x); |
---|
644 | n/a | #else |
---|
645 | n/a | double m; |
---|
646 | n/a | int e; |
---|
647 | n/a | m = frexp(x, &e); |
---|
648 | n/a | /* We want log2(m * 2**e) == log(m) / log(2) + e. Care is needed when |
---|
649 | n/a | * x is just greater than 1.0: in that case e is 1, log(m) is negative, |
---|
650 | n/a | * and we get significant cancellation error from the addition of |
---|
651 | n/a | * log(m) / log(2) to e. The slight rewrite of the expression below |
---|
652 | n/a | * avoids this problem. |
---|
653 | n/a | */ |
---|
654 | n/a | if (x >= 1.0) { |
---|
655 | n/a | return log(2.0 * m) / log(2.0) + (e - 1); |
---|
656 | n/a | } |
---|
657 | n/a | else { |
---|
658 | n/a | return log(m) / log(2.0) + e; |
---|
659 | n/a | } |
---|
660 | n/a | #endif |
---|
661 | n/a | } |
---|
662 | n/a | else if (x == 0.0) { |
---|
663 | n/a | errno = EDOM; |
---|
664 | n/a | return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */ |
---|
665 | n/a | } |
---|
666 | n/a | else { |
---|
667 | n/a | errno = EDOM; |
---|
668 | n/a | return Py_NAN; /* log2(-inf) = nan, invalid-operation */ |
---|
669 | n/a | } |
---|
670 | n/a | } |
---|
671 | n/a | |
---|
672 | n/a | static double |
---|
673 | n/a | m_log10(double x) |
---|
674 | n/a | { |
---|
675 | n/a | if (Py_IS_FINITE(x)) { |
---|
676 | n/a | if (x > 0.0) |
---|
677 | n/a | return log10(x); |
---|
678 | n/a | errno = EDOM; |
---|
679 | n/a | if (x == 0.0) |
---|
680 | n/a | return -Py_HUGE_VAL; /* log10(0) = -inf */ |
---|
681 | n/a | else |
---|
682 | n/a | return Py_NAN; /* log10(-ve) = nan */ |
---|
683 | n/a | } |
---|
684 | n/a | else if (Py_IS_NAN(x)) |
---|
685 | n/a | return x; /* log10(nan) = nan */ |
---|
686 | n/a | else if (x > 0.0) |
---|
687 | n/a | return x; /* log10(inf) = inf */ |
---|
688 | n/a | else { |
---|
689 | n/a | errno = EDOM; |
---|
690 | n/a | return Py_NAN; /* log10(-inf) = nan */ |
---|
691 | n/a | } |
---|
692 | n/a | } |
---|
693 | n/a | |
---|
694 | n/a | |
---|
695 | n/a | /*[clinic input] |
---|
696 | n/a | math.gcd |
---|
697 | n/a | |
---|
698 | n/a | x as a: object |
---|
699 | n/a | y as b: object |
---|
700 | n/a | / |
---|
701 | n/a | |
---|
702 | n/a | greatest common divisor of x and y |
---|
703 | n/a | [clinic start generated code]*/ |
---|
704 | n/a | |
---|
705 | n/a | static PyObject * |
---|
706 | n/a | math_gcd_impl(PyObject *module, PyObject *a, PyObject *b) |
---|
707 | n/a | /*[clinic end generated code: output=7b2e0c151bd7a5d8 input=c2691e57fb2a98fa]*/ |
---|
708 | n/a | { |
---|
709 | n/a | PyObject *g; |
---|
710 | n/a | |
---|
711 | n/a | a = PyNumber_Index(a); |
---|
712 | n/a | if (a == NULL) |
---|
713 | n/a | return NULL; |
---|
714 | n/a | b = PyNumber_Index(b); |
---|
715 | n/a | if (b == NULL) { |
---|
716 | n/a | Py_DECREF(a); |
---|
717 | n/a | return NULL; |
---|
718 | n/a | } |
---|
719 | n/a | g = _PyLong_GCD(a, b); |
---|
720 | n/a | Py_DECREF(a); |
---|
721 | n/a | Py_DECREF(b); |
---|
722 | n/a | return g; |
---|
723 | n/a | } |
---|
724 | n/a | |
---|
725 | n/a | |
---|
726 | n/a | /* Call is_error when errno != 0, and where x is the result libm |
---|
727 | n/a | * returned. is_error will usually set up an exception and return |
---|
728 | n/a | * true (1), but may return false (0) without setting up an exception. |
---|
729 | n/a | */ |
---|
730 | n/a | static int |
---|
731 | n/a | is_error(double x) |
---|
732 | n/a | { |
---|
733 | n/a | int result = 1; /* presumption of guilt */ |
---|
734 | n/a | assert(errno); /* non-zero errno is a precondition for calling */ |
---|
735 | n/a | if (errno == EDOM) |
---|
736 | n/a | PyErr_SetString(PyExc_ValueError, "math domain error"); |
---|
737 | n/a | |
---|
738 | n/a | else if (errno == ERANGE) { |
---|
739 | n/a | /* ANSI C generally requires libm functions to set ERANGE |
---|
740 | n/a | * on overflow, but also generally *allows* them to set |
---|
741 | n/a | * ERANGE on underflow too. There's no consistency about |
---|
742 | n/a | * the latter across platforms. |
---|
743 | n/a | * Alas, C99 never requires that errno be set. |
---|
744 | n/a | * Here we suppress the underflow errors (libm functions |
---|
745 | n/a | * should return a zero on underflow, and +- HUGE_VAL on |
---|
746 | n/a | * overflow, so testing the result for zero suffices to |
---|
747 | n/a | * distinguish the cases). |
---|
748 | n/a | * |
---|
749 | n/a | * On some platforms (Ubuntu/ia64) it seems that errno can be |
---|
750 | n/a | * set to ERANGE for subnormal results that do *not* underflow |
---|
751 | n/a | * to zero. So to be safe, we'll ignore ERANGE whenever the |
---|
752 | n/a | * function result is less than one in absolute value. |
---|
753 | n/a | */ |
---|
754 | n/a | if (fabs(x) < 1.0) |
---|
755 | n/a | result = 0; |
---|
756 | n/a | else |
---|
757 | n/a | PyErr_SetString(PyExc_OverflowError, |
---|
758 | n/a | "math range error"); |
---|
759 | n/a | } |
---|
760 | n/a | else |
---|
761 | n/a | /* Unexpected math error */ |
---|
762 | n/a | PyErr_SetFromErrno(PyExc_ValueError); |
---|
763 | n/a | return result; |
---|
764 | n/a | } |
---|
765 | n/a | |
---|
766 | n/a | /* |
---|
767 | n/a | math_1 is used to wrap a libm function f that takes a double |
---|
768 | n/a | argument and returns a double. |
---|
769 | n/a | |
---|
770 | n/a | The error reporting follows these rules, which are designed to do |
---|
771 | n/a | the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 |
---|
772 | n/a | platforms. |
---|
773 | n/a | |
---|
774 | n/a | - a NaN result from non-NaN inputs causes ValueError to be raised |
---|
775 | n/a | - an infinite result from finite inputs causes OverflowError to be |
---|
776 | n/a | raised if can_overflow is 1, or raises ValueError if can_overflow |
---|
777 | n/a | is 0. |
---|
778 | n/a | - if the result is finite and errno == EDOM then ValueError is |
---|
779 | n/a | raised |
---|
780 | n/a | - if the result is finite and nonzero and errno == ERANGE then |
---|
781 | n/a | OverflowError is raised |
---|
782 | n/a | |
---|
783 | n/a | The last rule is used to catch overflow on platforms which follow |
---|
784 | n/a | C89 but for which HUGE_VAL is not an infinity. |
---|
785 | n/a | |
---|
786 | n/a | For the majority of one-argument functions these rules are enough |
---|
787 | n/a | to ensure that Python's functions behave as specified in 'Annex F' |
---|
788 | n/a | of the C99 standard, with the 'invalid' and 'divide-by-zero' |
---|
789 | n/a | floating-point exceptions mapping to Python's ValueError and the |
---|
790 | n/a | 'overflow' floating-point exception mapping to OverflowError. |
---|
791 | n/a | math_1 only works for functions that don't have singularities *and* |
---|
792 | n/a | the possibility of overflow; fortunately, that covers everything we |
---|
793 | n/a | care about right now. |
---|
794 | n/a | */ |
---|
795 | n/a | |
---|
796 | n/a | static PyObject * |
---|
797 | n/a | math_1_to_whatever(PyObject *arg, double (*func) (double), |
---|
798 | n/a | PyObject *(*from_double_func) (double), |
---|
799 | n/a | int can_overflow) |
---|
800 | n/a | { |
---|
801 | n/a | double x, r; |
---|
802 | n/a | x = PyFloat_AsDouble(arg); |
---|
803 | n/a | if (x == -1.0 && PyErr_Occurred()) |
---|
804 | n/a | return NULL; |
---|
805 | n/a | errno = 0; |
---|
806 | n/a | PyFPE_START_PROTECT("in math_1", return 0); |
---|
807 | n/a | r = (*func)(x); |
---|
808 | n/a | PyFPE_END_PROTECT(r); |
---|
809 | n/a | if (Py_IS_NAN(r) && !Py_IS_NAN(x)) { |
---|
810 | n/a | PyErr_SetString(PyExc_ValueError, |
---|
811 | n/a | "math domain error"); /* invalid arg */ |
---|
812 | n/a | return NULL; |
---|
813 | n/a | } |
---|
814 | n/a | if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) { |
---|
815 | n/a | if (can_overflow) |
---|
816 | n/a | PyErr_SetString(PyExc_OverflowError, |
---|
817 | n/a | "math range error"); /* overflow */ |
---|
818 | n/a | else |
---|
819 | n/a | PyErr_SetString(PyExc_ValueError, |
---|
820 | n/a | "math domain error"); /* singularity */ |
---|
821 | n/a | return NULL; |
---|
822 | n/a | } |
---|
823 | n/a | if (Py_IS_FINITE(r) && errno && is_error(r)) |
---|
824 | n/a | /* this branch unnecessary on most platforms */ |
---|
825 | n/a | return NULL; |
---|
826 | n/a | |
---|
827 | n/a | return (*from_double_func)(r); |
---|
828 | n/a | } |
---|
829 | n/a | |
---|
830 | n/a | /* variant of math_1, to be used when the function being wrapped is known to |
---|
831 | n/a | set errno properly (that is, errno = EDOM for invalid or divide-by-zero, |
---|
832 | n/a | errno = ERANGE for overflow). */ |
---|
833 | n/a | |
---|
834 | n/a | static PyObject * |
---|
835 | n/a | math_1a(PyObject *arg, double (*func) (double)) |
---|
836 | n/a | { |
---|
837 | n/a | double x, r; |
---|
838 | n/a | x = PyFloat_AsDouble(arg); |
---|
839 | n/a | if (x == -1.0 && PyErr_Occurred()) |
---|
840 | n/a | return NULL; |
---|
841 | n/a | errno = 0; |
---|
842 | n/a | PyFPE_START_PROTECT("in math_1a", return 0); |
---|
843 | n/a | r = (*func)(x); |
---|
844 | n/a | PyFPE_END_PROTECT(r); |
---|
845 | n/a | if (errno && is_error(r)) |
---|
846 | n/a | return NULL; |
---|
847 | n/a | return PyFloat_FromDouble(r); |
---|
848 | n/a | } |
---|
849 | n/a | |
---|
850 | n/a | /* |
---|
851 | n/a | math_2 is used to wrap a libm function f that takes two double |
---|
852 | n/a | arguments and returns a double. |
---|
853 | n/a | |
---|
854 | n/a | The error reporting follows these rules, which are designed to do |
---|
855 | n/a | the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 |
---|
856 | n/a | platforms. |
---|
857 | n/a | |
---|
858 | n/a | - a NaN result from non-NaN inputs causes ValueError to be raised |
---|
859 | n/a | - an infinite result from finite inputs causes OverflowError to be |
---|
860 | n/a | raised. |
---|
861 | n/a | - if the result is finite and errno == EDOM then ValueError is |
---|
862 | n/a | raised |
---|
863 | n/a | - if the result is finite and nonzero and errno == ERANGE then |
---|
864 | n/a | OverflowError is raised |
---|
865 | n/a | |
---|
866 | n/a | The last rule is used to catch overflow on platforms which follow |
---|
867 | n/a | C89 but for which HUGE_VAL is not an infinity. |
---|
868 | n/a | |
---|
869 | n/a | For most two-argument functions (copysign, fmod, hypot, atan2) |
---|
870 | n/a | these rules are enough to ensure that Python's functions behave as |
---|
871 | n/a | specified in 'Annex F' of the C99 standard, with the 'invalid' and |
---|
872 | n/a | 'divide-by-zero' floating-point exceptions mapping to Python's |
---|
873 | n/a | ValueError and the 'overflow' floating-point exception mapping to |
---|
874 | n/a | OverflowError. |
---|
875 | n/a | */ |
---|
876 | n/a | |
---|
877 | n/a | static PyObject * |
---|
878 | n/a | math_1(PyObject *arg, double (*func) (double), int can_overflow) |
---|
879 | n/a | { |
---|
880 | n/a | return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow); |
---|
881 | n/a | } |
---|
882 | n/a | |
---|
883 | n/a | static PyObject * |
---|
884 | n/a | math_1_to_int(PyObject *arg, double (*func) (double), int can_overflow) |
---|
885 | n/a | { |
---|
886 | n/a | return math_1_to_whatever(arg, func, PyLong_FromDouble, can_overflow); |
---|
887 | n/a | } |
---|
888 | n/a | |
---|
889 | n/a | static PyObject * |
---|
890 | n/a | math_2(PyObject *args, double (*func) (double, double), const char *funcname) |
---|
891 | n/a | { |
---|
892 | n/a | PyObject *ox, *oy; |
---|
893 | n/a | double x, y, r; |
---|
894 | n/a | if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy)) |
---|
895 | n/a | return NULL; |
---|
896 | n/a | x = PyFloat_AsDouble(ox); |
---|
897 | n/a | y = PyFloat_AsDouble(oy); |
---|
898 | n/a | if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) |
---|
899 | n/a | return NULL; |
---|
900 | n/a | errno = 0; |
---|
901 | n/a | PyFPE_START_PROTECT("in math_2", return 0); |
---|
902 | n/a | r = (*func)(x, y); |
---|
903 | n/a | PyFPE_END_PROTECT(r); |
---|
904 | n/a | if (Py_IS_NAN(r)) { |
---|
905 | n/a | if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) |
---|
906 | n/a | errno = EDOM; |
---|
907 | n/a | else |
---|
908 | n/a | errno = 0; |
---|
909 | n/a | } |
---|
910 | n/a | else if (Py_IS_INFINITY(r)) { |
---|
911 | n/a | if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) |
---|
912 | n/a | errno = ERANGE; |
---|
913 | n/a | else |
---|
914 | n/a | errno = 0; |
---|
915 | n/a | } |
---|
916 | n/a | if (errno && is_error(r)) |
---|
917 | n/a | return NULL; |
---|
918 | n/a | else |
---|
919 | n/a | return PyFloat_FromDouble(r); |
---|
920 | n/a | } |
---|
921 | n/a | |
---|
922 | n/a | #define FUNC1(funcname, func, can_overflow, docstring) \ |
---|
923 | n/a | static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ |
---|
924 | n/a | return math_1(args, func, can_overflow); \ |
---|
925 | n/a | }\ |
---|
926 | n/a | PyDoc_STRVAR(math_##funcname##_doc, docstring); |
---|
927 | n/a | |
---|
928 | n/a | #define FUNC1A(funcname, func, docstring) \ |
---|
929 | n/a | static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ |
---|
930 | n/a | return math_1a(args, func); \ |
---|
931 | n/a | }\ |
---|
932 | n/a | PyDoc_STRVAR(math_##funcname##_doc, docstring); |
---|
933 | n/a | |
---|
934 | n/a | #define FUNC2(funcname, func, docstring) \ |
---|
935 | n/a | static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ |
---|
936 | n/a | return math_2(args, func, #funcname); \ |
---|
937 | n/a | }\ |
---|
938 | n/a | PyDoc_STRVAR(math_##funcname##_doc, docstring); |
---|
939 | n/a | |
---|
940 | n/a | FUNC1(acos, acos, 0, |
---|
941 | n/a | "acos($module, x, /)\n--\n\n" |
---|
942 | n/a | "Return the arc cosine (measured in radians) of x.") |
---|
943 | n/a | FUNC1(acosh, m_acosh, 0, |
---|
944 | n/a | "acosh($module, x, /)\n--\n\n" |
---|
945 | n/a | "Return the inverse hyperbolic cosine of x.") |
---|
946 | n/a | FUNC1(asin, asin, 0, |
---|
947 | n/a | "asin($module, x, /)\n--\n\n" |
---|
948 | n/a | "Return the arc sine (measured in radians) of x.") |
---|
949 | n/a | FUNC1(asinh, m_asinh, 0, |
---|
950 | n/a | "asinh($module, x, /)\n--\n\n" |
---|
951 | n/a | "Return the inverse hyperbolic sine of x.") |
---|
952 | n/a | FUNC1(atan, atan, 0, |
---|
953 | n/a | "atan($module, x, /)\n--\n\n" |
---|
954 | n/a | "Return the arc tangent (measured in radians) of x.") |
---|
955 | n/a | FUNC2(atan2, m_atan2, |
---|
956 | n/a | "atan2($module, y, x, /)\n--\n\n" |
---|
957 | n/a | "Return the arc tangent (measured in radians) of y/x.\n\n" |
---|
958 | n/a | "Unlike atan(y/x), the signs of both x and y are considered.") |
---|
959 | n/a | FUNC1(atanh, m_atanh, 0, |
---|
960 | n/a | "atanh($module, x, /)\n--\n\n" |
---|
961 | n/a | "Return the inverse hyperbolic tangent of x.") |
---|
962 | n/a | |
---|
963 | n/a | /*[clinic input] |
---|
964 | n/a | math.ceil |
---|
965 | n/a | |
---|
966 | n/a | x as number: object |
---|
967 | n/a | / |
---|
968 | n/a | |
---|
969 | n/a | Return the ceiling of x as an Integral. |
---|
970 | n/a | |
---|
971 | n/a | This is the smallest integer >= x. |
---|
972 | n/a | [clinic start generated code]*/ |
---|
973 | n/a | |
---|
974 | n/a | static PyObject * |
---|
975 | n/a | math_ceil(PyObject *module, PyObject *number) |
---|
976 | n/a | /*[clinic end generated code: output=6c3b8a78bc201c67 input=2725352806399cab]*/ |
---|
977 | n/a | { |
---|
978 | n/a | _Py_IDENTIFIER(__ceil__); |
---|
979 | n/a | PyObject *method, *result; |
---|
980 | n/a | |
---|
981 | n/a | method = _PyObject_LookupSpecial(number, &PyId___ceil__); |
---|
982 | n/a | if (method == NULL) { |
---|
983 | n/a | if (PyErr_Occurred()) |
---|
984 | n/a | return NULL; |
---|
985 | n/a | return math_1_to_int(number, ceil, 0); |
---|
986 | n/a | } |
---|
987 | n/a | result = _PyObject_CallNoArg(method); |
---|
988 | n/a | Py_DECREF(method); |
---|
989 | n/a | return result; |
---|
990 | n/a | } |
---|
991 | n/a | |
---|
992 | n/a | FUNC2(copysign, copysign, |
---|
993 | n/a | "copysign($module, x, y, /)\n--\n\n" |
---|
994 | n/a | "Return a float with the magnitude (absolute value) of x but the sign of y.\n\n" |
---|
995 | n/a | "On platforms that support signed zeros, copysign(1.0, -0.0)\n" |
---|
996 | n/a | "returns -1.0.\n") |
---|
997 | n/a | FUNC1(cos, cos, 0, |
---|
998 | n/a | "cos($module, x, /)\n--\n\n" |
---|
999 | n/a | "Return the cosine of x (measured in radians).") |
---|
1000 | n/a | FUNC1(cosh, cosh, 1, |
---|
1001 | n/a | "cosh($module, x, /)\n--\n\n" |
---|
1002 | n/a | "Return the hyperbolic cosine of x.") |
---|
1003 | n/a | FUNC1A(erf, m_erf, |
---|
1004 | n/a | "erf($module, x, /)\n--\n\n" |
---|
1005 | n/a | "Error function at x.") |
---|
1006 | n/a | FUNC1A(erfc, m_erfc, |
---|
1007 | n/a | "erfc($module, x, /)\n--\n\n" |
---|
1008 | n/a | "Complementary error function at x.") |
---|
1009 | n/a | FUNC1(exp, exp, 1, |
---|
1010 | n/a | "exp($module, x, /)\n--\n\n" |
---|
1011 | n/a | "Return e raised to the power of x.") |
---|
1012 | n/a | FUNC1(expm1, m_expm1, 1, |
---|
1013 | n/a | "expm1($module, x, /)\n--\n\n" |
---|
1014 | n/a | "Return exp(x)-1.\n\n" |
---|
1015 | n/a | "This function avoids the loss of precision involved in the direct " |
---|
1016 | n/a | "evaluation of exp(x)-1 for small x.") |
---|
1017 | n/a | FUNC1(fabs, fabs, 0, |
---|
1018 | n/a | "fabs($module, x, /)\n--\n\n" |
---|
1019 | n/a | "Return the absolute value of the float x.") |
---|
1020 | n/a | |
---|
1021 | n/a | /*[clinic input] |
---|
1022 | n/a | math.floor |
---|
1023 | n/a | |
---|
1024 | n/a | x as number: object |
---|
1025 | n/a | / |
---|
1026 | n/a | |
---|
1027 | n/a | Return the floor of x as an Integral. |
---|
1028 | n/a | |
---|
1029 | n/a | This is the largest integer <= x. |
---|
1030 | n/a | [clinic start generated code]*/ |
---|
1031 | n/a | |
---|
1032 | n/a | static PyObject * |
---|
1033 | n/a | math_floor(PyObject *module, PyObject *number) |
---|
1034 | n/a | /*[clinic end generated code: output=c6a65c4884884b8a input=63af6b5d7ebcc3d6]*/ |
---|
1035 | n/a | { |
---|
1036 | n/a | _Py_IDENTIFIER(__floor__); |
---|
1037 | n/a | PyObject *method, *result; |
---|
1038 | n/a | |
---|
1039 | n/a | method = _PyObject_LookupSpecial(number, &PyId___floor__); |
---|
1040 | n/a | if (method == NULL) { |
---|
1041 | n/a | if (PyErr_Occurred()) |
---|
1042 | n/a | return NULL; |
---|
1043 | n/a | return math_1_to_int(number, floor, 0); |
---|
1044 | n/a | } |
---|
1045 | n/a | result = _PyObject_CallNoArg(method); |
---|
1046 | n/a | Py_DECREF(method); |
---|
1047 | n/a | return result; |
---|
1048 | n/a | } |
---|
1049 | n/a | |
---|
1050 | n/a | FUNC1A(gamma, m_tgamma, |
---|
1051 | n/a | "gamma($module, x, /)\n--\n\n" |
---|
1052 | n/a | "Gamma function at x.") |
---|
1053 | n/a | FUNC1A(lgamma, m_lgamma, |
---|
1054 | n/a | "lgamma($module, x, /)\n--\n\n" |
---|
1055 | n/a | "Natural logarithm of absolute value of Gamma function at x.") |
---|
1056 | n/a | FUNC1(log1p, m_log1p, 0, |
---|
1057 | n/a | "log1p($module, x, /)\n--\n\n" |
---|
1058 | n/a | "Return the natural logarithm of 1+x (base e).\n\n" |
---|
1059 | n/a | "The result is computed in a way which is accurate for x near zero.") |
---|
1060 | n/a | FUNC1(sin, sin, 0, |
---|
1061 | n/a | "sin($module, x, /)\n--\n\n" |
---|
1062 | n/a | "Return the sine of x (measured in radians).") |
---|
1063 | n/a | FUNC1(sinh, sinh, 1, |
---|
1064 | n/a | "sinh($module, x, /)\n--\n\n" |
---|
1065 | n/a | "Return the hyperbolic sine of x.") |
---|
1066 | n/a | FUNC1(sqrt, sqrt, 0, |
---|
1067 | n/a | "sqrt($module, x, /)\n--\n\n" |
---|
1068 | n/a | "Return the square root of x.") |
---|
1069 | n/a | FUNC1(tan, tan, 0, |
---|
1070 | n/a | "tan($module, x, /)\n--\n\n" |
---|
1071 | n/a | "Return the tangent of x (measured in radians).") |
---|
1072 | n/a | FUNC1(tanh, tanh, 0, |
---|
1073 | n/a | "tanh($module, x, /)\n--\n\n" |
---|
1074 | n/a | "Return the hyperbolic tangent of x.") |
---|
1075 | n/a | |
---|
1076 | n/a | /* Precision summation function as msum() by Raymond Hettinger in |
---|
1077 | n/a | <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>, |
---|
1078 | n/a | enhanced with the exact partials sum and roundoff from Mark |
---|
1079 | n/a | Dickinson's post at <http://bugs.python.org/file10357/msum4.py>. |
---|
1080 | n/a | See those links for more details, proofs and other references. |
---|
1081 | n/a | |
---|
1082 | n/a | Note 1: IEEE 754R floating point semantics are assumed, |
---|
1083 | n/a | but the current implementation does not re-establish special |
---|
1084 | n/a | value semantics across iterations (i.e. handling -Inf + Inf). |
---|
1085 | n/a | |
---|
1086 | n/a | Note 2: No provision is made for intermediate overflow handling; |
---|
1087 | n/a | therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while |
---|
1088 | n/a | sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the |
---|
1089 | n/a | overflow of the first partial sum. |
---|
1090 | n/a | |
---|
1091 | n/a | Note 3: The intermediate values lo, yr, and hi are declared volatile so |
---|
1092 | n/a | aggressive compilers won't algebraically reduce lo to always be exactly 0.0. |
---|
1093 | n/a | Also, the volatile declaration forces the values to be stored in memory as |
---|
1094 | n/a | regular doubles instead of extended long precision (80-bit) values. This |
---|
1095 | n/a | prevents double rounding because any addition or subtraction of two doubles |
---|
1096 | n/a | can be resolved exactly into double-sized hi and lo values. As long as the |
---|
1097 | n/a | hi value gets forced into a double before yr and lo are computed, the extra |
---|
1098 | n/a | bits in downstream extended precision operations (x87 for example) will be |
---|
1099 | n/a | exactly zero and therefore can be losslessly stored back into a double, |
---|
1100 | n/a | thereby preventing double rounding. |
---|
1101 | n/a | |
---|
1102 | n/a | Note 4: A similar implementation is in Modules/cmathmodule.c. |
---|
1103 | n/a | Be sure to update both when making changes. |
---|
1104 | n/a | |
---|
1105 | n/a | Note 5: The signature of math.fsum() differs from builtins.sum() |
---|
1106 | n/a | because the start argument doesn't make sense in the context of |
---|
1107 | n/a | accurate summation. Since the partials table is collapsed before |
---|
1108 | n/a | returning a result, sum(seq2, start=sum(seq1)) may not equal the |
---|
1109 | n/a | accurate result returned by sum(itertools.chain(seq1, seq2)). |
---|
1110 | n/a | */ |
---|
1111 | n/a | |
---|
1112 | n/a | #define NUM_PARTIALS 32 /* initial partials array size, on stack */ |
---|
1113 | n/a | |
---|
1114 | n/a | /* Extend the partials array p[] by doubling its size. */ |
---|
1115 | n/a | static int /* non-zero on error */ |
---|
1116 | n/a | _fsum_realloc(double **p_ptr, Py_ssize_t n, |
---|
1117 | n/a | double *ps, Py_ssize_t *m_ptr) |
---|
1118 | n/a | { |
---|
1119 | n/a | void *v = NULL; |
---|
1120 | n/a | Py_ssize_t m = *m_ptr; |
---|
1121 | n/a | |
---|
1122 | n/a | m += m; /* double */ |
---|
1123 | n/a | if (n < m && (size_t)m < ((size_t)PY_SSIZE_T_MAX / sizeof(double))) { |
---|
1124 | n/a | double *p = *p_ptr; |
---|
1125 | n/a | if (p == ps) { |
---|
1126 | n/a | v = PyMem_Malloc(sizeof(double) * m); |
---|
1127 | n/a | if (v != NULL) |
---|
1128 | n/a | memcpy(v, ps, sizeof(double) * n); |
---|
1129 | n/a | } |
---|
1130 | n/a | else |
---|
1131 | n/a | v = PyMem_Realloc(p, sizeof(double) * m); |
---|
1132 | n/a | } |
---|
1133 | n/a | if (v == NULL) { /* size overflow or no memory */ |
---|
1134 | n/a | PyErr_SetString(PyExc_MemoryError, "math.fsum partials"); |
---|
1135 | n/a | return 1; |
---|
1136 | n/a | } |
---|
1137 | n/a | *p_ptr = (double*) v; |
---|
1138 | n/a | *m_ptr = m; |
---|
1139 | n/a | return 0; |
---|
1140 | n/a | } |
---|
1141 | n/a | |
---|
1142 | n/a | /* Full precision summation of a sequence of floats. |
---|
1143 | n/a | |
---|
1144 | n/a | def msum(iterable): |
---|
1145 | n/a | partials = [] # sorted, non-overlapping partial sums |
---|
1146 | n/a | for x in iterable: |
---|
1147 | n/a | i = 0 |
---|
1148 | n/a | for y in partials: |
---|
1149 | n/a | if abs(x) < abs(y): |
---|
1150 | n/a | x, y = y, x |
---|
1151 | n/a | hi = x + y |
---|
1152 | n/a | lo = y - (hi - x) |
---|
1153 | n/a | if lo: |
---|
1154 | n/a | partials[i] = lo |
---|
1155 | n/a | i += 1 |
---|
1156 | n/a | x = hi |
---|
1157 | n/a | partials[i:] = [x] |
---|
1158 | n/a | return sum_exact(partials) |
---|
1159 | n/a | |
---|
1160 | n/a | Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo |
---|
1161 | n/a | are exactly equal to x+y. The inner loop applies hi/lo summation to each |
---|
1162 | n/a | partial so that the list of partial sums remains exact. |
---|
1163 | n/a | |
---|
1164 | n/a | Sum_exact() adds the partial sums exactly and correctly rounds the final |
---|
1165 | n/a | result (using the round-half-to-even rule). The items in partials remain |
---|
1166 | n/a | non-zero, non-special, non-overlapping and strictly increasing in |
---|
1167 | n/a | magnitude, but possibly not all having the same sign. |
---|
1168 | n/a | |
---|
1169 | n/a | Depends on IEEE 754 arithmetic guarantees and half-even rounding. |
---|
1170 | n/a | */ |
---|
1171 | n/a | |
---|
1172 | n/a | /*[clinic input] |
---|
1173 | n/a | math.fsum |
---|
1174 | n/a | |
---|
1175 | n/a | seq: object |
---|
1176 | n/a | / |
---|
1177 | n/a | |
---|
1178 | n/a | Return an accurate floating point sum of values in the iterable seq. |
---|
1179 | n/a | |
---|
1180 | n/a | Assumes IEEE-754 floating point arithmetic. |
---|
1181 | n/a | [clinic start generated code]*/ |
---|
1182 | n/a | |
---|
1183 | n/a | static PyObject * |
---|
1184 | n/a | math_fsum(PyObject *module, PyObject *seq) |
---|
1185 | n/a | /*[clinic end generated code: output=ba5c672b87fe34fc input=c51b7d8caf6f6e82]*/ |
---|
1186 | n/a | { |
---|
1187 | n/a | PyObject *item, *iter, *sum = NULL; |
---|
1188 | n/a | Py_ssize_t i, j, n = 0, m = NUM_PARTIALS; |
---|
1189 | n/a | double x, y, t, ps[NUM_PARTIALS], *p = ps; |
---|
1190 | n/a | double xsave, special_sum = 0.0, inf_sum = 0.0; |
---|
1191 | n/a | volatile double hi, yr, lo; |
---|
1192 | n/a | |
---|
1193 | n/a | iter = PyObject_GetIter(seq); |
---|
1194 | n/a | if (iter == NULL) |
---|
1195 | n/a | return NULL; |
---|
1196 | n/a | |
---|
1197 | n/a | PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL) |
---|
1198 | n/a | |
---|
1199 | n/a | for(;;) { /* for x in iterable */ |
---|
1200 | n/a | assert(0 <= n && n <= m); |
---|
1201 | n/a | assert((m == NUM_PARTIALS && p == ps) || |
---|
1202 | n/a | (m > NUM_PARTIALS && p != NULL)); |
---|
1203 | n/a | |
---|
1204 | n/a | item = PyIter_Next(iter); |
---|
1205 | n/a | if (item == NULL) { |
---|
1206 | n/a | if (PyErr_Occurred()) |
---|
1207 | n/a | goto _fsum_error; |
---|
1208 | n/a | break; |
---|
1209 | n/a | } |
---|
1210 | n/a | x = PyFloat_AsDouble(item); |
---|
1211 | n/a | Py_DECREF(item); |
---|
1212 | n/a | if (PyErr_Occurred()) |
---|
1213 | n/a | goto _fsum_error; |
---|
1214 | n/a | |
---|
1215 | n/a | xsave = x; |
---|
1216 | n/a | for (i = j = 0; j < n; j++) { /* for y in partials */ |
---|
1217 | n/a | y = p[j]; |
---|
1218 | n/a | if (fabs(x) < fabs(y)) { |
---|
1219 | n/a | t = x; x = y; y = t; |
---|
1220 | n/a | } |
---|
1221 | n/a | hi = x + y; |
---|
1222 | n/a | yr = hi - x; |
---|
1223 | n/a | lo = y - yr; |
---|
1224 | n/a | if (lo != 0.0) |
---|
1225 | n/a | p[i++] = lo; |
---|
1226 | n/a | x = hi; |
---|
1227 | n/a | } |
---|
1228 | n/a | |
---|
1229 | n/a | n = i; /* ps[i:] = [x] */ |
---|
1230 | n/a | if (x != 0.0) { |
---|
1231 | n/a | if (! Py_IS_FINITE(x)) { |
---|
1232 | n/a | /* a nonfinite x could arise either as |
---|
1233 | n/a | a result of intermediate overflow, or |
---|
1234 | n/a | as a result of a nan or inf in the |
---|
1235 | n/a | summands */ |
---|
1236 | n/a | if (Py_IS_FINITE(xsave)) { |
---|
1237 | n/a | PyErr_SetString(PyExc_OverflowError, |
---|
1238 | n/a | "intermediate overflow in fsum"); |
---|
1239 | n/a | goto _fsum_error; |
---|
1240 | n/a | } |
---|
1241 | n/a | if (Py_IS_INFINITY(xsave)) |
---|
1242 | n/a | inf_sum += xsave; |
---|
1243 | n/a | special_sum += xsave; |
---|
1244 | n/a | /* reset partials */ |
---|
1245 | n/a | n = 0; |
---|
1246 | n/a | } |
---|
1247 | n/a | else if (n >= m && _fsum_realloc(&p, n, ps, &m)) |
---|
1248 | n/a | goto _fsum_error; |
---|
1249 | n/a | else |
---|
1250 | n/a | p[n++] = x; |
---|
1251 | n/a | } |
---|
1252 | n/a | } |
---|
1253 | n/a | |
---|
1254 | n/a | if (special_sum != 0.0) { |
---|
1255 | n/a | if (Py_IS_NAN(inf_sum)) |
---|
1256 | n/a | PyErr_SetString(PyExc_ValueError, |
---|
1257 | n/a | "-inf + inf in fsum"); |
---|
1258 | n/a | else |
---|
1259 | n/a | sum = PyFloat_FromDouble(special_sum); |
---|
1260 | n/a | goto _fsum_error; |
---|
1261 | n/a | } |
---|
1262 | n/a | |
---|
1263 | n/a | hi = 0.0; |
---|
1264 | n/a | if (n > 0) { |
---|
1265 | n/a | hi = p[--n]; |
---|
1266 | n/a | /* sum_exact(ps, hi) from the top, stop when the sum becomes |
---|
1267 | n/a | inexact. */ |
---|
1268 | n/a | while (n > 0) { |
---|
1269 | n/a | x = hi; |
---|
1270 | n/a | y = p[--n]; |
---|
1271 | n/a | assert(fabs(y) < fabs(x)); |
---|
1272 | n/a | hi = x + y; |
---|
1273 | n/a | yr = hi - x; |
---|
1274 | n/a | lo = y - yr; |
---|
1275 | n/a | if (lo != 0.0) |
---|
1276 | n/a | break; |
---|
1277 | n/a | } |
---|
1278 | n/a | /* Make half-even rounding work across multiple partials. |
---|
1279 | n/a | Needed so that sum([1e-16, 1, 1e16]) will round-up the last |
---|
1280 | n/a | digit to two instead of down to zero (the 1e-16 makes the 1 |
---|
1281 | n/a | slightly closer to two). With a potential 1 ULP rounding |
---|
1282 | n/a | error fixed-up, math.fsum() can guarantee commutativity. */ |
---|
1283 | n/a | if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) || |
---|
1284 | n/a | (lo > 0.0 && p[n-1] > 0.0))) { |
---|
1285 | n/a | y = lo * 2.0; |
---|
1286 | n/a | x = hi + y; |
---|
1287 | n/a | yr = x - hi; |
---|
1288 | n/a | if (y == yr) |
---|
1289 | n/a | hi = x; |
---|
1290 | n/a | } |
---|
1291 | n/a | } |
---|
1292 | n/a | sum = PyFloat_FromDouble(hi); |
---|
1293 | n/a | |
---|
1294 | n/a | _fsum_error: |
---|
1295 | n/a | PyFPE_END_PROTECT(hi) |
---|
1296 | n/a | Py_DECREF(iter); |
---|
1297 | n/a | if (p != ps) |
---|
1298 | n/a | PyMem_Free(p); |
---|
1299 | n/a | return sum; |
---|
1300 | n/a | } |
---|
1301 | n/a | |
---|
1302 | n/a | #undef NUM_PARTIALS |
---|
1303 | n/a | |
---|
1304 | n/a | |
---|
1305 | n/a | /* Return the smallest integer k such that n < 2**k, or 0 if n == 0. |
---|
1306 | n/a | * Equivalent to floor(lg(x))+1. Also equivalent to: bitwidth_of_type - |
---|
1307 | n/a | * count_leading_zero_bits(x) |
---|
1308 | n/a | */ |
---|
1309 | n/a | |
---|
1310 | n/a | /* XXX: This routine does more or less the same thing as |
---|
1311 | n/a | * bits_in_digit() in Objects/longobject.c. Someday it would be nice to |
---|
1312 | n/a | * consolidate them. On BSD, there's a library function called fls() |
---|
1313 | n/a | * that we could use, and GCC provides __builtin_clz(). |
---|
1314 | n/a | */ |
---|
1315 | n/a | |
---|
1316 | n/a | static unsigned long |
---|
1317 | n/a | bit_length(unsigned long n) |
---|
1318 | n/a | { |
---|
1319 | n/a | unsigned long len = 0; |
---|
1320 | n/a | while (n != 0) { |
---|
1321 | n/a | ++len; |
---|
1322 | n/a | n >>= 1; |
---|
1323 | n/a | } |
---|
1324 | n/a | return len; |
---|
1325 | n/a | } |
---|
1326 | n/a | |
---|
1327 | n/a | static unsigned long |
---|
1328 | n/a | count_set_bits(unsigned long n) |
---|
1329 | n/a | { |
---|
1330 | n/a | unsigned long count = 0; |
---|
1331 | n/a | while (n != 0) { |
---|
1332 | n/a | ++count; |
---|
1333 | n/a | n &= n - 1; /* clear least significant bit */ |
---|
1334 | n/a | } |
---|
1335 | n/a | return count; |
---|
1336 | n/a | } |
---|
1337 | n/a | |
---|
1338 | n/a | /* Divide-and-conquer factorial algorithm |
---|
1339 | n/a | * |
---|
1340 | n/a | * Based on the formula and pseudo-code provided at: |
---|
1341 | n/a | * http://www.luschny.de/math/factorial/binarysplitfact.html |
---|
1342 | n/a | * |
---|
1343 | n/a | * Faster algorithms exist, but they're more complicated and depend on |
---|
1344 | n/a | * a fast prime factorization algorithm. |
---|
1345 | n/a | * |
---|
1346 | n/a | * Notes on the algorithm |
---|
1347 | n/a | * ---------------------- |
---|
1348 | n/a | * |
---|
1349 | n/a | * factorial(n) is written in the form 2**k * m, with m odd. k and m are |
---|
1350 | n/a | * computed separately, and then combined using a left shift. |
---|
1351 | n/a | * |
---|
1352 | n/a | * The function factorial_odd_part computes the odd part m (i.e., the greatest |
---|
1353 | n/a | * odd divisor) of factorial(n), using the formula: |
---|
1354 | n/a | * |
---|
1355 | n/a | * factorial_odd_part(n) = |
---|
1356 | n/a | * |
---|
1357 | n/a | * product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j |
---|
1358 | n/a | * |
---|
1359 | n/a | * Example: factorial_odd_part(20) = |
---|
1360 | n/a | * |
---|
1361 | n/a | * (1) * |
---|
1362 | n/a | * (1) * |
---|
1363 | n/a | * (1 * 3 * 5) * |
---|
1364 | n/a | * (1 * 3 * 5 * 7 * 9) |
---|
1365 | n/a | * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19) |
---|
1366 | n/a | * |
---|
1367 | n/a | * Here i goes from large to small: the first term corresponds to i=4 (any |
---|
1368 | n/a | * larger i gives an empty product), and the last term corresponds to i=0. |
---|
1369 | n/a | * Each term can be computed from the last by multiplying by the extra odd |
---|
1370 | n/a | * numbers required: e.g., to get from the penultimate term to the last one, |
---|
1371 | n/a | * we multiply by (11 * 13 * 15 * 17 * 19). |
---|
1372 | n/a | * |
---|
1373 | n/a | * To see a hint of why this formula works, here are the same numbers as above |
---|
1374 | n/a | * but with the even parts (i.e., the appropriate powers of 2) included. For |
---|
1375 | n/a | * each subterm in the product for i, we multiply that subterm by 2**i: |
---|
1376 | n/a | * |
---|
1377 | n/a | * factorial(20) = |
---|
1378 | n/a | * |
---|
1379 | n/a | * (16) * |
---|
1380 | n/a | * (8) * |
---|
1381 | n/a | * (4 * 12 * 20) * |
---|
1382 | n/a | * (2 * 6 * 10 * 14 * 18) * |
---|
1383 | n/a | * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19) |
---|
1384 | n/a | * |
---|
1385 | n/a | * The factorial_partial_product function computes the product of all odd j in |
---|
1386 | n/a | * range(start, stop) for given start and stop. It's used to compute the |
---|
1387 | n/a | * partial products like (11 * 13 * 15 * 17 * 19) in the example above. It |
---|
1388 | n/a | * operates recursively, repeatedly splitting the range into two roughly equal |
---|
1389 | n/a | * pieces until the subranges are small enough to be computed using only C |
---|
1390 | n/a | * integer arithmetic. |
---|
1391 | n/a | * |
---|
1392 | n/a | * The two-valuation k (i.e., the exponent of the largest power of 2 dividing |
---|
1393 | n/a | * the factorial) is computed independently in the main math_factorial |
---|
1394 | n/a | * function. By standard results, its value is: |
---|
1395 | n/a | * |
---|
1396 | n/a | * two_valuation = n//2 + n//4 + n//8 + .... |
---|
1397 | n/a | * |
---|
1398 | n/a | * It can be shown (e.g., by complete induction on n) that two_valuation is |
---|
1399 | n/a | * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of |
---|
1400 | n/a | * '1'-bits in the binary expansion of n. |
---|
1401 | n/a | */ |
---|
1402 | n/a | |
---|
1403 | n/a | /* factorial_partial_product: Compute product(range(start, stop, 2)) using |
---|
1404 | n/a | * divide and conquer. Assumes start and stop are odd and stop > start. |
---|
1405 | n/a | * max_bits must be >= bit_length(stop - 2). */ |
---|
1406 | n/a | |
---|
1407 | n/a | static PyObject * |
---|
1408 | n/a | factorial_partial_product(unsigned long start, unsigned long stop, |
---|
1409 | n/a | unsigned long max_bits) |
---|
1410 | n/a | { |
---|
1411 | n/a | unsigned long midpoint, num_operands; |
---|
1412 | n/a | PyObject *left = NULL, *right = NULL, *result = NULL; |
---|
1413 | n/a | |
---|
1414 | n/a | /* If the return value will fit an unsigned long, then we can |
---|
1415 | n/a | * multiply in a tight, fast loop where each multiply is O(1). |
---|
1416 | n/a | * Compute an upper bound on the number of bits required to store |
---|
1417 | n/a | * the answer. |
---|
1418 | n/a | * |
---|
1419 | n/a | * Storing some integer z requires floor(lg(z))+1 bits, which is |
---|
1420 | n/a | * conveniently the value returned by bit_length(z). The |
---|
1421 | n/a | * product x*y will require at most |
---|
1422 | n/a | * bit_length(x) + bit_length(y) bits to store, based |
---|
1423 | n/a | * on the idea that lg product = lg x + lg y. |
---|
1424 | n/a | * |
---|
1425 | n/a | * We know that stop - 2 is the largest number to be multiplied. From |
---|
1426 | n/a | * there, we have: bit_length(answer) <= num_operands * |
---|
1427 | n/a | * bit_length(stop - 2) |
---|
1428 | n/a | */ |
---|
1429 | n/a | |
---|
1430 | n/a | num_operands = (stop - start) / 2; |
---|
1431 | n/a | /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the |
---|
1432 | n/a | * unlikely case of an overflow in num_operands * max_bits. */ |
---|
1433 | n/a | if (num_operands <= 8 * SIZEOF_LONG && |
---|
1434 | n/a | num_operands * max_bits <= 8 * SIZEOF_LONG) { |
---|
1435 | n/a | unsigned long j, total; |
---|
1436 | n/a | for (total = start, j = start + 2; j < stop; j += 2) |
---|
1437 | n/a | total *= j; |
---|
1438 | n/a | return PyLong_FromUnsignedLong(total); |
---|
1439 | n/a | } |
---|
1440 | n/a | |
---|
1441 | n/a | /* find midpoint of range(start, stop), rounded up to next odd number. */ |
---|
1442 | n/a | midpoint = (start + num_operands) | 1; |
---|
1443 | n/a | left = factorial_partial_product(start, midpoint, |
---|
1444 | n/a | bit_length(midpoint - 2)); |
---|
1445 | n/a | if (left == NULL) |
---|
1446 | n/a | goto error; |
---|
1447 | n/a | right = factorial_partial_product(midpoint, stop, max_bits); |
---|
1448 | n/a | if (right == NULL) |
---|
1449 | n/a | goto error; |
---|
1450 | n/a | result = PyNumber_Multiply(left, right); |
---|
1451 | n/a | |
---|
1452 | n/a | error: |
---|
1453 | n/a | Py_XDECREF(left); |
---|
1454 | n/a | Py_XDECREF(right); |
---|
1455 | n/a | return result; |
---|
1456 | n/a | } |
---|
1457 | n/a | |
---|
1458 | n/a | /* factorial_odd_part: compute the odd part of factorial(n). */ |
---|
1459 | n/a | |
---|
1460 | n/a | static PyObject * |
---|
1461 | n/a | factorial_odd_part(unsigned long n) |
---|
1462 | n/a | { |
---|
1463 | n/a | long i; |
---|
1464 | n/a | unsigned long v, lower, upper; |
---|
1465 | n/a | PyObject *partial, *tmp, *inner, *outer; |
---|
1466 | n/a | |
---|
1467 | n/a | inner = PyLong_FromLong(1); |
---|
1468 | n/a | if (inner == NULL) |
---|
1469 | n/a | return NULL; |
---|
1470 | n/a | outer = inner; |
---|
1471 | n/a | Py_INCREF(outer); |
---|
1472 | n/a | |
---|
1473 | n/a | upper = 3; |
---|
1474 | n/a | for (i = bit_length(n) - 2; i >= 0; i--) { |
---|
1475 | n/a | v = n >> i; |
---|
1476 | n/a | if (v <= 2) |
---|
1477 | n/a | continue; |
---|
1478 | n/a | lower = upper; |
---|
1479 | n/a | /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */ |
---|
1480 | n/a | upper = (v + 1) | 1; |
---|
1481 | n/a | /* Here inner is the product of all odd integers j in the range (0, |
---|
1482 | n/a | n/2**(i+1)]. The factorial_partial_product call below gives the |
---|
1483 | n/a | product of all odd integers j in the range (n/2**(i+1), n/2**i]. */ |
---|
1484 | n/a | partial = factorial_partial_product(lower, upper, bit_length(upper-2)); |
---|
1485 | n/a | /* inner *= partial */ |
---|
1486 | n/a | if (partial == NULL) |
---|
1487 | n/a | goto error; |
---|
1488 | n/a | tmp = PyNumber_Multiply(inner, partial); |
---|
1489 | n/a | Py_DECREF(partial); |
---|
1490 | n/a | if (tmp == NULL) |
---|
1491 | n/a | goto error; |
---|
1492 | n/a | Py_DECREF(inner); |
---|
1493 | n/a | inner = tmp; |
---|
1494 | n/a | /* Now inner is the product of all odd integers j in the range (0, |
---|
1495 | n/a | n/2**i], giving the inner product in the formula above. */ |
---|
1496 | n/a | |
---|
1497 | n/a | /* outer *= inner; */ |
---|
1498 | n/a | tmp = PyNumber_Multiply(outer, inner); |
---|
1499 | n/a | if (tmp == NULL) |
---|
1500 | n/a | goto error; |
---|
1501 | n/a | Py_DECREF(outer); |
---|
1502 | n/a | outer = tmp; |
---|
1503 | n/a | } |
---|
1504 | n/a | Py_DECREF(inner); |
---|
1505 | n/a | return outer; |
---|
1506 | n/a | |
---|
1507 | n/a | error: |
---|
1508 | n/a | Py_DECREF(outer); |
---|
1509 | n/a | Py_DECREF(inner); |
---|
1510 | n/a | return NULL; |
---|
1511 | n/a | } |
---|
1512 | n/a | |
---|
1513 | n/a | |
---|
1514 | n/a | /* Lookup table for small factorial values */ |
---|
1515 | n/a | |
---|
1516 | n/a | static const unsigned long SmallFactorials[] = { |
---|
1517 | n/a | 1, 1, 2, 6, 24, 120, 720, 5040, 40320, |
---|
1518 | n/a | 362880, 3628800, 39916800, 479001600, |
---|
1519 | n/a | #if SIZEOF_LONG >= 8 |
---|
1520 | n/a | 6227020800, 87178291200, 1307674368000, |
---|
1521 | n/a | 20922789888000, 355687428096000, 6402373705728000, |
---|
1522 | n/a | 121645100408832000, 2432902008176640000 |
---|
1523 | n/a | #endif |
---|
1524 | n/a | }; |
---|
1525 | n/a | |
---|
1526 | n/a | /*[clinic input] |
---|
1527 | n/a | math.factorial |
---|
1528 | n/a | |
---|
1529 | n/a | x as arg: object |
---|
1530 | n/a | / |
---|
1531 | n/a | |
---|
1532 | n/a | Find x!. |
---|
1533 | n/a | |
---|
1534 | n/a | Raise a ValueError if x is negative or non-integral. |
---|
1535 | n/a | [clinic start generated code]*/ |
---|
1536 | n/a | |
---|
1537 | n/a | static PyObject * |
---|
1538 | n/a | math_factorial(PyObject *module, PyObject *arg) |
---|
1539 | n/a | /*[clinic end generated code: output=6686f26fae00e9ca input=6d1c8105c0d91fb4]*/ |
---|
1540 | n/a | { |
---|
1541 | n/a | long x; |
---|
1542 | n/a | int overflow; |
---|
1543 | n/a | PyObject *result, *odd_part, *two_valuation; |
---|
1544 | n/a | |
---|
1545 | n/a | if (PyFloat_Check(arg)) { |
---|
1546 | n/a | PyObject *lx; |
---|
1547 | n/a | double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg); |
---|
1548 | n/a | if (!(Py_IS_FINITE(dx) && dx == floor(dx))) { |
---|
1549 | n/a | PyErr_SetString(PyExc_ValueError, |
---|
1550 | n/a | "factorial() only accepts integral values"); |
---|
1551 | n/a | return NULL; |
---|
1552 | n/a | } |
---|
1553 | n/a | lx = PyLong_FromDouble(dx); |
---|
1554 | n/a | if (lx == NULL) |
---|
1555 | n/a | return NULL; |
---|
1556 | n/a | x = PyLong_AsLongAndOverflow(lx, &overflow); |
---|
1557 | n/a | Py_DECREF(lx); |
---|
1558 | n/a | } |
---|
1559 | n/a | else |
---|
1560 | n/a | x = PyLong_AsLongAndOverflow(arg, &overflow); |
---|
1561 | n/a | |
---|
1562 | n/a | if (x == -1 && PyErr_Occurred()) { |
---|
1563 | n/a | return NULL; |
---|
1564 | n/a | } |
---|
1565 | n/a | else if (overflow == 1) { |
---|
1566 | n/a | PyErr_Format(PyExc_OverflowError, |
---|
1567 | n/a | "factorial() argument should not exceed %ld", |
---|
1568 | n/a | LONG_MAX); |
---|
1569 | n/a | return NULL; |
---|
1570 | n/a | } |
---|
1571 | n/a | else if (overflow == -1 || x < 0) { |
---|
1572 | n/a | PyErr_SetString(PyExc_ValueError, |
---|
1573 | n/a | "factorial() not defined for negative values"); |
---|
1574 | n/a | return NULL; |
---|
1575 | n/a | } |
---|
1576 | n/a | |
---|
1577 | n/a | /* use lookup table if x is small */ |
---|
1578 | n/a | if (x < (long)Py_ARRAY_LENGTH(SmallFactorials)) |
---|
1579 | n/a | return PyLong_FromUnsignedLong(SmallFactorials[x]); |
---|
1580 | n/a | |
---|
1581 | n/a | /* else express in the form odd_part * 2**two_valuation, and compute as |
---|
1582 | n/a | odd_part << two_valuation. */ |
---|
1583 | n/a | odd_part = factorial_odd_part(x); |
---|
1584 | n/a | if (odd_part == NULL) |
---|
1585 | n/a | return NULL; |
---|
1586 | n/a | two_valuation = PyLong_FromLong(x - count_set_bits(x)); |
---|
1587 | n/a | if (two_valuation == NULL) { |
---|
1588 | n/a | Py_DECREF(odd_part); |
---|
1589 | n/a | return NULL; |
---|
1590 | n/a | } |
---|
1591 | n/a | result = PyNumber_Lshift(odd_part, two_valuation); |
---|
1592 | n/a | Py_DECREF(two_valuation); |
---|
1593 | n/a | Py_DECREF(odd_part); |
---|
1594 | n/a | return result; |
---|
1595 | n/a | } |
---|
1596 | n/a | |
---|
1597 | n/a | |
---|
1598 | n/a | /*[clinic input] |
---|
1599 | n/a | math.trunc |
---|
1600 | n/a | |
---|
1601 | n/a | x: object |
---|
1602 | n/a | / |
---|
1603 | n/a | |
---|
1604 | n/a | Truncates the Real x to the nearest Integral toward 0. |
---|
1605 | n/a | |
---|
1606 | n/a | Uses the __trunc__ magic method. |
---|
1607 | n/a | [clinic start generated code]*/ |
---|
1608 | n/a | |
---|
1609 | n/a | static PyObject * |
---|
1610 | n/a | math_trunc(PyObject *module, PyObject *x) |
---|
1611 | n/a | /*[clinic end generated code: output=34b9697b707e1031 input=2168b34e0a09134d]*/ |
---|
1612 | n/a | { |
---|
1613 | n/a | _Py_IDENTIFIER(__trunc__); |
---|
1614 | n/a | PyObject *trunc, *result; |
---|
1615 | n/a | |
---|
1616 | n/a | if (Py_TYPE(x)->tp_dict == NULL) { |
---|
1617 | n/a | if (PyType_Ready(Py_TYPE(x)) < 0) |
---|
1618 | n/a | return NULL; |
---|
1619 | n/a | } |
---|
1620 | n/a | |
---|
1621 | n/a | trunc = _PyObject_LookupSpecial(x, &PyId___trunc__); |
---|
1622 | n/a | if (trunc == NULL) { |
---|
1623 | n/a | if (!PyErr_Occurred()) |
---|
1624 | n/a | PyErr_Format(PyExc_TypeError, |
---|
1625 | n/a | "type %.100s doesn't define __trunc__ method", |
---|
1626 | n/a | Py_TYPE(x)->tp_name); |
---|
1627 | n/a | return NULL; |
---|
1628 | n/a | } |
---|
1629 | n/a | result = _PyObject_CallNoArg(trunc); |
---|
1630 | n/a | Py_DECREF(trunc); |
---|
1631 | n/a | return result; |
---|
1632 | n/a | } |
---|
1633 | n/a | |
---|
1634 | n/a | |
---|
1635 | n/a | /*[clinic input] |
---|
1636 | n/a | math.frexp |
---|
1637 | n/a | |
---|
1638 | n/a | x: double |
---|
1639 | n/a | / |
---|
1640 | n/a | |
---|
1641 | n/a | Return the mantissa and exponent of x, as pair (m, e). |
---|
1642 | n/a | |
---|
1643 | n/a | m is a float and e is an int, such that x = m * 2.**e. |
---|
1644 | n/a | If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0. |
---|
1645 | n/a | [clinic start generated code]*/ |
---|
1646 | n/a | |
---|
1647 | n/a | static PyObject * |
---|
1648 | n/a | math_frexp_impl(PyObject *module, double x) |
---|
1649 | n/a | /*[clinic end generated code: output=03e30d252a15ad4a input=96251c9e208bc6e9]*/ |
---|
1650 | n/a | { |
---|
1651 | n/a | int i; |
---|
1652 | n/a | /* deal with special cases directly, to sidestep platform |
---|
1653 | n/a | differences */ |
---|
1654 | n/a | if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) { |
---|
1655 | n/a | i = 0; |
---|
1656 | n/a | } |
---|
1657 | n/a | else { |
---|
1658 | n/a | PyFPE_START_PROTECT("in math_frexp", return 0); |
---|
1659 | n/a | x = frexp(x, &i); |
---|
1660 | n/a | PyFPE_END_PROTECT(x); |
---|
1661 | n/a | } |
---|
1662 | n/a | return Py_BuildValue("(di)", x, i); |
---|
1663 | n/a | } |
---|
1664 | n/a | |
---|
1665 | n/a | |
---|
1666 | n/a | /*[clinic input] |
---|
1667 | n/a | math.ldexp |
---|
1668 | n/a | |
---|
1669 | n/a | x: double |
---|
1670 | n/a | i: object |
---|
1671 | n/a | / |
---|
1672 | n/a | |
---|
1673 | n/a | Return x * (2**i). |
---|
1674 | n/a | |
---|
1675 | n/a | This is essentially the inverse of frexp(). |
---|
1676 | n/a | [clinic start generated code]*/ |
---|
1677 | n/a | |
---|
1678 | n/a | static PyObject * |
---|
1679 | n/a | math_ldexp_impl(PyObject *module, double x, PyObject *i) |
---|
1680 | n/a | /*[clinic end generated code: output=b6892f3c2df9cc6a input=17d5970c1a40a8c1]*/ |
---|
1681 | n/a | { |
---|
1682 | n/a | double r; |
---|
1683 | n/a | long exp; |
---|
1684 | n/a | int overflow; |
---|
1685 | n/a | |
---|
1686 | n/a | if (PyLong_Check(i)) { |
---|
1687 | n/a | /* on overflow, replace exponent with either LONG_MAX |
---|
1688 | n/a | or LONG_MIN, depending on the sign. */ |
---|
1689 | n/a | exp = PyLong_AsLongAndOverflow(i, &overflow); |
---|
1690 | n/a | if (exp == -1 && PyErr_Occurred()) |
---|
1691 | n/a | return NULL; |
---|
1692 | n/a | if (overflow) |
---|
1693 | n/a | exp = overflow < 0 ? LONG_MIN : LONG_MAX; |
---|
1694 | n/a | } |
---|
1695 | n/a | else { |
---|
1696 | n/a | PyErr_SetString(PyExc_TypeError, |
---|
1697 | n/a | "Expected an int as second argument to ldexp."); |
---|
1698 | n/a | return NULL; |
---|
1699 | n/a | } |
---|
1700 | n/a | |
---|
1701 | n/a | if (x == 0. || !Py_IS_FINITE(x)) { |
---|
1702 | n/a | /* NaNs, zeros and infinities are returned unchanged */ |
---|
1703 | n/a | r = x; |
---|
1704 | n/a | errno = 0; |
---|
1705 | n/a | } else if (exp > INT_MAX) { |
---|
1706 | n/a | /* overflow */ |
---|
1707 | n/a | r = copysign(Py_HUGE_VAL, x); |
---|
1708 | n/a | errno = ERANGE; |
---|
1709 | n/a | } else if (exp < INT_MIN) { |
---|
1710 | n/a | /* underflow to +-0 */ |
---|
1711 | n/a | r = copysign(0., x); |
---|
1712 | n/a | errno = 0; |
---|
1713 | n/a | } else { |
---|
1714 | n/a | errno = 0; |
---|
1715 | n/a | PyFPE_START_PROTECT("in math_ldexp", return 0); |
---|
1716 | n/a | r = ldexp(x, (int)exp); |
---|
1717 | n/a | PyFPE_END_PROTECT(r); |
---|
1718 | n/a | if (Py_IS_INFINITY(r)) |
---|
1719 | n/a | errno = ERANGE; |
---|
1720 | n/a | } |
---|
1721 | n/a | |
---|
1722 | n/a | if (errno && is_error(r)) |
---|
1723 | n/a | return NULL; |
---|
1724 | n/a | return PyFloat_FromDouble(r); |
---|
1725 | n/a | } |
---|
1726 | n/a | |
---|
1727 | n/a | |
---|
1728 | n/a | /*[clinic input] |
---|
1729 | n/a | math.modf |
---|
1730 | n/a | |
---|
1731 | n/a | x: double |
---|
1732 | n/a | / |
---|
1733 | n/a | |
---|
1734 | n/a | Return the fractional and integer parts of x. |
---|
1735 | n/a | |
---|
1736 | n/a | Both results carry the sign of x and are floats. |
---|
1737 | n/a | [clinic start generated code]*/ |
---|
1738 | n/a | |
---|
1739 | n/a | static PyObject * |
---|
1740 | n/a | math_modf_impl(PyObject *module, double x) |
---|
1741 | n/a | /*[clinic end generated code: output=90cee0260014c3c0 input=b4cfb6786afd9035]*/ |
---|
1742 | n/a | { |
---|
1743 | n/a | double y; |
---|
1744 | n/a | /* some platforms don't do the right thing for NaNs and |
---|
1745 | n/a | infinities, so we take care of special cases directly. */ |
---|
1746 | n/a | if (!Py_IS_FINITE(x)) { |
---|
1747 | n/a | if (Py_IS_INFINITY(x)) |
---|
1748 | n/a | return Py_BuildValue("(dd)", copysign(0., x), x); |
---|
1749 | n/a | else if (Py_IS_NAN(x)) |
---|
1750 | n/a | return Py_BuildValue("(dd)", x, x); |
---|
1751 | n/a | } |
---|
1752 | n/a | |
---|
1753 | n/a | errno = 0; |
---|
1754 | n/a | PyFPE_START_PROTECT("in math_modf", return 0); |
---|
1755 | n/a | x = modf(x, &y); |
---|
1756 | n/a | PyFPE_END_PROTECT(x); |
---|
1757 | n/a | return Py_BuildValue("(dd)", x, y); |
---|
1758 | n/a | } |
---|
1759 | n/a | |
---|
1760 | n/a | |
---|
1761 | n/a | /* A decent logarithm is easy to compute even for huge ints, but libm can't |
---|
1762 | n/a | do that by itself -- loghelper can. func is log or log10, and name is |
---|
1763 | n/a | "log" or "log10". Note that overflow of the result isn't possible: an int |
---|
1764 | n/a | can contain no more than INT_MAX * SHIFT bits, so has value certainly less |
---|
1765 | n/a | than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is |
---|
1766 | n/a | small enough to fit in an IEEE single. log and log10 are even smaller. |
---|
1767 | n/a | However, intermediate overflow is possible for an int if the number of bits |
---|
1768 | n/a | in that int is larger than PY_SSIZE_T_MAX. */ |
---|
1769 | n/a | |
---|
1770 | n/a | static PyObject* |
---|
1771 | n/a | loghelper(PyObject* arg, double (*func)(double), const char *funcname) |
---|
1772 | n/a | { |
---|
1773 | n/a | /* If it is int, do it ourselves. */ |
---|
1774 | n/a | if (PyLong_Check(arg)) { |
---|
1775 | n/a | double x, result; |
---|
1776 | n/a | Py_ssize_t e; |
---|
1777 | n/a | |
---|
1778 | n/a | /* Negative or zero inputs give a ValueError. */ |
---|
1779 | n/a | if (Py_SIZE(arg) <= 0) { |
---|
1780 | n/a | PyErr_SetString(PyExc_ValueError, |
---|
1781 | n/a | "math domain error"); |
---|
1782 | n/a | return NULL; |
---|
1783 | n/a | } |
---|
1784 | n/a | |
---|
1785 | n/a | x = PyLong_AsDouble(arg); |
---|
1786 | n/a | if (x == -1.0 && PyErr_Occurred()) { |
---|
1787 | n/a | if (!PyErr_ExceptionMatches(PyExc_OverflowError)) |
---|
1788 | n/a | return NULL; |
---|
1789 | n/a | /* Here the conversion to double overflowed, but it's possible |
---|
1790 | n/a | to compute the log anyway. Clear the exception and continue. */ |
---|
1791 | n/a | PyErr_Clear(); |
---|
1792 | n/a | x = _PyLong_Frexp((PyLongObject *)arg, &e); |
---|
1793 | n/a | if (x == -1.0 && PyErr_Occurred()) |
---|
1794 | n/a | return NULL; |
---|
1795 | n/a | /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */ |
---|
1796 | n/a | result = func(x) + func(2.0) * e; |
---|
1797 | n/a | } |
---|
1798 | n/a | else |
---|
1799 | n/a | /* Successfully converted x to a double. */ |
---|
1800 | n/a | result = func(x); |
---|
1801 | n/a | return PyFloat_FromDouble(result); |
---|
1802 | n/a | } |
---|
1803 | n/a | |
---|
1804 | n/a | /* Else let libm handle it by itself. */ |
---|
1805 | n/a | return math_1(arg, func, 0); |
---|
1806 | n/a | } |
---|
1807 | n/a | |
---|
1808 | n/a | |
---|
1809 | n/a | /*[clinic input] |
---|
1810 | n/a | math.log |
---|
1811 | n/a | |
---|
1812 | n/a | x: object |
---|
1813 | n/a | [ |
---|
1814 | n/a | base: object(c_default="NULL") = math.e |
---|
1815 | n/a | ] |
---|
1816 | n/a | / |
---|
1817 | n/a | |
---|
1818 | n/a | Return the logarithm of x to the given base. |
---|
1819 | n/a | |
---|
1820 | n/a | If the base not specified, returns the natural logarithm (base e) of x. |
---|
1821 | n/a | [clinic start generated code]*/ |
---|
1822 | n/a | |
---|
1823 | n/a | static PyObject * |
---|
1824 | n/a | math_log_impl(PyObject *module, PyObject *x, int group_right_1, |
---|
1825 | n/a | PyObject *base) |
---|
1826 | n/a | /*[clinic end generated code: output=7b5a39e526b73fc9 input=0f62d5726cbfebbd]*/ |
---|
1827 | n/a | { |
---|
1828 | n/a | PyObject *num, *den; |
---|
1829 | n/a | PyObject *ans; |
---|
1830 | n/a | |
---|
1831 | n/a | num = loghelper(x, m_log, "log"); |
---|
1832 | n/a | if (num == NULL || base == NULL) |
---|
1833 | n/a | return num; |
---|
1834 | n/a | |
---|
1835 | n/a | den = loghelper(base, m_log, "log"); |
---|
1836 | n/a | if (den == NULL) { |
---|
1837 | n/a | Py_DECREF(num); |
---|
1838 | n/a | return NULL; |
---|
1839 | n/a | } |
---|
1840 | n/a | |
---|
1841 | n/a | ans = PyNumber_TrueDivide(num, den); |
---|
1842 | n/a | Py_DECREF(num); |
---|
1843 | n/a | Py_DECREF(den); |
---|
1844 | n/a | return ans; |
---|
1845 | n/a | } |
---|
1846 | n/a | |
---|
1847 | n/a | |
---|
1848 | n/a | /*[clinic input] |
---|
1849 | n/a | math.log2 |
---|
1850 | n/a | |
---|
1851 | n/a | x: object |
---|
1852 | n/a | / |
---|
1853 | n/a | |
---|
1854 | n/a | Return the base 2 logarithm of x. |
---|
1855 | n/a | [clinic start generated code]*/ |
---|
1856 | n/a | |
---|
1857 | n/a | static PyObject * |
---|
1858 | n/a | math_log2(PyObject *module, PyObject *x) |
---|
1859 | n/a | /*[clinic end generated code: output=5425899a4d5d6acb input=08321262bae4f39b]*/ |
---|
1860 | n/a | { |
---|
1861 | n/a | return loghelper(x, m_log2, "log2"); |
---|
1862 | n/a | } |
---|
1863 | n/a | |
---|
1864 | n/a | |
---|
1865 | n/a | /*[clinic input] |
---|
1866 | n/a | math.log10 |
---|
1867 | n/a | |
---|
1868 | n/a | x: object |
---|
1869 | n/a | / |
---|
1870 | n/a | |
---|
1871 | n/a | Return the base 10 logarithm of x. |
---|
1872 | n/a | [clinic start generated code]*/ |
---|
1873 | n/a | |
---|
1874 | n/a | static PyObject * |
---|
1875 | n/a | math_log10(PyObject *module, PyObject *x) |
---|
1876 | n/a | /*[clinic end generated code: output=be72a64617df9c6f input=b2469d02c6469e53]*/ |
---|
1877 | n/a | { |
---|
1878 | n/a | return loghelper(x, m_log10, "log10"); |
---|
1879 | n/a | } |
---|
1880 | n/a | |
---|
1881 | n/a | |
---|
1882 | n/a | /*[clinic input] |
---|
1883 | n/a | math.fmod |
---|
1884 | n/a | |
---|
1885 | n/a | x: double |
---|
1886 | n/a | y: double |
---|
1887 | n/a | / |
---|
1888 | n/a | |
---|
1889 | n/a | Return fmod(x, y), according to platform C. |
---|
1890 | n/a | |
---|
1891 | n/a | x % y may differ. |
---|
1892 | n/a | [clinic start generated code]*/ |
---|
1893 | n/a | |
---|
1894 | n/a | static PyObject * |
---|
1895 | n/a | math_fmod_impl(PyObject *module, double x, double y) |
---|
1896 | n/a | /*[clinic end generated code: output=7559d794343a27b5 input=4f84caa8cfc26a03]*/ |
---|
1897 | n/a | { |
---|
1898 | n/a | double r; |
---|
1899 | n/a | /* fmod(x, +/-Inf) returns x for finite x. */ |
---|
1900 | n/a | if (Py_IS_INFINITY(y) && Py_IS_FINITE(x)) |
---|
1901 | n/a | return PyFloat_FromDouble(x); |
---|
1902 | n/a | errno = 0; |
---|
1903 | n/a | PyFPE_START_PROTECT("in math_fmod", return 0); |
---|
1904 | n/a | r = fmod(x, y); |
---|
1905 | n/a | PyFPE_END_PROTECT(r); |
---|
1906 | n/a | if (Py_IS_NAN(r)) { |
---|
1907 | n/a | if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) |
---|
1908 | n/a | errno = EDOM; |
---|
1909 | n/a | else |
---|
1910 | n/a | errno = 0; |
---|
1911 | n/a | } |
---|
1912 | n/a | if (errno && is_error(r)) |
---|
1913 | n/a | return NULL; |
---|
1914 | n/a | else |
---|
1915 | n/a | return PyFloat_FromDouble(r); |
---|
1916 | n/a | } |
---|
1917 | n/a | |
---|
1918 | n/a | |
---|
1919 | n/a | /*[clinic input] |
---|
1920 | n/a | math.hypot |
---|
1921 | n/a | |
---|
1922 | n/a | x: double |
---|
1923 | n/a | y: double |
---|
1924 | n/a | / |
---|
1925 | n/a | |
---|
1926 | n/a | Return the Euclidean distance, sqrt(x*x + y*y). |
---|
1927 | n/a | [clinic start generated code]*/ |
---|
1928 | n/a | |
---|
1929 | n/a | static PyObject * |
---|
1930 | n/a | math_hypot_impl(PyObject *module, double x, double y) |
---|
1931 | n/a | /*[clinic end generated code: output=b7686e5be468ef87 input=7f8eea70406474aa]*/ |
---|
1932 | n/a | { |
---|
1933 | n/a | double r; |
---|
1934 | n/a | /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */ |
---|
1935 | n/a | if (Py_IS_INFINITY(x)) |
---|
1936 | n/a | return PyFloat_FromDouble(fabs(x)); |
---|
1937 | n/a | if (Py_IS_INFINITY(y)) |
---|
1938 | n/a | return PyFloat_FromDouble(fabs(y)); |
---|
1939 | n/a | errno = 0; |
---|
1940 | n/a | PyFPE_START_PROTECT("in math_hypot", return 0); |
---|
1941 | n/a | r = hypot(x, y); |
---|
1942 | n/a | PyFPE_END_PROTECT(r); |
---|
1943 | n/a | if (Py_IS_NAN(r)) { |
---|
1944 | n/a | if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) |
---|
1945 | n/a | errno = EDOM; |
---|
1946 | n/a | else |
---|
1947 | n/a | errno = 0; |
---|
1948 | n/a | } |
---|
1949 | n/a | else if (Py_IS_INFINITY(r)) { |
---|
1950 | n/a | if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) |
---|
1951 | n/a | errno = ERANGE; |
---|
1952 | n/a | else |
---|
1953 | n/a | errno = 0; |
---|
1954 | n/a | } |
---|
1955 | n/a | if (errno && is_error(r)) |
---|
1956 | n/a | return NULL; |
---|
1957 | n/a | else |
---|
1958 | n/a | return PyFloat_FromDouble(r); |
---|
1959 | n/a | } |
---|
1960 | n/a | |
---|
1961 | n/a | |
---|
1962 | n/a | /* pow can't use math_2, but needs its own wrapper: the problem is |
---|
1963 | n/a | that an infinite result can arise either as a result of overflow |
---|
1964 | n/a | (in which case OverflowError should be raised) or as a result of |
---|
1965 | n/a | e.g. 0.**-5. (for which ValueError needs to be raised.) |
---|
1966 | n/a | */ |
---|
1967 | n/a | |
---|
1968 | n/a | /*[clinic input] |
---|
1969 | n/a | math.pow |
---|
1970 | n/a | |
---|
1971 | n/a | x: double |
---|
1972 | n/a | y: double |
---|
1973 | n/a | / |
---|
1974 | n/a | |
---|
1975 | n/a | Return x**y (x to the power of y). |
---|
1976 | n/a | [clinic start generated code]*/ |
---|
1977 | n/a | |
---|
1978 | n/a | static PyObject * |
---|
1979 | n/a | math_pow_impl(PyObject *module, double x, double y) |
---|
1980 | n/a | /*[clinic end generated code: output=fff93e65abccd6b0 input=c26f1f6075088bfd]*/ |
---|
1981 | n/a | { |
---|
1982 | n/a | double r; |
---|
1983 | n/a | int odd_y; |
---|
1984 | n/a | |
---|
1985 | n/a | /* deal directly with IEEE specials, to cope with problems on various |
---|
1986 | n/a | platforms whose semantics don't exactly match C99 */ |
---|
1987 | n/a | r = 0.; /* silence compiler warning */ |
---|
1988 | n/a | if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) { |
---|
1989 | n/a | errno = 0; |
---|
1990 | n/a | if (Py_IS_NAN(x)) |
---|
1991 | n/a | r = y == 0. ? 1. : x; /* NaN**0 = 1 */ |
---|
1992 | n/a | else if (Py_IS_NAN(y)) |
---|
1993 | n/a | r = x == 1. ? 1. : y; /* 1**NaN = 1 */ |
---|
1994 | n/a | else if (Py_IS_INFINITY(x)) { |
---|
1995 | n/a | odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0; |
---|
1996 | n/a | if (y > 0.) |
---|
1997 | n/a | r = odd_y ? x : fabs(x); |
---|
1998 | n/a | else if (y == 0.) |
---|
1999 | n/a | r = 1.; |
---|
2000 | n/a | else /* y < 0. */ |
---|
2001 | n/a | r = odd_y ? copysign(0., x) : 0.; |
---|
2002 | n/a | } |
---|
2003 | n/a | else if (Py_IS_INFINITY(y)) { |
---|
2004 | n/a | if (fabs(x) == 1.0) |
---|
2005 | n/a | r = 1.; |
---|
2006 | n/a | else if (y > 0. && fabs(x) > 1.0) |
---|
2007 | n/a | r = y; |
---|
2008 | n/a | else if (y < 0. && fabs(x) < 1.0) { |
---|
2009 | n/a | r = -y; /* result is +inf */ |
---|
2010 | n/a | if (x == 0.) /* 0**-inf: divide-by-zero */ |
---|
2011 | n/a | errno = EDOM; |
---|
2012 | n/a | } |
---|
2013 | n/a | else |
---|
2014 | n/a | r = 0.; |
---|
2015 | n/a | } |
---|
2016 | n/a | } |
---|
2017 | n/a | else { |
---|
2018 | n/a | /* let libm handle finite**finite */ |
---|
2019 | n/a | errno = 0; |
---|
2020 | n/a | PyFPE_START_PROTECT("in math_pow", return 0); |
---|
2021 | n/a | r = pow(x, y); |
---|
2022 | n/a | PyFPE_END_PROTECT(r); |
---|
2023 | n/a | /* a NaN result should arise only from (-ve)**(finite |
---|
2024 | n/a | non-integer); in this case we want to raise ValueError. */ |
---|
2025 | n/a | if (!Py_IS_FINITE(r)) { |
---|
2026 | n/a | if (Py_IS_NAN(r)) { |
---|
2027 | n/a | errno = EDOM; |
---|
2028 | n/a | } |
---|
2029 | n/a | /* |
---|
2030 | n/a | an infinite result here arises either from: |
---|
2031 | n/a | (A) (+/-0.)**negative (-> divide-by-zero) |
---|
2032 | n/a | (B) overflow of x**y with x and y finite |
---|
2033 | n/a | */ |
---|
2034 | n/a | else if (Py_IS_INFINITY(r)) { |
---|
2035 | n/a | if (x == 0.) |
---|
2036 | n/a | errno = EDOM; |
---|
2037 | n/a | else |
---|
2038 | n/a | errno = ERANGE; |
---|
2039 | n/a | } |
---|
2040 | n/a | } |
---|
2041 | n/a | } |
---|
2042 | n/a | |
---|
2043 | n/a | if (errno && is_error(r)) |
---|
2044 | n/a | return NULL; |
---|
2045 | n/a | else |
---|
2046 | n/a | return PyFloat_FromDouble(r); |
---|
2047 | n/a | } |
---|
2048 | n/a | |
---|
2049 | n/a | |
---|
2050 | n/a | static const double degToRad = Py_MATH_PI / 180.0; |
---|
2051 | n/a | static const double radToDeg = 180.0 / Py_MATH_PI; |
---|
2052 | n/a | |
---|
2053 | n/a | /*[clinic input] |
---|
2054 | n/a | math.degrees |
---|
2055 | n/a | |
---|
2056 | n/a | x: double |
---|
2057 | n/a | / |
---|
2058 | n/a | |
---|
2059 | n/a | Convert angle x from radians to degrees. |
---|
2060 | n/a | [clinic start generated code]*/ |
---|
2061 | n/a | |
---|
2062 | n/a | static PyObject * |
---|
2063 | n/a | math_degrees_impl(PyObject *module, double x) |
---|
2064 | n/a | /*[clinic end generated code: output=7fea78b294acd12f input=81e016555d6e3660]*/ |
---|
2065 | n/a | { |
---|
2066 | n/a | return PyFloat_FromDouble(x * radToDeg); |
---|
2067 | n/a | } |
---|
2068 | n/a | |
---|
2069 | n/a | |
---|
2070 | n/a | /*[clinic input] |
---|
2071 | n/a | math.radians |
---|
2072 | n/a | |
---|
2073 | n/a | x: double |
---|
2074 | n/a | / |
---|
2075 | n/a | |
---|
2076 | n/a | Convert angle x from degrees to radians. |
---|
2077 | n/a | [clinic start generated code]*/ |
---|
2078 | n/a | |
---|
2079 | n/a | static PyObject * |
---|
2080 | n/a | math_radians_impl(PyObject *module, double x) |
---|
2081 | n/a | /*[clinic end generated code: output=34daa47caf9b1590 input=91626fc489fe3d63]*/ |
---|
2082 | n/a | { |
---|
2083 | n/a | return PyFloat_FromDouble(x * degToRad); |
---|
2084 | n/a | } |
---|
2085 | n/a | |
---|
2086 | n/a | |
---|
2087 | n/a | /*[clinic input] |
---|
2088 | n/a | math.isfinite |
---|
2089 | n/a | |
---|
2090 | n/a | x: double |
---|
2091 | n/a | / |
---|
2092 | n/a | |
---|
2093 | n/a | Return True if x is neither an infinity nor a NaN, and False otherwise. |
---|
2094 | n/a | [clinic start generated code]*/ |
---|
2095 | n/a | |
---|
2096 | n/a | static PyObject * |
---|
2097 | n/a | math_isfinite_impl(PyObject *module, double x) |
---|
2098 | n/a | /*[clinic end generated code: output=8ba1f396440c9901 input=46967d254812e54a]*/ |
---|
2099 | n/a | { |
---|
2100 | n/a | return PyBool_FromLong((long)Py_IS_FINITE(x)); |
---|
2101 | n/a | } |
---|
2102 | n/a | |
---|
2103 | n/a | |
---|
2104 | n/a | /*[clinic input] |
---|
2105 | n/a | math.isnan |
---|
2106 | n/a | |
---|
2107 | n/a | x: double |
---|
2108 | n/a | / |
---|
2109 | n/a | |
---|
2110 | n/a | Return True if x is a NaN (not a number), and False otherwise. |
---|
2111 | n/a | [clinic start generated code]*/ |
---|
2112 | n/a | |
---|
2113 | n/a | static PyObject * |
---|
2114 | n/a | math_isnan_impl(PyObject *module, double x) |
---|
2115 | n/a | /*[clinic end generated code: output=f537b4d6df878c3e input=935891e66083f46a]*/ |
---|
2116 | n/a | { |
---|
2117 | n/a | return PyBool_FromLong((long)Py_IS_NAN(x)); |
---|
2118 | n/a | } |
---|
2119 | n/a | |
---|
2120 | n/a | |
---|
2121 | n/a | /*[clinic input] |
---|
2122 | n/a | math.isinf |
---|
2123 | n/a | |
---|
2124 | n/a | x: double |
---|
2125 | n/a | / |
---|
2126 | n/a | |
---|
2127 | n/a | Return True if x is a positive or negative infinity, and False otherwise. |
---|
2128 | n/a | [clinic start generated code]*/ |
---|
2129 | n/a | |
---|
2130 | n/a | static PyObject * |
---|
2131 | n/a | math_isinf_impl(PyObject *module, double x) |
---|
2132 | n/a | /*[clinic end generated code: output=9f00cbec4de7b06b input=32630e4212cf961f]*/ |
---|
2133 | n/a | { |
---|
2134 | n/a | return PyBool_FromLong((long)Py_IS_INFINITY(x)); |
---|
2135 | n/a | } |
---|
2136 | n/a | |
---|
2137 | n/a | |
---|
2138 | n/a | /*[clinic input] |
---|
2139 | n/a | math.isclose -> bool |
---|
2140 | n/a | |
---|
2141 | n/a | a: double |
---|
2142 | n/a | b: double |
---|
2143 | n/a | * |
---|
2144 | n/a | rel_tol: double = 1e-09 |
---|
2145 | n/a | maximum difference for being considered "close", relative to the |
---|
2146 | n/a | magnitude of the input values |
---|
2147 | n/a | abs_tol: double = 0.0 |
---|
2148 | n/a | maximum difference for being considered "close", regardless of the |
---|
2149 | n/a | magnitude of the input values |
---|
2150 | n/a | |
---|
2151 | n/a | Determine whether two floating point numbers are close in value. |
---|
2152 | n/a | |
---|
2153 | n/a | Return True if a is close in value to b, and False otherwise. |
---|
2154 | n/a | |
---|
2155 | n/a | For the values to be considered close, the difference between them |
---|
2156 | n/a | must be smaller than at least one of the tolerances. |
---|
2157 | n/a | |
---|
2158 | n/a | -inf, inf and NaN behave similarly to the IEEE 754 Standard. That |
---|
2159 | n/a | is, NaN is not close to anything, even itself. inf and -inf are |
---|
2160 | n/a | only close to themselves. |
---|
2161 | n/a | [clinic start generated code]*/ |
---|
2162 | n/a | |
---|
2163 | n/a | static int |
---|
2164 | n/a | math_isclose_impl(PyObject *module, double a, double b, double rel_tol, |
---|
2165 | n/a | double abs_tol) |
---|
2166 | n/a | /*[clinic end generated code: output=b73070207511952d input=f28671871ea5bfba]*/ |
---|
2167 | n/a | { |
---|
2168 | n/a | double diff = 0.0; |
---|
2169 | n/a | |
---|
2170 | n/a | /* sanity check on the inputs */ |
---|
2171 | n/a | if (rel_tol < 0.0 || abs_tol < 0.0 ) { |
---|
2172 | n/a | PyErr_SetString(PyExc_ValueError, |
---|
2173 | n/a | "tolerances must be non-negative"); |
---|
2174 | n/a | return -1; |
---|
2175 | n/a | } |
---|
2176 | n/a | |
---|
2177 | n/a | if ( a == b ) { |
---|
2178 | n/a | /* short circuit exact equality -- needed to catch two infinities of |
---|
2179 | n/a | the same sign. And perhaps speeds things up a bit sometimes. |
---|
2180 | n/a | */ |
---|
2181 | n/a | return 1; |
---|
2182 | n/a | } |
---|
2183 | n/a | |
---|
2184 | n/a | /* This catches the case of two infinities of opposite sign, or |
---|
2185 | n/a | one infinity and one finite number. Two infinities of opposite |
---|
2186 | n/a | sign would otherwise have an infinite relative tolerance. |
---|
2187 | n/a | Two infinities of the same sign are caught by the equality check |
---|
2188 | n/a | above. |
---|
2189 | n/a | */ |
---|
2190 | n/a | |
---|
2191 | n/a | if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) { |
---|
2192 | n/a | return 0; |
---|
2193 | n/a | } |
---|
2194 | n/a | |
---|
2195 | n/a | /* now do the regular computation |
---|
2196 | n/a | this is essentially the "weak" test from the Boost library |
---|
2197 | n/a | */ |
---|
2198 | n/a | |
---|
2199 | n/a | diff = fabs(b - a); |
---|
2200 | n/a | |
---|
2201 | n/a | return (((diff <= fabs(rel_tol * b)) || |
---|
2202 | n/a | (diff <= fabs(rel_tol * a))) || |
---|
2203 | n/a | (diff <= abs_tol)); |
---|
2204 | n/a | } |
---|
2205 | n/a | |
---|
2206 | n/a | |
---|
2207 | n/a | static PyMethodDef math_methods[] = { |
---|
2208 | n/a | {"acos", math_acos, METH_O, math_acos_doc}, |
---|
2209 | n/a | {"acosh", math_acosh, METH_O, math_acosh_doc}, |
---|
2210 | n/a | {"asin", math_asin, METH_O, math_asin_doc}, |
---|
2211 | n/a | {"asinh", math_asinh, METH_O, math_asinh_doc}, |
---|
2212 | n/a | {"atan", math_atan, METH_O, math_atan_doc}, |
---|
2213 | n/a | {"atan2", math_atan2, METH_VARARGS, math_atan2_doc}, |
---|
2214 | n/a | {"atanh", math_atanh, METH_O, math_atanh_doc}, |
---|
2215 | n/a | MATH_CEIL_METHODDEF |
---|
2216 | n/a | {"copysign", math_copysign, METH_VARARGS, math_copysign_doc}, |
---|
2217 | n/a | {"cos", math_cos, METH_O, math_cos_doc}, |
---|
2218 | n/a | {"cosh", math_cosh, METH_O, math_cosh_doc}, |
---|
2219 | n/a | MATH_DEGREES_METHODDEF |
---|
2220 | n/a | {"erf", math_erf, METH_O, math_erf_doc}, |
---|
2221 | n/a | {"erfc", math_erfc, METH_O, math_erfc_doc}, |
---|
2222 | n/a | {"exp", math_exp, METH_O, math_exp_doc}, |
---|
2223 | n/a | {"expm1", math_expm1, METH_O, math_expm1_doc}, |
---|
2224 | n/a | {"fabs", math_fabs, METH_O, math_fabs_doc}, |
---|
2225 | n/a | MATH_FACTORIAL_METHODDEF |
---|
2226 | n/a | MATH_FLOOR_METHODDEF |
---|
2227 | n/a | MATH_FMOD_METHODDEF |
---|
2228 | n/a | MATH_FREXP_METHODDEF |
---|
2229 | n/a | MATH_FSUM_METHODDEF |
---|
2230 | n/a | {"gamma", math_gamma, METH_O, math_gamma_doc}, |
---|
2231 | n/a | MATH_GCD_METHODDEF |
---|
2232 | n/a | MATH_HYPOT_METHODDEF |
---|
2233 | n/a | MATH_ISCLOSE_METHODDEF |
---|
2234 | n/a | MATH_ISFINITE_METHODDEF |
---|
2235 | n/a | MATH_ISINF_METHODDEF |
---|
2236 | n/a | MATH_ISNAN_METHODDEF |
---|
2237 | n/a | MATH_LDEXP_METHODDEF |
---|
2238 | n/a | {"lgamma", math_lgamma, METH_O, math_lgamma_doc}, |
---|
2239 | n/a | MATH_LOG_METHODDEF |
---|
2240 | n/a | {"log1p", math_log1p, METH_O, math_log1p_doc}, |
---|
2241 | n/a | MATH_LOG10_METHODDEF |
---|
2242 | n/a | MATH_LOG2_METHODDEF |
---|
2243 | n/a | MATH_MODF_METHODDEF |
---|
2244 | n/a | MATH_POW_METHODDEF |
---|
2245 | n/a | MATH_RADIANS_METHODDEF |
---|
2246 | n/a | {"sin", math_sin, METH_O, math_sin_doc}, |
---|
2247 | n/a | {"sinh", math_sinh, METH_O, math_sinh_doc}, |
---|
2248 | n/a | {"sqrt", math_sqrt, METH_O, math_sqrt_doc}, |
---|
2249 | n/a | {"tan", math_tan, METH_O, math_tan_doc}, |
---|
2250 | n/a | {"tanh", math_tanh, METH_O, math_tanh_doc}, |
---|
2251 | n/a | MATH_TRUNC_METHODDEF |
---|
2252 | n/a | {NULL, NULL} /* sentinel */ |
---|
2253 | n/a | }; |
---|
2254 | n/a | |
---|
2255 | n/a | |
---|
2256 | n/a | PyDoc_STRVAR(module_doc, |
---|
2257 | n/a | "This module is always available. It provides access to the\n" |
---|
2258 | n/a | "mathematical functions defined by the C standard."); |
---|
2259 | n/a | |
---|
2260 | n/a | |
---|
2261 | n/a | static struct PyModuleDef mathmodule = { |
---|
2262 | n/a | PyModuleDef_HEAD_INIT, |
---|
2263 | n/a | "math", |
---|
2264 | n/a | module_doc, |
---|
2265 | n/a | -1, |
---|
2266 | n/a | math_methods, |
---|
2267 | n/a | NULL, |
---|
2268 | n/a | NULL, |
---|
2269 | n/a | NULL, |
---|
2270 | n/a | NULL |
---|
2271 | n/a | }; |
---|
2272 | n/a | |
---|
2273 | n/a | PyMODINIT_FUNC |
---|
2274 | n/a | PyInit_math(void) |
---|
2275 | n/a | { |
---|
2276 | n/a | PyObject *m; |
---|
2277 | n/a | |
---|
2278 | n/a | m = PyModule_Create(&mathmodule); |
---|
2279 | n/a | if (m == NULL) |
---|
2280 | n/a | goto finally; |
---|
2281 | n/a | |
---|
2282 | n/a | PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI)); |
---|
2283 | n/a | PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E)); |
---|
2284 | n/a | PyModule_AddObject(m, "tau", PyFloat_FromDouble(Py_MATH_TAU)); /* 2pi */ |
---|
2285 | n/a | PyModule_AddObject(m, "inf", PyFloat_FromDouble(m_inf())); |
---|
2286 | n/a | #if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN) |
---|
2287 | n/a | PyModule_AddObject(m, "nan", PyFloat_FromDouble(m_nan())); |
---|
2288 | n/a | #endif |
---|
2289 | n/a | |
---|
2290 | n/a | finally: |
---|
2291 | n/a | return m; |
---|
2292 | n/a | } |
---|