| 1 | n/a | /* Complex math module */ |
|---|
| 2 | n/a | |
|---|
| 3 | n/a | /* much code borrowed from mathmodule.c */ |
|---|
| 4 | n/a | |
|---|
| 5 | n/a | #include "Python.h" |
|---|
| 6 | n/a | #include "_math.h" |
|---|
| 7 | n/a | /* we need DBL_MAX, DBL_MIN, DBL_EPSILON, DBL_MANT_DIG and FLT_RADIX from |
|---|
| 8 | n/a | float.h. We assume that FLT_RADIX is either 2 or 16. */ |
|---|
| 9 | n/a | #include <float.h> |
|---|
| 10 | n/a | |
|---|
| 11 | n/a | #include "clinic/cmathmodule.c.h" |
|---|
| 12 | n/a | /*[clinic input] |
|---|
| 13 | n/a | module cmath |
|---|
| 14 | n/a | [clinic start generated code]*/ |
|---|
| 15 | n/a | /*[clinic end generated code: output=da39a3ee5e6b4b0d input=308d6839f4a46333]*/ |
|---|
| 16 | n/a | |
|---|
| 17 | n/a | /*[python input] |
|---|
| 18 | n/a | class Py_complex_protected_converter(Py_complex_converter): |
|---|
| 19 | n/a | def modify(self): |
|---|
| 20 | n/a | return 'errno = 0; PyFPE_START_PROTECT("complex function", goto exit);' |
|---|
| 21 | n/a | |
|---|
| 22 | n/a | |
|---|
| 23 | n/a | class Py_complex_protected_return_converter(CReturnConverter): |
|---|
| 24 | n/a | type = "Py_complex" |
|---|
| 25 | n/a | |
|---|
| 26 | n/a | def render(self, function, data): |
|---|
| 27 | n/a | self.declare(data) |
|---|
| 28 | n/a | data.return_conversion.append(""" |
|---|
| 29 | n/a | PyFPE_END_PROTECT(_return_value); |
|---|
| 30 | n/a | if (errno == EDOM) { |
|---|
| 31 | n/a | PyErr_SetString(PyExc_ValueError, "math domain error"); |
|---|
| 32 | n/a | goto exit; |
|---|
| 33 | n/a | } |
|---|
| 34 | n/a | else if (errno == ERANGE) { |
|---|
| 35 | n/a | PyErr_SetString(PyExc_OverflowError, "math range error"); |
|---|
| 36 | n/a | goto exit; |
|---|
| 37 | n/a | } |
|---|
| 38 | n/a | else { |
|---|
| 39 | n/a | return_value = PyComplex_FromCComplex(_return_value); |
|---|
| 40 | n/a | } |
|---|
| 41 | n/a | """.strip()) |
|---|
| 42 | n/a | [python start generated code]*/ |
|---|
| 43 | n/a | /*[python end generated code: output=da39a3ee5e6b4b0d input=345daa075b1028e7]*/ |
|---|
| 44 | n/a | |
|---|
| 45 | n/a | #if (FLT_RADIX != 2 && FLT_RADIX != 16) |
|---|
| 46 | n/a | #error "Modules/cmathmodule.c expects FLT_RADIX to be 2 or 16" |
|---|
| 47 | n/a | #endif |
|---|
| 48 | n/a | |
|---|
| 49 | n/a | #ifndef M_LN2 |
|---|
| 50 | n/a | #define M_LN2 (0.6931471805599453094) /* natural log of 2 */ |
|---|
| 51 | n/a | #endif |
|---|
| 52 | n/a | |
|---|
| 53 | n/a | #ifndef M_LN10 |
|---|
| 54 | n/a | #define M_LN10 (2.302585092994045684) /* natural log of 10 */ |
|---|
| 55 | n/a | #endif |
|---|
| 56 | n/a | |
|---|
| 57 | n/a | /* |
|---|
| 58 | n/a | CM_LARGE_DOUBLE is used to avoid spurious overflow in the sqrt, log, |
|---|
| 59 | n/a | inverse trig and inverse hyperbolic trig functions. Its log is used in the |
|---|
| 60 | n/a | evaluation of exp, cos, cosh, sin, sinh, tan, and tanh to avoid unnecessary |
|---|
| 61 | n/a | overflow. |
|---|
| 62 | n/a | */ |
|---|
| 63 | n/a | |
|---|
| 64 | n/a | #define CM_LARGE_DOUBLE (DBL_MAX/4.) |
|---|
| 65 | n/a | #define CM_SQRT_LARGE_DOUBLE (sqrt(CM_LARGE_DOUBLE)) |
|---|
| 66 | n/a | #define CM_LOG_LARGE_DOUBLE (log(CM_LARGE_DOUBLE)) |
|---|
| 67 | n/a | #define CM_SQRT_DBL_MIN (sqrt(DBL_MIN)) |
|---|
| 68 | n/a | |
|---|
| 69 | n/a | /* |
|---|
| 70 | n/a | CM_SCALE_UP is an odd integer chosen such that multiplication by |
|---|
| 71 | n/a | 2**CM_SCALE_UP is sufficient to turn a subnormal into a normal. |
|---|
| 72 | n/a | CM_SCALE_DOWN is (-(CM_SCALE_UP+1)/2). These scalings are used to compute |
|---|
| 73 | n/a | square roots accurately when the real and imaginary parts of the argument |
|---|
| 74 | n/a | are subnormal. |
|---|
| 75 | n/a | */ |
|---|
| 76 | n/a | |
|---|
| 77 | n/a | #if FLT_RADIX==2 |
|---|
| 78 | n/a | #define CM_SCALE_UP (2*(DBL_MANT_DIG/2) + 1) |
|---|
| 79 | n/a | #elif FLT_RADIX==16 |
|---|
| 80 | n/a | #define CM_SCALE_UP (4*DBL_MANT_DIG+1) |
|---|
| 81 | n/a | #endif |
|---|
| 82 | n/a | #define CM_SCALE_DOWN (-(CM_SCALE_UP+1)/2) |
|---|
| 83 | n/a | |
|---|
| 84 | n/a | /* Constants cmath.inf, cmath.infj, cmath.nan, cmath.nanj. |
|---|
| 85 | n/a | cmath.nan and cmath.nanj are defined only when either |
|---|
| 86 | n/a | PY_NO_SHORT_FLOAT_REPR is *not* defined (which should be |
|---|
| 87 | n/a | the most common situation on machines using an IEEE 754 |
|---|
| 88 | n/a | representation), or Py_NAN is defined. */ |
|---|
| 89 | n/a | |
|---|
| 90 | n/a | static double |
|---|
| 91 | n/a | m_inf(void) |
|---|
| 92 | n/a | { |
|---|
| 93 | n/a | #ifndef PY_NO_SHORT_FLOAT_REPR |
|---|
| 94 | n/a | return _Py_dg_infinity(0); |
|---|
| 95 | n/a | #else |
|---|
| 96 | n/a | return Py_HUGE_VAL; |
|---|
| 97 | n/a | #endif |
|---|
| 98 | n/a | } |
|---|
| 99 | n/a | |
|---|
| 100 | n/a | static Py_complex |
|---|
| 101 | n/a | c_infj(void) |
|---|
| 102 | n/a | { |
|---|
| 103 | n/a | Py_complex r; |
|---|
| 104 | n/a | r.real = 0.0; |
|---|
| 105 | n/a | r.imag = m_inf(); |
|---|
| 106 | n/a | return r; |
|---|
| 107 | n/a | } |
|---|
| 108 | n/a | |
|---|
| 109 | n/a | #if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN) |
|---|
| 110 | n/a | |
|---|
| 111 | n/a | static double |
|---|
| 112 | n/a | m_nan(void) |
|---|
| 113 | n/a | { |
|---|
| 114 | n/a | #ifndef PY_NO_SHORT_FLOAT_REPR |
|---|
| 115 | n/a | return _Py_dg_stdnan(0); |
|---|
| 116 | n/a | #else |
|---|
| 117 | n/a | return Py_NAN; |
|---|
| 118 | n/a | #endif |
|---|
| 119 | n/a | } |
|---|
| 120 | n/a | |
|---|
| 121 | n/a | static Py_complex |
|---|
| 122 | n/a | c_nanj(void) |
|---|
| 123 | n/a | { |
|---|
| 124 | n/a | Py_complex r; |
|---|
| 125 | n/a | r.real = 0.0; |
|---|
| 126 | n/a | r.imag = m_nan(); |
|---|
| 127 | n/a | return r; |
|---|
| 128 | n/a | } |
|---|
| 129 | n/a | |
|---|
| 130 | n/a | #endif |
|---|
| 131 | n/a | |
|---|
| 132 | n/a | /* forward declarations */ |
|---|
| 133 | n/a | static Py_complex cmath_asinh_impl(PyObject *, Py_complex); |
|---|
| 134 | n/a | static Py_complex cmath_atanh_impl(PyObject *, Py_complex); |
|---|
| 135 | n/a | static Py_complex cmath_cosh_impl(PyObject *, Py_complex); |
|---|
| 136 | n/a | static Py_complex cmath_sinh_impl(PyObject *, Py_complex); |
|---|
| 137 | n/a | static Py_complex cmath_sqrt_impl(PyObject *, Py_complex); |
|---|
| 138 | n/a | static Py_complex cmath_tanh_impl(PyObject *, Py_complex); |
|---|
| 139 | n/a | static PyObject * math_error(void); |
|---|
| 140 | n/a | |
|---|
| 141 | n/a | /* Code to deal with special values (infinities, NaNs, etc.). */ |
|---|
| 142 | n/a | |
|---|
| 143 | n/a | /* special_type takes a double and returns an integer code indicating |
|---|
| 144 | n/a | the type of the double as follows: |
|---|
| 145 | n/a | */ |
|---|
| 146 | n/a | |
|---|
| 147 | n/a | enum special_types { |
|---|
| 148 | n/a | ST_NINF, /* 0, negative infinity */ |
|---|
| 149 | n/a | ST_NEG, /* 1, negative finite number (nonzero) */ |
|---|
| 150 | n/a | ST_NZERO, /* 2, -0. */ |
|---|
| 151 | n/a | ST_PZERO, /* 3, +0. */ |
|---|
| 152 | n/a | ST_POS, /* 4, positive finite number (nonzero) */ |
|---|
| 153 | n/a | ST_PINF, /* 5, positive infinity */ |
|---|
| 154 | n/a | ST_NAN /* 6, Not a Number */ |
|---|
| 155 | n/a | }; |
|---|
| 156 | n/a | |
|---|
| 157 | n/a | static enum special_types |
|---|
| 158 | n/a | special_type(double d) |
|---|
| 159 | n/a | { |
|---|
| 160 | n/a | if (Py_IS_FINITE(d)) { |
|---|
| 161 | n/a | if (d != 0) { |
|---|
| 162 | n/a | if (copysign(1., d) == 1.) |
|---|
| 163 | n/a | return ST_POS; |
|---|
| 164 | n/a | else |
|---|
| 165 | n/a | return ST_NEG; |
|---|
| 166 | n/a | } |
|---|
| 167 | n/a | else { |
|---|
| 168 | n/a | if (copysign(1., d) == 1.) |
|---|
| 169 | n/a | return ST_PZERO; |
|---|
| 170 | n/a | else |
|---|
| 171 | n/a | return ST_NZERO; |
|---|
| 172 | n/a | } |
|---|
| 173 | n/a | } |
|---|
| 174 | n/a | if (Py_IS_NAN(d)) |
|---|
| 175 | n/a | return ST_NAN; |
|---|
| 176 | n/a | if (copysign(1., d) == 1.) |
|---|
| 177 | n/a | return ST_PINF; |
|---|
| 178 | n/a | else |
|---|
| 179 | n/a | return ST_NINF; |
|---|
| 180 | n/a | } |
|---|
| 181 | n/a | |
|---|
| 182 | n/a | #define SPECIAL_VALUE(z, table) \ |
|---|
| 183 | n/a | if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) { \ |
|---|
| 184 | n/a | errno = 0; \ |
|---|
| 185 | n/a | return table[special_type((z).real)] \ |
|---|
| 186 | n/a | [special_type((z).imag)]; \ |
|---|
| 187 | n/a | } |
|---|
| 188 | n/a | |
|---|
| 189 | n/a | #define P Py_MATH_PI |
|---|
| 190 | n/a | #define P14 0.25*Py_MATH_PI |
|---|
| 191 | n/a | #define P12 0.5*Py_MATH_PI |
|---|
| 192 | n/a | #define P34 0.75*Py_MATH_PI |
|---|
| 193 | n/a | #define INF Py_HUGE_VAL |
|---|
| 194 | n/a | #define N Py_NAN |
|---|
| 195 | n/a | #define U -9.5426319407711027e33 /* unlikely value, used as placeholder */ |
|---|
| 196 | n/a | |
|---|
| 197 | n/a | /* First, the C functions that do the real work. Each of the c_* |
|---|
| 198 | n/a | functions computes and returns the C99 Annex G recommended result |
|---|
| 199 | n/a | and also sets errno as follows: errno = 0 if no floating-point |
|---|
| 200 | n/a | exception is associated with the result; errno = EDOM if C99 Annex |
|---|
| 201 | n/a | G recommends raising divide-by-zero or invalid for this result; and |
|---|
| 202 | n/a | errno = ERANGE where the overflow floating-point signal should be |
|---|
| 203 | n/a | raised. |
|---|
| 204 | n/a | */ |
|---|
| 205 | n/a | |
|---|
| 206 | n/a | static Py_complex acos_special_values[7][7]; |
|---|
| 207 | n/a | |
|---|
| 208 | n/a | /*[clinic input] |
|---|
| 209 | n/a | cmath.acos -> Py_complex_protected |
|---|
| 210 | n/a | |
|---|
| 211 | n/a | z: Py_complex_protected |
|---|
| 212 | n/a | / |
|---|
| 213 | n/a | |
|---|
| 214 | n/a | Return the arc cosine of z. |
|---|
| 215 | n/a | [clinic start generated code]*/ |
|---|
| 216 | n/a | |
|---|
| 217 | n/a | static Py_complex |
|---|
| 218 | n/a | cmath_acos_impl(PyObject *module, Py_complex z) |
|---|
| 219 | n/a | /*[clinic end generated code: output=40bd42853fd460ae input=bd6cbd78ae851927]*/ |
|---|
| 220 | n/a | { |
|---|
| 221 | n/a | Py_complex s1, s2, r; |
|---|
| 222 | n/a | |
|---|
| 223 | n/a | SPECIAL_VALUE(z, acos_special_values); |
|---|
| 224 | n/a | |
|---|
| 225 | n/a | if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) { |
|---|
| 226 | n/a | /* avoid unnecessary overflow for large arguments */ |
|---|
| 227 | n/a | r.real = atan2(fabs(z.imag), z.real); |
|---|
| 228 | n/a | /* split into cases to make sure that the branch cut has the |
|---|
| 229 | n/a | correct continuity on systems with unsigned zeros */ |
|---|
| 230 | n/a | if (z.real < 0.) { |
|---|
| 231 | n/a | r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) + |
|---|
| 232 | n/a | M_LN2*2., z.imag); |
|---|
| 233 | n/a | } else { |
|---|
| 234 | n/a | r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) + |
|---|
| 235 | n/a | M_LN2*2., -z.imag); |
|---|
| 236 | n/a | } |
|---|
| 237 | n/a | } else { |
|---|
| 238 | n/a | s1.real = 1.-z.real; |
|---|
| 239 | n/a | s1.imag = -z.imag; |
|---|
| 240 | n/a | s1 = cmath_sqrt_impl(module, s1); |
|---|
| 241 | n/a | s2.real = 1.+z.real; |
|---|
| 242 | n/a | s2.imag = z.imag; |
|---|
| 243 | n/a | s2 = cmath_sqrt_impl(module, s2); |
|---|
| 244 | n/a | r.real = 2.*atan2(s1.real, s2.real); |
|---|
| 245 | n/a | r.imag = m_asinh(s2.real*s1.imag - s2.imag*s1.real); |
|---|
| 246 | n/a | } |
|---|
| 247 | n/a | errno = 0; |
|---|
| 248 | n/a | return r; |
|---|
| 249 | n/a | } |
|---|
| 250 | n/a | |
|---|
| 251 | n/a | |
|---|
| 252 | n/a | static Py_complex acosh_special_values[7][7]; |
|---|
| 253 | n/a | |
|---|
| 254 | n/a | /*[clinic input] |
|---|
| 255 | n/a | cmath.acosh = cmath.acos |
|---|
| 256 | n/a | |
|---|
| 257 | n/a | Return the inverse hyperbolic cosine of z. |
|---|
| 258 | n/a | [clinic start generated code]*/ |
|---|
| 259 | n/a | |
|---|
| 260 | n/a | static Py_complex |
|---|
| 261 | n/a | cmath_acosh_impl(PyObject *module, Py_complex z) |
|---|
| 262 | n/a | /*[clinic end generated code: output=3e2454d4fcf404ca input=3f61bee7d703e53c]*/ |
|---|
| 263 | n/a | { |
|---|
| 264 | n/a | Py_complex s1, s2, r; |
|---|
| 265 | n/a | |
|---|
| 266 | n/a | SPECIAL_VALUE(z, acosh_special_values); |
|---|
| 267 | n/a | |
|---|
| 268 | n/a | if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) { |
|---|
| 269 | n/a | /* avoid unnecessary overflow for large arguments */ |
|---|
| 270 | n/a | r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.; |
|---|
| 271 | n/a | r.imag = atan2(z.imag, z.real); |
|---|
| 272 | n/a | } else { |
|---|
| 273 | n/a | s1.real = z.real - 1.; |
|---|
| 274 | n/a | s1.imag = z.imag; |
|---|
| 275 | n/a | s1 = cmath_sqrt_impl(module, s1); |
|---|
| 276 | n/a | s2.real = z.real + 1.; |
|---|
| 277 | n/a | s2.imag = z.imag; |
|---|
| 278 | n/a | s2 = cmath_sqrt_impl(module, s2); |
|---|
| 279 | n/a | r.real = m_asinh(s1.real*s2.real + s1.imag*s2.imag); |
|---|
| 280 | n/a | r.imag = 2.*atan2(s1.imag, s2.real); |
|---|
| 281 | n/a | } |
|---|
| 282 | n/a | errno = 0; |
|---|
| 283 | n/a | return r; |
|---|
| 284 | n/a | } |
|---|
| 285 | n/a | |
|---|
| 286 | n/a | /*[clinic input] |
|---|
| 287 | n/a | cmath.asin = cmath.acos |
|---|
| 288 | n/a | |
|---|
| 289 | n/a | Return the arc sine of z. |
|---|
| 290 | n/a | [clinic start generated code]*/ |
|---|
| 291 | n/a | |
|---|
| 292 | n/a | static Py_complex |
|---|
| 293 | n/a | cmath_asin_impl(PyObject *module, Py_complex z) |
|---|
| 294 | n/a | /*[clinic end generated code: output=3b264cd1b16bf4e1 input=be0bf0cfdd5239c5]*/ |
|---|
| 295 | n/a | { |
|---|
| 296 | n/a | /* asin(z) = -i asinh(iz) */ |
|---|
| 297 | n/a | Py_complex s, r; |
|---|
| 298 | n/a | s.real = -z.imag; |
|---|
| 299 | n/a | s.imag = z.real; |
|---|
| 300 | n/a | s = cmath_asinh_impl(module, s); |
|---|
| 301 | n/a | r.real = s.imag; |
|---|
| 302 | n/a | r.imag = -s.real; |
|---|
| 303 | n/a | return r; |
|---|
| 304 | n/a | } |
|---|
| 305 | n/a | |
|---|
| 306 | n/a | |
|---|
| 307 | n/a | static Py_complex asinh_special_values[7][7]; |
|---|
| 308 | n/a | |
|---|
| 309 | n/a | /*[clinic input] |
|---|
| 310 | n/a | cmath.asinh = cmath.acos |
|---|
| 311 | n/a | |
|---|
| 312 | n/a | Return the inverse hyperbolic sine of z. |
|---|
| 313 | n/a | [clinic start generated code]*/ |
|---|
| 314 | n/a | |
|---|
| 315 | n/a | static Py_complex |
|---|
| 316 | n/a | cmath_asinh_impl(PyObject *module, Py_complex z) |
|---|
| 317 | n/a | /*[clinic end generated code: output=733d8107841a7599 input=5c09448fcfc89a79]*/ |
|---|
| 318 | n/a | { |
|---|
| 319 | n/a | Py_complex s1, s2, r; |
|---|
| 320 | n/a | |
|---|
| 321 | n/a | SPECIAL_VALUE(z, asinh_special_values); |
|---|
| 322 | n/a | |
|---|
| 323 | n/a | if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) { |
|---|
| 324 | n/a | if (z.imag >= 0.) { |
|---|
| 325 | n/a | r.real = copysign(log(hypot(z.real/2., z.imag/2.)) + |
|---|
| 326 | n/a | M_LN2*2., z.real); |
|---|
| 327 | n/a | } else { |
|---|
| 328 | n/a | r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) + |
|---|
| 329 | n/a | M_LN2*2., -z.real); |
|---|
| 330 | n/a | } |
|---|
| 331 | n/a | r.imag = atan2(z.imag, fabs(z.real)); |
|---|
| 332 | n/a | } else { |
|---|
| 333 | n/a | s1.real = 1.+z.imag; |
|---|
| 334 | n/a | s1.imag = -z.real; |
|---|
| 335 | n/a | s1 = cmath_sqrt_impl(module, s1); |
|---|
| 336 | n/a | s2.real = 1.-z.imag; |
|---|
| 337 | n/a | s2.imag = z.real; |
|---|
| 338 | n/a | s2 = cmath_sqrt_impl(module, s2); |
|---|
| 339 | n/a | r.real = m_asinh(s1.real*s2.imag-s2.real*s1.imag); |
|---|
| 340 | n/a | r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag); |
|---|
| 341 | n/a | } |
|---|
| 342 | n/a | errno = 0; |
|---|
| 343 | n/a | return r; |
|---|
| 344 | n/a | } |
|---|
| 345 | n/a | |
|---|
| 346 | n/a | |
|---|
| 347 | n/a | /*[clinic input] |
|---|
| 348 | n/a | cmath.atan = cmath.acos |
|---|
| 349 | n/a | |
|---|
| 350 | n/a | Return the arc tangent of z. |
|---|
| 351 | n/a | [clinic start generated code]*/ |
|---|
| 352 | n/a | |
|---|
| 353 | n/a | static Py_complex |
|---|
| 354 | n/a | cmath_atan_impl(PyObject *module, Py_complex z) |
|---|
| 355 | n/a | /*[clinic end generated code: output=b6bfc497058acba4 input=3b21ff7d5eac632a]*/ |
|---|
| 356 | n/a | { |
|---|
| 357 | n/a | /* atan(z) = -i atanh(iz) */ |
|---|
| 358 | n/a | Py_complex s, r; |
|---|
| 359 | n/a | s.real = -z.imag; |
|---|
| 360 | n/a | s.imag = z.real; |
|---|
| 361 | n/a | s = cmath_atanh_impl(module, s); |
|---|
| 362 | n/a | r.real = s.imag; |
|---|
| 363 | n/a | r.imag = -s.real; |
|---|
| 364 | n/a | return r; |
|---|
| 365 | n/a | } |
|---|
| 366 | n/a | |
|---|
| 367 | n/a | /* Windows screws up atan2 for inf and nan, and alpha Tru64 5.1 doesn't follow |
|---|
| 368 | n/a | C99 for atan2(0., 0.). */ |
|---|
| 369 | n/a | static double |
|---|
| 370 | n/a | c_atan2(Py_complex z) |
|---|
| 371 | n/a | { |
|---|
| 372 | n/a | if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag)) |
|---|
| 373 | n/a | return Py_NAN; |
|---|
| 374 | n/a | if (Py_IS_INFINITY(z.imag)) { |
|---|
| 375 | n/a | if (Py_IS_INFINITY(z.real)) { |
|---|
| 376 | n/a | if (copysign(1., z.real) == 1.) |
|---|
| 377 | n/a | /* atan2(+-inf, +inf) == +-pi/4 */ |
|---|
| 378 | n/a | return copysign(0.25*Py_MATH_PI, z.imag); |
|---|
| 379 | n/a | else |
|---|
| 380 | n/a | /* atan2(+-inf, -inf) == +-pi*3/4 */ |
|---|
| 381 | n/a | return copysign(0.75*Py_MATH_PI, z.imag); |
|---|
| 382 | n/a | } |
|---|
| 383 | n/a | /* atan2(+-inf, x) == +-pi/2 for finite x */ |
|---|
| 384 | n/a | return copysign(0.5*Py_MATH_PI, z.imag); |
|---|
| 385 | n/a | } |
|---|
| 386 | n/a | if (Py_IS_INFINITY(z.real) || z.imag == 0.) { |
|---|
| 387 | n/a | if (copysign(1., z.real) == 1.) |
|---|
| 388 | n/a | /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */ |
|---|
| 389 | n/a | return copysign(0., z.imag); |
|---|
| 390 | n/a | else |
|---|
| 391 | n/a | /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */ |
|---|
| 392 | n/a | return copysign(Py_MATH_PI, z.imag); |
|---|
| 393 | n/a | } |
|---|
| 394 | n/a | return atan2(z.imag, z.real); |
|---|
| 395 | n/a | } |
|---|
| 396 | n/a | |
|---|
| 397 | n/a | |
|---|
| 398 | n/a | static Py_complex atanh_special_values[7][7]; |
|---|
| 399 | n/a | |
|---|
| 400 | n/a | /*[clinic input] |
|---|
| 401 | n/a | cmath.atanh = cmath.acos |
|---|
| 402 | n/a | |
|---|
| 403 | n/a | Return the inverse hyperbolic tangent of z. |
|---|
| 404 | n/a | [clinic start generated code]*/ |
|---|
| 405 | n/a | |
|---|
| 406 | n/a | static Py_complex |
|---|
| 407 | n/a | cmath_atanh_impl(PyObject *module, Py_complex z) |
|---|
| 408 | n/a | /*[clinic end generated code: output=e83355f93a989c9e input=2b3fdb82fb34487b]*/ |
|---|
| 409 | n/a | { |
|---|
| 410 | n/a | Py_complex r; |
|---|
| 411 | n/a | double ay, h; |
|---|
| 412 | n/a | |
|---|
| 413 | n/a | SPECIAL_VALUE(z, atanh_special_values); |
|---|
| 414 | n/a | |
|---|
| 415 | n/a | /* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */ |
|---|
| 416 | n/a | if (z.real < 0.) { |
|---|
| 417 | n/a | return _Py_c_neg(cmath_atanh_impl(module, _Py_c_neg(z))); |
|---|
| 418 | n/a | } |
|---|
| 419 | n/a | |
|---|
| 420 | n/a | ay = fabs(z.imag); |
|---|
| 421 | n/a | if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) { |
|---|
| 422 | n/a | /* |
|---|
| 423 | n/a | if abs(z) is large then we use the approximation |
|---|
| 424 | n/a | atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign |
|---|
| 425 | n/a | of z.imag) |
|---|
| 426 | n/a | */ |
|---|
| 427 | n/a | h = hypot(z.real/2., z.imag/2.); /* safe from overflow */ |
|---|
| 428 | n/a | r.real = z.real/4./h/h; |
|---|
| 429 | n/a | /* the two negations in the next line cancel each other out |
|---|
| 430 | n/a | except when working with unsigned zeros: they're there to |
|---|
| 431 | n/a | ensure that the branch cut has the correct continuity on |
|---|
| 432 | n/a | systems that don't support signed zeros */ |
|---|
| 433 | n/a | r.imag = -copysign(Py_MATH_PI/2., -z.imag); |
|---|
| 434 | n/a | errno = 0; |
|---|
| 435 | n/a | } else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) { |
|---|
| 436 | n/a | /* C99 standard says: atanh(1+/-0.) should be inf +/- 0i */ |
|---|
| 437 | n/a | if (ay == 0.) { |
|---|
| 438 | n/a | r.real = INF; |
|---|
| 439 | n/a | r.imag = z.imag; |
|---|
| 440 | n/a | errno = EDOM; |
|---|
| 441 | n/a | } else { |
|---|
| 442 | n/a | r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.))); |
|---|
| 443 | n/a | r.imag = copysign(atan2(2., -ay)/2, z.imag); |
|---|
| 444 | n/a | errno = 0; |
|---|
| 445 | n/a | } |
|---|
| 446 | n/a | } else { |
|---|
| 447 | n/a | r.real = m_log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.; |
|---|
| 448 | n/a | r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.; |
|---|
| 449 | n/a | errno = 0; |
|---|
| 450 | n/a | } |
|---|
| 451 | n/a | return r; |
|---|
| 452 | n/a | } |
|---|
| 453 | n/a | |
|---|
| 454 | n/a | |
|---|
| 455 | n/a | /*[clinic input] |
|---|
| 456 | n/a | cmath.cos = cmath.acos |
|---|
| 457 | n/a | |
|---|
| 458 | n/a | Return the cosine of z. |
|---|
| 459 | n/a | [clinic start generated code]*/ |
|---|
| 460 | n/a | |
|---|
| 461 | n/a | static Py_complex |
|---|
| 462 | n/a | cmath_cos_impl(PyObject *module, Py_complex z) |
|---|
| 463 | n/a | /*[clinic end generated code: output=fd64918d5b3186db input=6022e39b77127ac7]*/ |
|---|
| 464 | n/a | { |
|---|
| 465 | n/a | /* cos(z) = cosh(iz) */ |
|---|
| 466 | n/a | Py_complex r; |
|---|
| 467 | n/a | r.real = -z.imag; |
|---|
| 468 | n/a | r.imag = z.real; |
|---|
| 469 | n/a | r = cmath_cosh_impl(module, r); |
|---|
| 470 | n/a | return r; |
|---|
| 471 | n/a | } |
|---|
| 472 | n/a | |
|---|
| 473 | n/a | |
|---|
| 474 | n/a | /* cosh(infinity + i*y) needs to be dealt with specially */ |
|---|
| 475 | n/a | static Py_complex cosh_special_values[7][7]; |
|---|
| 476 | n/a | |
|---|
| 477 | n/a | /*[clinic input] |
|---|
| 478 | n/a | cmath.cosh = cmath.acos |
|---|
| 479 | n/a | |
|---|
| 480 | n/a | Return the hyperbolic cosine of z. |
|---|
| 481 | n/a | [clinic start generated code]*/ |
|---|
| 482 | n/a | |
|---|
| 483 | n/a | static Py_complex |
|---|
| 484 | n/a | cmath_cosh_impl(PyObject *module, Py_complex z) |
|---|
| 485 | n/a | /*[clinic end generated code: output=2e969047da601bdb input=d6b66339e9cc332b]*/ |
|---|
| 486 | n/a | { |
|---|
| 487 | n/a | Py_complex r; |
|---|
| 488 | n/a | double x_minus_one; |
|---|
| 489 | n/a | |
|---|
| 490 | n/a | /* special treatment for cosh(+/-inf + iy) if y is not a NaN */ |
|---|
| 491 | n/a | if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { |
|---|
| 492 | n/a | if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) && |
|---|
| 493 | n/a | (z.imag != 0.)) { |
|---|
| 494 | n/a | if (z.real > 0) { |
|---|
| 495 | n/a | r.real = copysign(INF, cos(z.imag)); |
|---|
| 496 | n/a | r.imag = copysign(INF, sin(z.imag)); |
|---|
| 497 | n/a | } |
|---|
| 498 | n/a | else { |
|---|
| 499 | n/a | r.real = copysign(INF, cos(z.imag)); |
|---|
| 500 | n/a | r.imag = -copysign(INF, sin(z.imag)); |
|---|
| 501 | n/a | } |
|---|
| 502 | n/a | } |
|---|
| 503 | n/a | else { |
|---|
| 504 | n/a | r = cosh_special_values[special_type(z.real)] |
|---|
| 505 | n/a | [special_type(z.imag)]; |
|---|
| 506 | n/a | } |
|---|
| 507 | n/a | /* need to set errno = EDOM if y is +/- infinity and x is not |
|---|
| 508 | n/a | a NaN */ |
|---|
| 509 | n/a | if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real)) |
|---|
| 510 | n/a | errno = EDOM; |
|---|
| 511 | n/a | else |
|---|
| 512 | n/a | errno = 0; |
|---|
| 513 | n/a | return r; |
|---|
| 514 | n/a | } |
|---|
| 515 | n/a | |
|---|
| 516 | n/a | if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) { |
|---|
| 517 | n/a | /* deal correctly with cases where cosh(z.real) overflows but |
|---|
| 518 | n/a | cosh(z) does not. */ |
|---|
| 519 | n/a | x_minus_one = z.real - copysign(1., z.real); |
|---|
| 520 | n/a | r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E; |
|---|
| 521 | n/a | r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E; |
|---|
| 522 | n/a | } else { |
|---|
| 523 | n/a | r.real = cos(z.imag) * cosh(z.real); |
|---|
| 524 | n/a | r.imag = sin(z.imag) * sinh(z.real); |
|---|
| 525 | n/a | } |
|---|
| 526 | n/a | /* detect overflow, and set errno accordingly */ |
|---|
| 527 | n/a | if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag)) |
|---|
| 528 | n/a | errno = ERANGE; |
|---|
| 529 | n/a | else |
|---|
| 530 | n/a | errno = 0; |
|---|
| 531 | n/a | return r; |
|---|
| 532 | n/a | } |
|---|
| 533 | n/a | |
|---|
| 534 | n/a | |
|---|
| 535 | n/a | /* exp(infinity + i*y) and exp(-infinity + i*y) need special treatment for |
|---|
| 536 | n/a | finite y */ |
|---|
| 537 | n/a | static Py_complex exp_special_values[7][7]; |
|---|
| 538 | n/a | |
|---|
| 539 | n/a | /*[clinic input] |
|---|
| 540 | n/a | cmath.exp = cmath.acos |
|---|
| 541 | n/a | |
|---|
| 542 | n/a | Return the exponential value e**z. |
|---|
| 543 | n/a | [clinic start generated code]*/ |
|---|
| 544 | n/a | |
|---|
| 545 | n/a | static Py_complex |
|---|
| 546 | n/a | cmath_exp_impl(PyObject *module, Py_complex z) |
|---|
| 547 | n/a | /*[clinic end generated code: output=edcec61fb9dfda6c input=8b9e6cf8a92174c3]*/ |
|---|
| 548 | n/a | { |
|---|
| 549 | n/a | Py_complex r; |
|---|
| 550 | n/a | double l; |
|---|
| 551 | n/a | |
|---|
| 552 | n/a | if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { |
|---|
| 553 | n/a | if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) |
|---|
| 554 | n/a | && (z.imag != 0.)) { |
|---|
| 555 | n/a | if (z.real > 0) { |
|---|
| 556 | n/a | r.real = copysign(INF, cos(z.imag)); |
|---|
| 557 | n/a | r.imag = copysign(INF, sin(z.imag)); |
|---|
| 558 | n/a | } |
|---|
| 559 | n/a | else { |
|---|
| 560 | n/a | r.real = copysign(0., cos(z.imag)); |
|---|
| 561 | n/a | r.imag = copysign(0., sin(z.imag)); |
|---|
| 562 | n/a | } |
|---|
| 563 | n/a | } |
|---|
| 564 | n/a | else { |
|---|
| 565 | n/a | r = exp_special_values[special_type(z.real)] |
|---|
| 566 | n/a | [special_type(z.imag)]; |
|---|
| 567 | n/a | } |
|---|
| 568 | n/a | /* need to set errno = EDOM if y is +/- infinity and x is not |
|---|
| 569 | n/a | a NaN and not -infinity */ |
|---|
| 570 | n/a | if (Py_IS_INFINITY(z.imag) && |
|---|
| 571 | n/a | (Py_IS_FINITE(z.real) || |
|---|
| 572 | n/a | (Py_IS_INFINITY(z.real) && z.real > 0))) |
|---|
| 573 | n/a | errno = EDOM; |
|---|
| 574 | n/a | else |
|---|
| 575 | n/a | errno = 0; |
|---|
| 576 | n/a | return r; |
|---|
| 577 | n/a | } |
|---|
| 578 | n/a | |
|---|
| 579 | n/a | if (z.real > CM_LOG_LARGE_DOUBLE) { |
|---|
| 580 | n/a | l = exp(z.real-1.); |
|---|
| 581 | n/a | r.real = l*cos(z.imag)*Py_MATH_E; |
|---|
| 582 | n/a | r.imag = l*sin(z.imag)*Py_MATH_E; |
|---|
| 583 | n/a | } else { |
|---|
| 584 | n/a | l = exp(z.real); |
|---|
| 585 | n/a | r.real = l*cos(z.imag); |
|---|
| 586 | n/a | r.imag = l*sin(z.imag); |
|---|
| 587 | n/a | } |
|---|
| 588 | n/a | /* detect overflow, and set errno accordingly */ |
|---|
| 589 | n/a | if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag)) |
|---|
| 590 | n/a | errno = ERANGE; |
|---|
| 591 | n/a | else |
|---|
| 592 | n/a | errno = 0; |
|---|
| 593 | n/a | return r; |
|---|
| 594 | n/a | } |
|---|
| 595 | n/a | |
|---|
| 596 | n/a | static Py_complex log_special_values[7][7]; |
|---|
| 597 | n/a | |
|---|
| 598 | n/a | static Py_complex |
|---|
| 599 | n/a | c_log(Py_complex z) |
|---|
| 600 | n/a | { |
|---|
| 601 | n/a | /* |
|---|
| 602 | n/a | The usual formula for the real part is log(hypot(z.real, z.imag)). |
|---|
| 603 | n/a | There are four situations where this formula is potentially |
|---|
| 604 | n/a | problematic: |
|---|
| 605 | n/a | |
|---|
| 606 | n/a | (1) the absolute value of z is subnormal. Then hypot is subnormal, |
|---|
| 607 | n/a | so has fewer than the usual number of bits of accuracy, hence may |
|---|
| 608 | n/a | have large relative error. This then gives a large absolute error |
|---|
| 609 | n/a | in the log. This can be solved by rescaling z by a suitable power |
|---|
| 610 | n/a | of 2. |
|---|
| 611 | n/a | |
|---|
| 612 | n/a | (2) the absolute value of z is greater than DBL_MAX (e.g. when both |
|---|
| 613 | n/a | z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX) |
|---|
| 614 | n/a | Again, rescaling solves this. |
|---|
| 615 | n/a | |
|---|
| 616 | n/a | (3) the absolute value of z is close to 1. In this case it's |
|---|
| 617 | n/a | difficult to achieve good accuracy, at least in part because a |
|---|
| 618 | n/a | change of 1ulp in the real or imaginary part of z can result in a |
|---|
| 619 | n/a | change of billions of ulps in the correctly rounded answer. |
|---|
| 620 | n/a | |
|---|
| 621 | n/a | (4) z = 0. The simplest thing to do here is to call the |
|---|
| 622 | n/a | floating-point log with an argument of 0, and let its behaviour |
|---|
| 623 | n/a | (returning -infinity, signaling a floating-point exception, setting |
|---|
| 624 | n/a | errno, or whatever) determine that of c_log. So the usual formula |
|---|
| 625 | n/a | is fine here. |
|---|
| 626 | n/a | |
|---|
| 627 | n/a | */ |
|---|
| 628 | n/a | |
|---|
| 629 | n/a | Py_complex r; |
|---|
| 630 | n/a | double ax, ay, am, an, h; |
|---|
| 631 | n/a | |
|---|
| 632 | n/a | SPECIAL_VALUE(z, log_special_values); |
|---|
| 633 | n/a | |
|---|
| 634 | n/a | ax = fabs(z.real); |
|---|
| 635 | n/a | ay = fabs(z.imag); |
|---|
| 636 | n/a | |
|---|
| 637 | n/a | if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) { |
|---|
| 638 | n/a | r.real = log(hypot(ax/2., ay/2.)) + M_LN2; |
|---|
| 639 | n/a | } else if (ax < DBL_MIN && ay < DBL_MIN) { |
|---|
| 640 | n/a | if (ax > 0. || ay > 0.) { |
|---|
| 641 | n/a | /* catch cases where hypot(ax, ay) is subnormal */ |
|---|
| 642 | n/a | r.real = log(hypot(ldexp(ax, DBL_MANT_DIG), |
|---|
| 643 | n/a | ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2; |
|---|
| 644 | n/a | } |
|---|
| 645 | n/a | else { |
|---|
| 646 | n/a | /* log(+/-0. +/- 0i) */ |
|---|
| 647 | n/a | r.real = -INF; |
|---|
| 648 | n/a | r.imag = atan2(z.imag, z.real); |
|---|
| 649 | n/a | errno = EDOM; |
|---|
| 650 | n/a | return r; |
|---|
| 651 | n/a | } |
|---|
| 652 | n/a | } else { |
|---|
| 653 | n/a | h = hypot(ax, ay); |
|---|
| 654 | n/a | if (0.71 <= h && h <= 1.73) { |
|---|
| 655 | n/a | am = ax > ay ? ax : ay; /* max(ax, ay) */ |
|---|
| 656 | n/a | an = ax > ay ? ay : ax; /* min(ax, ay) */ |
|---|
| 657 | n/a | r.real = m_log1p((am-1)*(am+1)+an*an)/2.; |
|---|
| 658 | n/a | } else { |
|---|
| 659 | n/a | r.real = log(h); |
|---|
| 660 | n/a | } |
|---|
| 661 | n/a | } |
|---|
| 662 | n/a | r.imag = atan2(z.imag, z.real); |
|---|
| 663 | n/a | errno = 0; |
|---|
| 664 | n/a | return r; |
|---|
| 665 | n/a | } |
|---|
| 666 | n/a | |
|---|
| 667 | n/a | |
|---|
| 668 | n/a | /*[clinic input] |
|---|
| 669 | n/a | cmath.log10 = cmath.acos |
|---|
| 670 | n/a | |
|---|
| 671 | n/a | Return the base-10 logarithm of z. |
|---|
| 672 | n/a | [clinic start generated code]*/ |
|---|
| 673 | n/a | |
|---|
| 674 | n/a | static Py_complex |
|---|
| 675 | n/a | cmath_log10_impl(PyObject *module, Py_complex z) |
|---|
| 676 | n/a | /*[clinic end generated code: output=2922779a7c38cbe1 input=cff5644f73c1519c]*/ |
|---|
| 677 | n/a | { |
|---|
| 678 | n/a | Py_complex r; |
|---|
| 679 | n/a | int errno_save; |
|---|
| 680 | n/a | |
|---|
| 681 | n/a | r = c_log(z); |
|---|
| 682 | n/a | errno_save = errno; /* just in case the divisions affect errno */ |
|---|
| 683 | n/a | r.real = r.real / M_LN10; |
|---|
| 684 | n/a | r.imag = r.imag / M_LN10; |
|---|
| 685 | n/a | errno = errno_save; |
|---|
| 686 | n/a | return r; |
|---|
| 687 | n/a | } |
|---|
| 688 | n/a | |
|---|
| 689 | n/a | |
|---|
| 690 | n/a | /*[clinic input] |
|---|
| 691 | n/a | cmath.sin = cmath.acos |
|---|
| 692 | n/a | |
|---|
| 693 | n/a | Return the sine of z. |
|---|
| 694 | n/a | [clinic start generated code]*/ |
|---|
| 695 | n/a | |
|---|
| 696 | n/a | static Py_complex |
|---|
| 697 | n/a | cmath_sin_impl(PyObject *module, Py_complex z) |
|---|
| 698 | n/a | /*[clinic end generated code: output=980370d2ff0bb5aa input=2d3519842a8b4b85]*/ |
|---|
| 699 | n/a | { |
|---|
| 700 | n/a | /* sin(z) = -i sin(iz) */ |
|---|
| 701 | n/a | Py_complex s, r; |
|---|
| 702 | n/a | s.real = -z.imag; |
|---|
| 703 | n/a | s.imag = z.real; |
|---|
| 704 | n/a | s = cmath_sinh_impl(module, s); |
|---|
| 705 | n/a | r.real = s.imag; |
|---|
| 706 | n/a | r.imag = -s.real; |
|---|
| 707 | n/a | return r; |
|---|
| 708 | n/a | } |
|---|
| 709 | n/a | |
|---|
| 710 | n/a | |
|---|
| 711 | n/a | /* sinh(infinity + i*y) needs to be dealt with specially */ |
|---|
| 712 | n/a | static Py_complex sinh_special_values[7][7]; |
|---|
| 713 | n/a | |
|---|
| 714 | n/a | /*[clinic input] |
|---|
| 715 | n/a | cmath.sinh = cmath.acos |
|---|
| 716 | n/a | |
|---|
| 717 | n/a | Return the hyperbolic sine of z. |
|---|
| 718 | n/a | [clinic start generated code]*/ |
|---|
| 719 | n/a | |
|---|
| 720 | n/a | static Py_complex |
|---|
| 721 | n/a | cmath_sinh_impl(PyObject *module, Py_complex z) |
|---|
| 722 | n/a | /*[clinic end generated code: output=38b0a6cce26f3536 input=d2d3fc8c1ddfd2dd]*/ |
|---|
| 723 | n/a | { |
|---|
| 724 | n/a | Py_complex r; |
|---|
| 725 | n/a | double x_minus_one; |
|---|
| 726 | n/a | |
|---|
| 727 | n/a | /* special treatment for sinh(+/-inf + iy) if y is finite and |
|---|
| 728 | n/a | nonzero */ |
|---|
| 729 | n/a | if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { |
|---|
| 730 | n/a | if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) |
|---|
| 731 | n/a | && (z.imag != 0.)) { |
|---|
| 732 | n/a | if (z.real > 0) { |
|---|
| 733 | n/a | r.real = copysign(INF, cos(z.imag)); |
|---|
| 734 | n/a | r.imag = copysign(INF, sin(z.imag)); |
|---|
| 735 | n/a | } |
|---|
| 736 | n/a | else { |
|---|
| 737 | n/a | r.real = -copysign(INF, cos(z.imag)); |
|---|
| 738 | n/a | r.imag = copysign(INF, sin(z.imag)); |
|---|
| 739 | n/a | } |
|---|
| 740 | n/a | } |
|---|
| 741 | n/a | else { |
|---|
| 742 | n/a | r = sinh_special_values[special_type(z.real)] |
|---|
| 743 | n/a | [special_type(z.imag)]; |
|---|
| 744 | n/a | } |
|---|
| 745 | n/a | /* need to set errno = EDOM if y is +/- infinity and x is not |
|---|
| 746 | n/a | a NaN */ |
|---|
| 747 | n/a | if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real)) |
|---|
| 748 | n/a | errno = EDOM; |
|---|
| 749 | n/a | else |
|---|
| 750 | n/a | errno = 0; |
|---|
| 751 | n/a | return r; |
|---|
| 752 | n/a | } |
|---|
| 753 | n/a | |
|---|
| 754 | n/a | if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) { |
|---|
| 755 | n/a | x_minus_one = z.real - copysign(1., z.real); |
|---|
| 756 | n/a | r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E; |
|---|
| 757 | n/a | r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E; |
|---|
| 758 | n/a | } else { |
|---|
| 759 | n/a | r.real = cos(z.imag) * sinh(z.real); |
|---|
| 760 | n/a | r.imag = sin(z.imag) * cosh(z.real); |
|---|
| 761 | n/a | } |
|---|
| 762 | n/a | /* detect overflow, and set errno accordingly */ |
|---|
| 763 | n/a | if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag)) |
|---|
| 764 | n/a | errno = ERANGE; |
|---|
| 765 | n/a | else |
|---|
| 766 | n/a | errno = 0; |
|---|
| 767 | n/a | return r; |
|---|
| 768 | n/a | } |
|---|
| 769 | n/a | |
|---|
| 770 | n/a | |
|---|
| 771 | n/a | static Py_complex sqrt_special_values[7][7]; |
|---|
| 772 | n/a | |
|---|
| 773 | n/a | /*[clinic input] |
|---|
| 774 | n/a | cmath.sqrt = cmath.acos |
|---|
| 775 | n/a | |
|---|
| 776 | n/a | Return the square root of z. |
|---|
| 777 | n/a | [clinic start generated code]*/ |
|---|
| 778 | n/a | |
|---|
| 779 | n/a | static Py_complex |
|---|
| 780 | n/a | cmath_sqrt_impl(PyObject *module, Py_complex z) |
|---|
| 781 | n/a | /*[clinic end generated code: output=b6507b3029c339fc input=7088b166fc9a58c7]*/ |
|---|
| 782 | n/a | { |
|---|
| 783 | n/a | /* |
|---|
| 784 | n/a | Method: use symmetries to reduce to the case when x = z.real and y |
|---|
| 785 | n/a | = z.imag are nonnegative. Then the real part of the result is |
|---|
| 786 | n/a | given by |
|---|
| 787 | n/a | |
|---|
| 788 | n/a | s = sqrt((x + hypot(x, y))/2) |
|---|
| 789 | n/a | |
|---|
| 790 | n/a | and the imaginary part is |
|---|
| 791 | n/a | |
|---|
| 792 | n/a | d = (y/2)/s |
|---|
| 793 | n/a | |
|---|
| 794 | n/a | If either x or y is very large then there's a risk of overflow in |
|---|
| 795 | n/a | computation of the expression x + hypot(x, y). We can avoid this |
|---|
| 796 | n/a | by rewriting the formula for s as: |
|---|
| 797 | n/a | |
|---|
| 798 | n/a | s = 2*sqrt(x/8 + hypot(x/8, y/8)) |
|---|
| 799 | n/a | |
|---|
| 800 | n/a | This costs us two extra multiplications/divisions, but avoids the |
|---|
| 801 | n/a | overhead of checking for x and y large. |
|---|
| 802 | n/a | |
|---|
| 803 | n/a | If both x and y are subnormal then hypot(x, y) may also be |
|---|
| 804 | n/a | subnormal, so will lack full precision. We solve this by rescaling |
|---|
| 805 | n/a | x and y by a sufficiently large power of 2 to ensure that x and y |
|---|
| 806 | n/a | are normal. |
|---|
| 807 | n/a | */ |
|---|
| 808 | n/a | |
|---|
| 809 | n/a | |
|---|
| 810 | n/a | Py_complex r; |
|---|
| 811 | n/a | double s,d; |
|---|
| 812 | n/a | double ax, ay; |
|---|
| 813 | n/a | |
|---|
| 814 | n/a | SPECIAL_VALUE(z, sqrt_special_values); |
|---|
| 815 | n/a | |
|---|
| 816 | n/a | if (z.real == 0. && z.imag == 0.) { |
|---|
| 817 | n/a | r.real = 0.; |
|---|
| 818 | n/a | r.imag = z.imag; |
|---|
| 819 | n/a | return r; |
|---|
| 820 | n/a | } |
|---|
| 821 | n/a | |
|---|
| 822 | n/a | ax = fabs(z.real); |
|---|
| 823 | n/a | ay = fabs(z.imag); |
|---|
| 824 | n/a | |
|---|
| 825 | n/a | if (ax < DBL_MIN && ay < DBL_MIN && (ax > 0. || ay > 0.)) { |
|---|
| 826 | n/a | /* here we catch cases where hypot(ax, ay) is subnormal */ |
|---|
| 827 | n/a | ax = ldexp(ax, CM_SCALE_UP); |
|---|
| 828 | n/a | s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))), |
|---|
| 829 | n/a | CM_SCALE_DOWN); |
|---|
| 830 | n/a | } else { |
|---|
| 831 | n/a | ax /= 8.; |
|---|
| 832 | n/a | s = 2.*sqrt(ax + hypot(ax, ay/8.)); |
|---|
| 833 | n/a | } |
|---|
| 834 | n/a | d = ay/(2.*s); |
|---|
| 835 | n/a | |
|---|
| 836 | n/a | if (z.real >= 0.) { |
|---|
| 837 | n/a | r.real = s; |
|---|
| 838 | n/a | r.imag = copysign(d, z.imag); |
|---|
| 839 | n/a | } else { |
|---|
| 840 | n/a | r.real = d; |
|---|
| 841 | n/a | r.imag = copysign(s, z.imag); |
|---|
| 842 | n/a | } |
|---|
| 843 | n/a | errno = 0; |
|---|
| 844 | n/a | return r; |
|---|
| 845 | n/a | } |
|---|
| 846 | n/a | |
|---|
| 847 | n/a | |
|---|
| 848 | n/a | /*[clinic input] |
|---|
| 849 | n/a | cmath.tan = cmath.acos |
|---|
| 850 | n/a | |
|---|
| 851 | n/a | Return the tangent of z. |
|---|
| 852 | n/a | [clinic start generated code]*/ |
|---|
| 853 | n/a | |
|---|
| 854 | n/a | static Py_complex |
|---|
| 855 | n/a | cmath_tan_impl(PyObject *module, Py_complex z) |
|---|
| 856 | n/a | /*[clinic end generated code: output=7c5f13158a72eb13 input=fc167e528767888e]*/ |
|---|
| 857 | n/a | { |
|---|
| 858 | n/a | /* tan(z) = -i tanh(iz) */ |
|---|
| 859 | n/a | Py_complex s, r; |
|---|
| 860 | n/a | s.real = -z.imag; |
|---|
| 861 | n/a | s.imag = z.real; |
|---|
| 862 | n/a | s = cmath_tanh_impl(module, s); |
|---|
| 863 | n/a | r.real = s.imag; |
|---|
| 864 | n/a | r.imag = -s.real; |
|---|
| 865 | n/a | return r; |
|---|
| 866 | n/a | } |
|---|
| 867 | n/a | |
|---|
| 868 | n/a | |
|---|
| 869 | n/a | /* tanh(infinity + i*y) needs to be dealt with specially */ |
|---|
| 870 | n/a | static Py_complex tanh_special_values[7][7]; |
|---|
| 871 | n/a | |
|---|
| 872 | n/a | /*[clinic input] |
|---|
| 873 | n/a | cmath.tanh = cmath.acos |
|---|
| 874 | n/a | |
|---|
| 875 | n/a | Return the hyperbolic tangent of z. |
|---|
| 876 | n/a | [clinic start generated code]*/ |
|---|
| 877 | n/a | |
|---|
| 878 | n/a | static Py_complex |
|---|
| 879 | n/a | cmath_tanh_impl(PyObject *module, Py_complex z) |
|---|
| 880 | n/a | /*[clinic end generated code: output=36d547ef7aca116c input=22f67f9dc6d29685]*/ |
|---|
| 881 | n/a | { |
|---|
| 882 | n/a | /* Formula: |
|---|
| 883 | n/a | |
|---|
| 884 | n/a | tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) / |
|---|
| 885 | n/a | (1+tan(y)^2 tanh(x)^2) |
|---|
| 886 | n/a | |
|---|
| 887 | n/a | To avoid excessive roundoff error, 1-tanh(x)^2 is better computed |
|---|
| 888 | n/a | as 1/cosh(x)^2. When abs(x) is large, we approximate 1-tanh(x)^2 |
|---|
| 889 | n/a | by 4 exp(-2*x) instead, to avoid possible overflow in the |
|---|
| 890 | n/a | computation of cosh(x). |
|---|
| 891 | n/a | |
|---|
| 892 | n/a | */ |
|---|
| 893 | n/a | |
|---|
| 894 | n/a | Py_complex r; |
|---|
| 895 | n/a | double tx, ty, cx, txty, denom; |
|---|
| 896 | n/a | |
|---|
| 897 | n/a | /* special treatment for tanh(+/-inf + iy) if y is finite and |
|---|
| 898 | n/a | nonzero */ |
|---|
| 899 | n/a | if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { |
|---|
| 900 | n/a | if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) |
|---|
| 901 | n/a | && (z.imag != 0.)) { |
|---|
| 902 | n/a | if (z.real > 0) { |
|---|
| 903 | n/a | r.real = 1.0; |
|---|
| 904 | n/a | r.imag = copysign(0., |
|---|
| 905 | n/a | 2.*sin(z.imag)*cos(z.imag)); |
|---|
| 906 | n/a | } |
|---|
| 907 | n/a | else { |
|---|
| 908 | n/a | r.real = -1.0; |
|---|
| 909 | n/a | r.imag = copysign(0., |
|---|
| 910 | n/a | 2.*sin(z.imag)*cos(z.imag)); |
|---|
| 911 | n/a | } |
|---|
| 912 | n/a | } |
|---|
| 913 | n/a | else { |
|---|
| 914 | n/a | r = tanh_special_values[special_type(z.real)] |
|---|
| 915 | n/a | [special_type(z.imag)]; |
|---|
| 916 | n/a | } |
|---|
| 917 | n/a | /* need to set errno = EDOM if z.imag is +/-infinity and |
|---|
| 918 | n/a | z.real is finite */ |
|---|
| 919 | n/a | if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real)) |
|---|
| 920 | n/a | errno = EDOM; |
|---|
| 921 | n/a | else |
|---|
| 922 | n/a | errno = 0; |
|---|
| 923 | n/a | return r; |
|---|
| 924 | n/a | } |
|---|
| 925 | n/a | |
|---|
| 926 | n/a | /* danger of overflow in 2.*z.imag !*/ |
|---|
| 927 | n/a | if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) { |
|---|
| 928 | n/a | r.real = copysign(1., z.real); |
|---|
| 929 | n/a | r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real)); |
|---|
| 930 | n/a | } else { |
|---|
| 931 | n/a | tx = tanh(z.real); |
|---|
| 932 | n/a | ty = tan(z.imag); |
|---|
| 933 | n/a | cx = 1./cosh(z.real); |
|---|
| 934 | n/a | txty = tx*ty; |
|---|
| 935 | n/a | denom = 1. + txty*txty; |
|---|
| 936 | n/a | r.real = tx*(1.+ty*ty)/denom; |
|---|
| 937 | n/a | r.imag = ((ty/denom)*cx)*cx; |
|---|
| 938 | n/a | } |
|---|
| 939 | n/a | errno = 0; |
|---|
| 940 | n/a | return r; |
|---|
| 941 | n/a | } |
|---|
| 942 | n/a | |
|---|
| 943 | n/a | |
|---|
| 944 | n/a | /*[clinic input] |
|---|
| 945 | n/a | cmath.log |
|---|
| 946 | n/a | |
|---|
| 947 | n/a | x: Py_complex |
|---|
| 948 | n/a | y_obj: object = NULL |
|---|
| 949 | n/a | / |
|---|
| 950 | n/a | |
|---|
| 951 | n/a | The logarithm of z to the given base. |
|---|
| 952 | n/a | |
|---|
| 953 | n/a | If the base not specified, returns the natural logarithm (base e) of z. |
|---|
| 954 | n/a | [clinic start generated code]*/ |
|---|
| 955 | n/a | |
|---|
| 956 | n/a | static PyObject * |
|---|
| 957 | n/a | cmath_log_impl(PyObject *module, Py_complex x, PyObject *y_obj) |
|---|
| 958 | n/a | /*[clinic end generated code: output=4effdb7d258e0d94 input=ee0e823a7c6e68ea]*/ |
|---|
| 959 | n/a | { |
|---|
| 960 | n/a | Py_complex y; |
|---|
| 961 | n/a | |
|---|
| 962 | n/a | errno = 0; |
|---|
| 963 | n/a | PyFPE_START_PROTECT("complex function", return 0) |
|---|
| 964 | n/a | x = c_log(x); |
|---|
| 965 | n/a | if (y_obj != NULL) { |
|---|
| 966 | n/a | y = PyComplex_AsCComplex(y_obj); |
|---|
| 967 | n/a | if (PyErr_Occurred()) { |
|---|
| 968 | n/a | return NULL; |
|---|
| 969 | n/a | } |
|---|
| 970 | n/a | y = c_log(y); |
|---|
| 971 | n/a | x = _Py_c_quot(x, y); |
|---|
| 972 | n/a | } |
|---|
| 973 | n/a | PyFPE_END_PROTECT(x) |
|---|
| 974 | n/a | if (errno != 0) |
|---|
| 975 | n/a | return math_error(); |
|---|
| 976 | n/a | return PyComplex_FromCComplex(x); |
|---|
| 977 | n/a | } |
|---|
| 978 | n/a | |
|---|
| 979 | n/a | |
|---|
| 980 | n/a | /* And now the glue to make them available from Python: */ |
|---|
| 981 | n/a | |
|---|
| 982 | n/a | static PyObject * |
|---|
| 983 | n/a | math_error(void) |
|---|
| 984 | n/a | { |
|---|
| 985 | n/a | if (errno == EDOM) |
|---|
| 986 | n/a | PyErr_SetString(PyExc_ValueError, "math domain error"); |
|---|
| 987 | n/a | else if (errno == ERANGE) |
|---|
| 988 | n/a | PyErr_SetString(PyExc_OverflowError, "math range error"); |
|---|
| 989 | n/a | else /* Unexpected math error */ |
|---|
| 990 | n/a | PyErr_SetFromErrno(PyExc_ValueError); |
|---|
| 991 | n/a | return NULL; |
|---|
| 992 | n/a | } |
|---|
| 993 | n/a | |
|---|
| 994 | n/a | |
|---|
| 995 | n/a | /*[clinic input] |
|---|
| 996 | n/a | cmath.phase |
|---|
| 997 | n/a | |
|---|
| 998 | n/a | z: Py_complex |
|---|
| 999 | n/a | / |
|---|
| 1000 | n/a | |
|---|
| 1001 | n/a | Return argument, also known as the phase angle, of a complex. |
|---|
| 1002 | n/a | [clinic start generated code]*/ |
|---|
| 1003 | n/a | |
|---|
| 1004 | n/a | static PyObject * |
|---|
| 1005 | n/a | cmath_phase_impl(PyObject *module, Py_complex z) |
|---|
| 1006 | n/a | /*[clinic end generated code: output=50725086a7bfd253 input=5cf75228ba94b69d]*/ |
|---|
| 1007 | n/a | { |
|---|
| 1008 | n/a | double phi; |
|---|
| 1009 | n/a | |
|---|
| 1010 | n/a | errno = 0; |
|---|
| 1011 | n/a | PyFPE_START_PROTECT("arg function", return 0) |
|---|
| 1012 | n/a | phi = c_atan2(z); |
|---|
| 1013 | n/a | PyFPE_END_PROTECT(phi) |
|---|
| 1014 | n/a | if (errno != 0) |
|---|
| 1015 | n/a | return math_error(); |
|---|
| 1016 | n/a | else |
|---|
| 1017 | n/a | return PyFloat_FromDouble(phi); |
|---|
| 1018 | n/a | } |
|---|
| 1019 | n/a | |
|---|
| 1020 | n/a | /*[clinic input] |
|---|
| 1021 | n/a | cmath.polar |
|---|
| 1022 | n/a | |
|---|
| 1023 | n/a | z: Py_complex |
|---|
| 1024 | n/a | / |
|---|
| 1025 | n/a | |
|---|
| 1026 | n/a | Convert a complex from rectangular coordinates to polar coordinates. |
|---|
| 1027 | n/a | |
|---|
| 1028 | n/a | r is the distance from 0 and phi the phase angle. |
|---|
| 1029 | n/a | [clinic start generated code]*/ |
|---|
| 1030 | n/a | |
|---|
| 1031 | n/a | static PyObject * |
|---|
| 1032 | n/a | cmath_polar_impl(PyObject *module, Py_complex z) |
|---|
| 1033 | n/a | /*[clinic end generated code: output=d0a8147c41dbb654 input=26c353574fd1a861]*/ |
|---|
| 1034 | n/a | { |
|---|
| 1035 | n/a | double r, phi; |
|---|
| 1036 | n/a | |
|---|
| 1037 | n/a | errno = 0; |
|---|
| 1038 | n/a | PyFPE_START_PROTECT("polar function", return 0) |
|---|
| 1039 | n/a | phi = c_atan2(z); /* should not cause any exception */ |
|---|
| 1040 | n/a | r = _Py_c_abs(z); /* sets errno to ERANGE on overflow */ |
|---|
| 1041 | n/a | PyFPE_END_PROTECT(r) |
|---|
| 1042 | n/a | if (errno != 0) |
|---|
| 1043 | n/a | return math_error(); |
|---|
| 1044 | n/a | else |
|---|
| 1045 | n/a | return Py_BuildValue("dd", r, phi); |
|---|
| 1046 | n/a | } |
|---|
| 1047 | n/a | |
|---|
| 1048 | n/a | /* |
|---|
| 1049 | n/a | rect() isn't covered by the C99 standard, but it's not too hard to |
|---|
| 1050 | n/a | figure out 'spirit of C99' rules for special value handing: |
|---|
| 1051 | n/a | |
|---|
| 1052 | n/a | rect(x, t) should behave like exp(log(x) + it) for positive-signed x |
|---|
| 1053 | n/a | rect(x, t) should behave like -exp(log(-x) + it) for negative-signed x |
|---|
| 1054 | n/a | rect(nan, t) should behave like exp(nan + it), except that rect(nan, 0) |
|---|
| 1055 | n/a | gives nan +- i0 with the sign of the imaginary part unspecified. |
|---|
| 1056 | n/a | |
|---|
| 1057 | n/a | */ |
|---|
| 1058 | n/a | |
|---|
| 1059 | n/a | static Py_complex rect_special_values[7][7]; |
|---|
| 1060 | n/a | |
|---|
| 1061 | n/a | /*[clinic input] |
|---|
| 1062 | n/a | cmath.rect |
|---|
| 1063 | n/a | |
|---|
| 1064 | n/a | r: double |
|---|
| 1065 | n/a | phi: double |
|---|
| 1066 | n/a | / |
|---|
| 1067 | n/a | |
|---|
| 1068 | n/a | Convert from polar coordinates to rectangular coordinates. |
|---|
| 1069 | n/a | [clinic start generated code]*/ |
|---|
| 1070 | n/a | |
|---|
| 1071 | n/a | static PyObject * |
|---|
| 1072 | n/a | cmath_rect_impl(PyObject *module, double r, double phi) |
|---|
| 1073 | n/a | /*[clinic end generated code: output=385a0690925df2d5 input=24c5646d147efd69]*/ |
|---|
| 1074 | n/a | { |
|---|
| 1075 | n/a | Py_complex z; |
|---|
| 1076 | n/a | errno = 0; |
|---|
| 1077 | n/a | PyFPE_START_PROTECT("rect function", return 0) |
|---|
| 1078 | n/a | |
|---|
| 1079 | n/a | /* deal with special values */ |
|---|
| 1080 | n/a | if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) { |
|---|
| 1081 | n/a | /* if r is +/-infinity and phi is finite but nonzero then |
|---|
| 1082 | n/a | result is (+-INF +-INF i), but we need to compute cos(phi) |
|---|
| 1083 | n/a | and sin(phi) to figure out the signs. */ |
|---|
| 1084 | n/a | if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi) |
|---|
| 1085 | n/a | && (phi != 0.))) { |
|---|
| 1086 | n/a | if (r > 0) { |
|---|
| 1087 | n/a | z.real = copysign(INF, cos(phi)); |
|---|
| 1088 | n/a | z.imag = copysign(INF, sin(phi)); |
|---|
| 1089 | n/a | } |
|---|
| 1090 | n/a | else { |
|---|
| 1091 | n/a | z.real = -copysign(INF, cos(phi)); |
|---|
| 1092 | n/a | z.imag = -copysign(INF, sin(phi)); |
|---|
| 1093 | n/a | } |
|---|
| 1094 | n/a | } |
|---|
| 1095 | n/a | else { |
|---|
| 1096 | n/a | z = rect_special_values[special_type(r)] |
|---|
| 1097 | n/a | [special_type(phi)]; |
|---|
| 1098 | n/a | } |
|---|
| 1099 | n/a | /* need to set errno = EDOM if r is a nonzero number and phi |
|---|
| 1100 | n/a | is infinite */ |
|---|
| 1101 | n/a | if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi)) |
|---|
| 1102 | n/a | errno = EDOM; |
|---|
| 1103 | n/a | else |
|---|
| 1104 | n/a | errno = 0; |
|---|
| 1105 | n/a | } |
|---|
| 1106 | n/a | else if (phi == 0.0) { |
|---|
| 1107 | n/a | /* Workaround for buggy results with phi=-0.0 on OS X 10.8. See |
|---|
| 1108 | n/a | bugs.python.org/issue18513. */ |
|---|
| 1109 | n/a | z.real = r; |
|---|
| 1110 | n/a | z.imag = r * phi; |
|---|
| 1111 | n/a | errno = 0; |
|---|
| 1112 | n/a | } |
|---|
| 1113 | n/a | else { |
|---|
| 1114 | n/a | z.real = r * cos(phi); |
|---|
| 1115 | n/a | z.imag = r * sin(phi); |
|---|
| 1116 | n/a | errno = 0; |
|---|
| 1117 | n/a | } |
|---|
| 1118 | n/a | |
|---|
| 1119 | n/a | PyFPE_END_PROTECT(z) |
|---|
| 1120 | n/a | if (errno != 0) |
|---|
| 1121 | n/a | return math_error(); |
|---|
| 1122 | n/a | else |
|---|
| 1123 | n/a | return PyComplex_FromCComplex(z); |
|---|
| 1124 | n/a | } |
|---|
| 1125 | n/a | |
|---|
| 1126 | n/a | /*[clinic input] |
|---|
| 1127 | n/a | cmath.isfinite = cmath.polar |
|---|
| 1128 | n/a | |
|---|
| 1129 | n/a | Return True if both the real and imaginary parts of z are finite, else False. |
|---|
| 1130 | n/a | [clinic start generated code]*/ |
|---|
| 1131 | n/a | |
|---|
| 1132 | n/a | static PyObject * |
|---|
| 1133 | n/a | cmath_isfinite_impl(PyObject *module, Py_complex z) |
|---|
| 1134 | n/a | /*[clinic end generated code: output=ac76611e2c774a36 input=848e7ee701895815]*/ |
|---|
| 1135 | n/a | { |
|---|
| 1136 | n/a | return PyBool_FromLong(Py_IS_FINITE(z.real) && Py_IS_FINITE(z.imag)); |
|---|
| 1137 | n/a | } |
|---|
| 1138 | n/a | |
|---|
| 1139 | n/a | /*[clinic input] |
|---|
| 1140 | n/a | cmath.isnan = cmath.polar |
|---|
| 1141 | n/a | |
|---|
| 1142 | n/a | Checks if the real or imaginary part of z not a number (NaN). |
|---|
| 1143 | n/a | [clinic start generated code]*/ |
|---|
| 1144 | n/a | |
|---|
| 1145 | n/a | static PyObject * |
|---|
| 1146 | n/a | cmath_isnan_impl(PyObject *module, Py_complex z) |
|---|
| 1147 | n/a | /*[clinic end generated code: output=e7abf6e0b28beab7 input=71799f5d284c9baf]*/ |
|---|
| 1148 | n/a | { |
|---|
| 1149 | n/a | return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag)); |
|---|
| 1150 | n/a | } |
|---|
| 1151 | n/a | |
|---|
| 1152 | n/a | /*[clinic input] |
|---|
| 1153 | n/a | cmath.isinf = cmath.polar |
|---|
| 1154 | n/a | |
|---|
| 1155 | n/a | Checks if the real or imaginary part of z is infinite. |
|---|
| 1156 | n/a | [clinic start generated code]*/ |
|---|
| 1157 | n/a | |
|---|
| 1158 | n/a | static PyObject * |
|---|
| 1159 | n/a | cmath_isinf_impl(PyObject *module, Py_complex z) |
|---|
| 1160 | n/a | /*[clinic end generated code: output=502a75a79c773469 input=363df155c7181329]*/ |
|---|
| 1161 | n/a | { |
|---|
| 1162 | n/a | return PyBool_FromLong(Py_IS_INFINITY(z.real) || |
|---|
| 1163 | n/a | Py_IS_INFINITY(z.imag)); |
|---|
| 1164 | n/a | } |
|---|
| 1165 | n/a | |
|---|
| 1166 | n/a | /*[clinic input] |
|---|
| 1167 | n/a | cmath.isclose -> bool |
|---|
| 1168 | n/a | |
|---|
| 1169 | n/a | a: Py_complex |
|---|
| 1170 | n/a | b: Py_complex |
|---|
| 1171 | n/a | * |
|---|
| 1172 | n/a | rel_tol: double = 1e-09 |
|---|
| 1173 | n/a | maximum difference for being considered "close", relative to the |
|---|
| 1174 | n/a | magnitude of the input values |
|---|
| 1175 | n/a | abs_tol: double = 0.0 |
|---|
| 1176 | n/a | maximum difference for being considered "close", regardless of the |
|---|
| 1177 | n/a | magnitude of the input values |
|---|
| 1178 | n/a | |
|---|
| 1179 | n/a | Determine whether two complex numbers are close in value. |
|---|
| 1180 | n/a | |
|---|
| 1181 | n/a | Return True if a is close in value to b, and False otherwise. |
|---|
| 1182 | n/a | |
|---|
| 1183 | n/a | For the values to be considered close, the difference between them must be |
|---|
| 1184 | n/a | smaller than at least one of the tolerances. |
|---|
| 1185 | n/a | |
|---|
| 1186 | n/a | -inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is |
|---|
| 1187 | n/a | not close to anything, even itself. inf and -inf are only close to themselves. |
|---|
| 1188 | n/a | [clinic start generated code]*/ |
|---|
| 1189 | n/a | |
|---|
| 1190 | n/a | static int |
|---|
| 1191 | n/a | cmath_isclose_impl(PyObject *module, Py_complex a, Py_complex b, |
|---|
| 1192 | n/a | double rel_tol, double abs_tol) |
|---|
| 1193 | n/a | /*[clinic end generated code: output=8a2486cc6e0014d1 input=df9636d7de1d4ac3]*/ |
|---|
| 1194 | n/a | { |
|---|
| 1195 | n/a | double diff; |
|---|
| 1196 | n/a | |
|---|
| 1197 | n/a | /* sanity check on the inputs */ |
|---|
| 1198 | n/a | if (rel_tol < 0.0 || abs_tol < 0.0 ) { |
|---|
| 1199 | n/a | PyErr_SetString(PyExc_ValueError, |
|---|
| 1200 | n/a | "tolerances must be non-negative"); |
|---|
| 1201 | n/a | return -1; |
|---|
| 1202 | n/a | } |
|---|
| 1203 | n/a | |
|---|
| 1204 | n/a | if ( (a.real == b.real) && (a.imag == b.imag) ) { |
|---|
| 1205 | n/a | /* short circuit exact equality -- needed to catch two infinities of |
|---|
| 1206 | n/a | the same sign. And perhaps speeds things up a bit sometimes. |
|---|
| 1207 | n/a | */ |
|---|
| 1208 | n/a | return 1; |
|---|
| 1209 | n/a | } |
|---|
| 1210 | n/a | |
|---|
| 1211 | n/a | /* This catches the case of two infinities of opposite sign, or |
|---|
| 1212 | n/a | one infinity and one finite number. Two infinities of opposite |
|---|
| 1213 | n/a | sign would otherwise have an infinite relative tolerance. |
|---|
| 1214 | n/a | Two infinities of the same sign are caught by the equality check |
|---|
| 1215 | n/a | above. |
|---|
| 1216 | n/a | */ |
|---|
| 1217 | n/a | |
|---|
| 1218 | n/a | if (Py_IS_INFINITY(a.real) || Py_IS_INFINITY(a.imag) || |
|---|
| 1219 | n/a | Py_IS_INFINITY(b.real) || Py_IS_INFINITY(b.imag)) { |
|---|
| 1220 | n/a | return 0; |
|---|
| 1221 | n/a | } |
|---|
| 1222 | n/a | |
|---|
| 1223 | n/a | /* now do the regular computation |
|---|
| 1224 | n/a | this is essentially the "weak" test from the Boost library |
|---|
| 1225 | n/a | */ |
|---|
| 1226 | n/a | |
|---|
| 1227 | n/a | diff = _Py_c_abs(_Py_c_diff(a, b)); |
|---|
| 1228 | n/a | |
|---|
| 1229 | n/a | return (((diff <= rel_tol * _Py_c_abs(b)) || |
|---|
| 1230 | n/a | (diff <= rel_tol * _Py_c_abs(a))) || |
|---|
| 1231 | n/a | (diff <= abs_tol)); |
|---|
| 1232 | n/a | } |
|---|
| 1233 | n/a | |
|---|
| 1234 | n/a | PyDoc_STRVAR(module_doc, |
|---|
| 1235 | n/a | "This module is always available. It provides access to mathematical\n" |
|---|
| 1236 | n/a | "functions for complex numbers."); |
|---|
| 1237 | n/a | |
|---|
| 1238 | n/a | static PyMethodDef cmath_methods[] = { |
|---|
| 1239 | n/a | CMATH_ACOS_METHODDEF |
|---|
| 1240 | n/a | CMATH_ACOSH_METHODDEF |
|---|
| 1241 | n/a | CMATH_ASIN_METHODDEF |
|---|
| 1242 | n/a | CMATH_ASINH_METHODDEF |
|---|
| 1243 | n/a | CMATH_ATAN_METHODDEF |
|---|
| 1244 | n/a | CMATH_ATANH_METHODDEF |
|---|
| 1245 | n/a | CMATH_COS_METHODDEF |
|---|
| 1246 | n/a | CMATH_COSH_METHODDEF |
|---|
| 1247 | n/a | CMATH_EXP_METHODDEF |
|---|
| 1248 | n/a | CMATH_ISCLOSE_METHODDEF |
|---|
| 1249 | n/a | CMATH_ISFINITE_METHODDEF |
|---|
| 1250 | n/a | CMATH_ISINF_METHODDEF |
|---|
| 1251 | n/a | CMATH_ISNAN_METHODDEF |
|---|
| 1252 | n/a | CMATH_LOG_METHODDEF |
|---|
| 1253 | n/a | CMATH_LOG10_METHODDEF |
|---|
| 1254 | n/a | CMATH_PHASE_METHODDEF |
|---|
| 1255 | n/a | CMATH_POLAR_METHODDEF |
|---|
| 1256 | n/a | CMATH_RECT_METHODDEF |
|---|
| 1257 | n/a | CMATH_SIN_METHODDEF |
|---|
| 1258 | n/a | CMATH_SINH_METHODDEF |
|---|
| 1259 | n/a | CMATH_SQRT_METHODDEF |
|---|
| 1260 | n/a | CMATH_TAN_METHODDEF |
|---|
| 1261 | n/a | CMATH_TANH_METHODDEF |
|---|
| 1262 | n/a | {NULL, NULL} /* sentinel */ |
|---|
| 1263 | n/a | }; |
|---|
| 1264 | n/a | |
|---|
| 1265 | n/a | |
|---|
| 1266 | n/a | static struct PyModuleDef cmathmodule = { |
|---|
| 1267 | n/a | PyModuleDef_HEAD_INIT, |
|---|
| 1268 | n/a | "cmath", |
|---|
| 1269 | n/a | module_doc, |
|---|
| 1270 | n/a | -1, |
|---|
| 1271 | n/a | cmath_methods, |
|---|
| 1272 | n/a | NULL, |
|---|
| 1273 | n/a | NULL, |
|---|
| 1274 | n/a | NULL, |
|---|
| 1275 | n/a | NULL |
|---|
| 1276 | n/a | }; |
|---|
| 1277 | n/a | |
|---|
| 1278 | n/a | PyMODINIT_FUNC |
|---|
| 1279 | n/a | PyInit_cmath(void) |
|---|
| 1280 | n/a | { |
|---|
| 1281 | n/a | PyObject *m; |
|---|
| 1282 | n/a | |
|---|
| 1283 | n/a | m = PyModule_Create(&cmathmodule); |
|---|
| 1284 | n/a | if (m == NULL) |
|---|
| 1285 | n/a | return NULL; |
|---|
| 1286 | n/a | |
|---|
| 1287 | n/a | PyModule_AddObject(m, "pi", |
|---|
| 1288 | n/a | PyFloat_FromDouble(Py_MATH_PI)); |
|---|
| 1289 | n/a | PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E)); |
|---|
| 1290 | n/a | PyModule_AddObject(m, "tau", PyFloat_FromDouble(Py_MATH_TAU)); /* 2pi */ |
|---|
| 1291 | n/a | PyModule_AddObject(m, "inf", PyFloat_FromDouble(m_inf())); |
|---|
| 1292 | n/a | PyModule_AddObject(m, "infj", PyComplex_FromCComplex(c_infj())); |
|---|
| 1293 | n/a | #if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN) |
|---|
| 1294 | n/a | PyModule_AddObject(m, "nan", PyFloat_FromDouble(m_nan())); |
|---|
| 1295 | n/a | PyModule_AddObject(m, "nanj", PyComplex_FromCComplex(c_nanj())); |
|---|
| 1296 | n/a | #endif |
|---|
| 1297 | n/a | |
|---|
| 1298 | n/a | /* initialize special value tables */ |
|---|
| 1299 | n/a | |
|---|
| 1300 | n/a | #define INIT_SPECIAL_VALUES(NAME, BODY) { Py_complex* p = (Py_complex*)NAME; BODY } |
|---|
| 1301 | n/a | #define C(REAL, IMAG) p->real = REAL; p->imag = IMAG; ++p; |
|---|
| 1302 | n/a | |
|---|
| 1303 | n/a | INIT_SPECIAL_VALUES(acos_special_values, { |
|---|
| 1304 | n/a | C(P34,INF) C(P,INF) C(P,INF) C(P,-INF) C(P,-INF) C(P34,-INF) C(N,INF) |
|---|
| 1305 | n/a | C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N) |
|---|
| 1306 | n/a | C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N) |
|---|
| 1307 | n/a | C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N) |
|---|
| 1308 | n/a | C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N) |
|---|
| 1309 | n/a | C(P14,INF) C(0.,INF) C(0.,INF) C(0.,-INF) C(0.,-INF) C(P14,-INF) C(N,INF) |
|---|
| 1310 | n/a | C(N,INF) C(N,N) C(N,N) C(N,N) C(N,N) C(N,-INF) C(N,N) |
|---|
| 1311 | n/a | }) |
|---|
| 1312 | n/a | |
|---|
| 1313 | n/a | INIT_SPECIAL_VALUES(acosh_special_values, { |
|---|
| 1314 | n/a | C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N) |
|---|
| 1315 | n/a | C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) |
|---|
| 1316 | n/a | C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N) |
|---|
| 1317 | n/a | C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N) |
|---|
| 1318 | n/a | C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) |
|---|
| 1319 | n/a | C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N) |
|---|
| 1320 | n/a | C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N) |
|---|
| 1321 | n/a | }) |
|---|
| 1322 | n/a | |
|---|
| 1323 | n/a | INIT_SPECIAL_VALUES(asinh_special_values, { |
|---|
| 1324 | n/a | C(-INF,-P14) C(-INF,-0.) C(-INF,-0.) C(-INF,0.) C(-INF,0.) C(-INF,P14) C(-INF,N) |
|---|
| 1325 | n/a | C(-INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-INF,P12) C(N,N) |
|---|
| 1326 | n/a | C(-INF,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-INF,P12) C(N,N) |
|---|
| 1327 | n/a | C(INF,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,P12) C(N,N) |
|---|
| 1328 | n/a | C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) |
|---|
| 1329 | n/a | C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N) |
|---|
| 1330 | n/a | C(INF,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(INF,N) C(N,N) |
|---|
| 1331 | n/a | }) |
|---|
| 1332 | n/a | |
|---|
| 1333 | n/a | INIT_SPECIAL_VALUES(atanh_special_values, { |
|---|
| 1334 | n/a | C(-0.,-P12) C(-0.,-P12) C(-0.,-P12) C(-0.,P12) C(-0.,P12) C(-0.,P12) C(-0.,N) |
|---|
| 1335 | n/a | C(-0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-0.,P12) C(N,N) |
|---|
| 1336 | n/a | C(-0.,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-0.,P12) C(-0.,N) |
|---|
| 1337 | n/a | C(0.,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,P12) C(0.,N) |
|---|
| 1338 | n/a | C(0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(0.,P12) C(N,N) |
|---|
| 1339 | n/a | C(0.,-P12) C(0.,-P12) C(0.,-P12) C(0.,P12) C(0.,P12) C(0.,P12) C(0.,N) |
|---|
| 1340 | n/a | C(0.,-P12) C(N,N) C(N,N) C(N,N) C(N,N) C(0.,P12) C(N,N) |
|---|
| 1341 | n/a | }) |
|---|
| 1342 | n/a | |
|---|
| 1343 | n/a | INIT_SPECIAL_VALUES(cosh_special_values, { |
|---|
| 1344 | n/a | C(INF,N) C(U,U) C(INF,0.) C(INF,-0.) C(U,U) C(INF,N) C(INF,N) |
|---|
| 1345 | n/a | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) |
|---|
| 1346 | n/a | C(N,0.) C(U,U) C(1.,0.) C(1.,-0.) C(U,U) C(N,0.) C(N,0.) |
|---|
| 1347 | n/a | C(N,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,0.) C(N,0.) |
|---|
| 1348 | n/a | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) |
|---|
| 1349 | n/a | C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N) |
|---|
| 1350 | n/a | C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N) |
|---|
| 1351 | n/a | }) |
|---|
| 1352 | n/a | |
|---|
| 1353 | n/a | INIT_SPECIAL_VALUES(exp_special_values, { |
|---|
| 1354 | n/a | C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.) |
|---|
| 1355 | n/a | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) |
|---|
| 1356 | n/a | C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N) |
|---|
| 1357 | n/a | C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N) |
|---|
| 1358 | n/a | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) |
|---|
| 1359 | n/a | C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N) |
|---|
| 1360 | n/a | C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N) |
|---|
| 1361 | n/a | }) |
|---|
| 1362 | n/a | |
|---|
| 1363 | n/a | INIT_SPECIAL_VALUES(log_special_values, { |
|---|
| 1364 | n/a | C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N) |
|---|
| 1365 | n/a | C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) |
|---|
| 1366 | n/a | C(INF,-P12) C(U,U) C(-INF,-P) C(-INF,P) C(U,U) C(INF,P12) C(N,N) |
|---|
| 1367 | n/a | C(INF,-P12) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,P12) C(N,N) |
|---|
| 1368 | n/a | C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) |
|---|
| 1369 | n/a | C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N) |
|---|
| 1370 | n/a | C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N) |
|---|
| 1371 | n/a | }) |
|---|
| 1372 | n/a | |
|---|
| 1373 | n/a | INIT_SPECIAL_VALUES(sinh_special_values, { |
|---|
| 1374 | n/a | C(INF,N) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,N) C(INF,N) |
|---|
| 1375 | n/a | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) |
|---|
| 1376 | n/a | C(0.,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(0.,N) C(0.,N) |
|---|
| 1377 | n/a | C(0.,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,N) C(0.,N) |
|---|
| 1378 | n/a | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) |
|---|
| 1379 | n/a | C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N) |
|---|
| 1380 | n/a | C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N) |
|---|
| 1381 | n/a | }) |
|---|
| 1382 | n/a | |
|---|
| 1383 | n/a | INIT_SPECIAL_VALUES(sqrt_special_values, { |
|---|
| 1384 | n/a | C(INF,-INF) C(0.,-INF) C(0.,-INF) C(0.,INF) C(0.,INF) C(INF,INF) C(N,INF) |
|---|
| 1385 | n/a | C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N) |
|---|
| 1386 | n/a | C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N) |
|---|
| 1387 | n/a | C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N) |
|---|
| 1388 | n/a | C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N) |
|---|
| 1389 | n/a | C(INF,-INF) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,INF) C(INF,N) |
|---|
| 1390 | n/a | C(INF,-INF) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,INF) C(N,N) |
|---|
| 1391 | n/a | }) |
|---|
| 1392 | n/a | |
|---|
| 1393 | n/a | INIT_SPECIAL_VALUES(tanh_special_values, { |
|---|
| 1394 | n/a | C(-1.,0.) C(U,U) C(-1.,-0.) C(-1.,0.) C(U,U) C(-1.,0.) C(-1.,0.) |
|---|
| 1395 | n/a | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) |
|---|
| 1396 | n/a | C(N,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(N,N) C(N,N) |
|---|
| 1397 | n/a | C(N,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(N,N) C(N,N) |
|---|
| 1398 | n/a | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) |
|---|
| 1399 | n/a | C(1.,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(1.,0.) C(1.,0.) |
|---|
| 1400 | n/a | C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N) |
|---|
| 1401 | n/a | }) |
|---|
| 1402 | n/a | |
|---|
| 1403 | n/a | INIT_SPECIAL_VALUES(rect_special_values, { |
|---|
| 1404 | n/a | C(INF,N) C(U,U) C(-INF,0.) C(-INF,-0.) C(U,U) C(INF,N) C(INF,N) |
|---|
| 1405 | n/a | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) |
|---|
| 1406 | n/a | C(0.,0.) C(U,U) C(-0.,0.) C(-0.,-0.) C(U,U) C(0.,0.) C(0.,0.) |
|---|
| 1407 | n/a | C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.) |
|---|
| 1408 | n/a | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) |
|---|
| 1409 | n/a | C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N) |
|---|
| 1410 | n/a | C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N) |
|---|
| 1411 | n/a | }) |
|---|
| 1412 | n/a | return m; |
|---|
| 1413 | n/a | } |
|---|