1 | n/a | /* Drop in replacement for heapq.py |
---|
2 | n/a | |
---|
3 | n/a | C implementation derived directly from heapq.py in Py2.3 |
---|
4 | n/a | which was written by Kevin O'Connor, augmented by Tim Peters, |
---|
5 | n/a | annotated by François Pinard, and converted to C by Raymond Hettinger. |
---|
6 | n/a | |
---|
7 | n/a | */ |
---|
8 | n/a | |
---|
9 | n/a | #include "Python.h" |
---|
10 | n/a | |
---|
11 | n/a | static int |
---|
12 | n/a | siftdown(PyListObject *heap, Py_ssize_t startpos, Py_ssize_t pos) |
---|
13 | n/a | { |
---|
14 | n/a | PyObject *newitem, *parent, **arr; |
---|
15 | n/a | Py_ssize_t parentpos, size; |
---|
16 | n/a | int cmp; |
---|
17 | n/a | |
---|
18 | n/a | assert(PyList_Check(heap)); |
---|
19 | n/a | size = PyList_GET_SIZE(heap); |
---|
20 | n/a | if (pos >= size) { |
---|
21 | n/a | PyErr_SetString(PyExc_IndexError, "index out of range"); |
---|
22 | n/a | return -1; |
---|
23 | n/a | } |
---|
24 | n/a | |
---|
25 | n/a | /* Follow the path to the root, moving parents down until finding |
---|
26 | n/a | a place newitem fits. */ |
---|
27 | n/a | arr = _PyList_ITEMS(heap); |
---|
28 | n/a | newitem = arr[pos]; |
---|
29 | n/a | while (pos > startpos) { |
---|
30 | n/a | parentpos = (pos - 1) >> 1; |
---|
31 | n/a | parent = arr[parentpos]; |
---|
32 | n/a | cmp = PyObject_RichCompareBool(newitem, parent, Py_LT); |
---|
33 | n/a | if (cmp < 0) |
---|
34 | n/a | return -1; |
---|
35 | n/a | if (size != PyList_GET_SIZE(heap)) { |
---|
36 | n/a | PyErr_SetString(PyExc_RuntimeError, |
---|
37 | n/a | "list changed size during iteration"); |
---|
38 | n/a | return -1; |
---|
39 | n/a | } |
---|
40 | n/a | if (cmp == 0) |
---|
41 | n/a | break; |
---|
42 | n/a | arr = _PyList_ITEMS(heap); |
---|
43 | n/a | parent = arr[parentpos]; |
---|
44 | n/a | newitem = arr[pos]; |
---|
45 | n/a | arr[parentpos] = newitem; |
---|
46 | n/a | arr[pos] = parent; |
---|
47 | n/a | pos = parentpos; |
---|
48 | n/a | } |
---|
49 | n/a | return 0; |
---|
50 | n/a | } |
---|
51 | n/a | |
---|
52 | n/a | static int |
---|
53 | n/a | siftup(PyListObject *heap, Py_ssize_t pos) |
---|
54 | n/a | { |
---|
55 | n/a | Py_ssize_t startpos, endpos, childpos, limit; |
---|
56 | n/a | PyObject *tmp1, *tmp2, **arr; |
---|
57 | n/a | int cmp; |
---|
58 | n/a | |
---|
59 | n/a | assert(PyList_Check(heap)); |
---|
60 | n/a | endpos = PyList_GET_SIZE(heap); |
---|
61 | n/a | startpos = pos; |
---|
62 | n/a | if (pos >= endpos) { |
---|
63 | n/a | PyErr_SetString(PyExc_IndexError, "index out of range"); |
---|
64 | n/a | return -1; |
---|
65 | n/a | } |
---|
66 | n/a | |
---|
67 | n/a | /* Bubble up the smaller child until hitting a leaf. */ |
---|
68 | n/a | arr = _PyList_ITEMS(heap); |
---|
69 | n/a | limit = endpos >> 1; /* smallest pos that has no child */ |
---|
70 | n/a | while (pos < limit) { |
---|
71 | n/a | /* Set childpos to index of smaller child. */ |
---|
72 | n/a | childpos = 2*pos + 1; /* leftmost child position */ |
---|
73 | n/a | if (childpos + 1 < endpos) { |
---|
74 | n/a | cmp = PyObject_RichCompareBool( |
---|
75 | n/a | arr[childpos], |
---|
76 | n/a | arr[childpos + 1], |
---|
77 | n/a | Py_LT); |
---|
78 | n/a | if (cmp < 0) |
---|
79 | n/a | return -1; |
---|
80 | n/a | childpos += ((unsigned)cmp ^ 1); /* increment when cmp==0 */ |
---|
81 | n/a | arr = _PyList_ITEMS(heap); /* arr may have changed */ |
---|
82 | n/a | if (endpos != PyList_GET_SIZE(heap)) { |
---|
83 | n/a | PyErr_SetString(PyExc_RuntimeError, |
---|
84 | n/a | "list changed size during iteration"); |
---|
85 | n/a | return -1; |
---|
86 | n/a | } |
---|
87 | n/a | } |
---|
88 | n/a | /* Move the smaller child up. */ |
---|
89 | n/a | tmp1 = arr[childpos]; |
---|
90 | n/a | tmp2 = arr[pos]; |
---|
91 | n/a | arr[childpos] = tmp2; |
---|
92 | n/a | arr[pos] = tmp1; |
---|
93 | n/a | pos = childpos; |
---|
94 | n/a | } |
---|
95 | n/a | /* Bubble it up to its final resting place (by sifting its parents down). */ |
---|
96 | n/a | return siftdown(heap, startpos, pos); |
---|
97 | n/a | } |
---|
98 | n/a | |
---|
99 | n/a | static PyObject * |
---|
100 | n/a | heappush(PyObject *self, PyObject *args) |
---|
101 | n/a | { |
---|
102 | n/a | PyObject *heap, *item; |
---|
103 | n/a | |
---|
104 | n/a | if (!PyArg_UnpackTuple(args, "heappush", 2, 2, &heap, &item)) |
---|
105 | n/a | return NULL; |
---|
106 | n/a | |
---|
107 | n/a | if (!PyList_Check(heap)) { |
---|
108 | n/a | PyErr_SetString(PyExc_TypeError, "heap argument must be a list"); |
---|
109 | n/a | return NULL; |
---|
110 | n/a | } |
---|
111 | n/a | |
---|
112 | n/a | if (PyList_Append(heap, item)) |
---|
113 | n/a | return NULL; |
---|
114 | n/a | |
---|
115 | n/a | if (siftdown((PyListObject *)heap, 0, PyList_GET_SIZE(heap)-1)) |
---|
116 | n/a | return NULL; |
---|
117 | n/a | Py_RETURN_NONE; |
---|
118 | n/a | } |
---|
119 | n/a | |
---|
120 | n/a | PyDoc_STRVAR(heappush_doc, |
---|
121 | n/a | "heappush(heap, item) -> None. Push item onto heap, maintaining the heap invariant."); |
---|
122 | n/a | |
---|
123 | n/a | static PyObject * |
---|
124 | n/a | heappop_internal(PyObject *heap, int siftup_func(PyListObject *, Py_ssize_t)) |
---|
125 | n/a | { |
---|
126 | n/a | PyObject *lastelt, *returnitem; |
---|
127 | n/a | Py_ssize_t n; |
---|
128 | n/a | |
---|
129 | n/a | if (!PyList_Check(heap)) { |
---|
130 | n/a | PyErr_SetString(PyExc_TypeError, "heap argument must be a list"); |
---|
131 | n/a | return NULL; |
---|
132 | n/a | } |
---|
133 | n/a | |
---|
134 | n/a | /* raises IndexError if the heap is empty */ |
---|
135 | n/a | n = PyList_GET_SIZE(heap); |
---|
136 | n/a | if (n == 0) { |
---|
137 | n/a | PyErr_SetString(PyExc_IndexError, "index out of range"); |
---|
138 | n/a | return NULL; |
---|
139 | n/a | } |
---|
140 | n/a | |
---|
141 | n/a | lastelt = PyList_GET_ITEM(heap, n-1) ; |
---|
142 | n/a | Py_INCREF(lastelt); |
---|
143 | n/a | if (PyList_SetSlice(heap, n-1, n, NULL)) { |
---|
144 | n/a | Py_DECREF(lastelt); |
---|
145 | n/a | return NULL; |
---|
146 | n/a | } |
---|
147 | n/a | n--; |
---|
148 | n/a | |
---|
149 | n/a | if (!n) |
---|
150 | n/a | return lastelt; |
---|
151 | n/a | returnitem = PyList_GET_ITEM(heap, 0); |
---|
152 | n/a | PyList_SET_ITEM(heap, 0, lastelt); |
---|
153 | n/a | if (siftup_func((PyListObject *)heap, 0)) { |
---|
154 | n/a | Py_DECREF(returnitem); |
---|
155 | n/a | return NULL; |
---|
156 | n/a | } |
---|
157 | n/a | return returnitem; |
---|
158 | n/a | } |
---|
159 | n/a | |
---|
160 | n/a | static PyObject * |
---|
161 | n/a | heappop(PyObject *self, PyObject *heap) |
---|
162 | n/a | { |
---|
163 | n/a | return heappop_internal(heap, siftup); |
---|
164 | n/a | } |
---|
165 | n/a | |
---|
166 | n/a | PyDoc_STRVAR(heappop_doc, |
---|
167 | n/a | "Pop the smallest item off the heap, maintaining the heap invariant."); |
---|
168 | n/a | |
---|
169 | n/a | static PyObject * |
---|
170 | n/a | heapreplace_internal(PyObject *args, int siftup_func(PyListObject *, Py_ssize_t)) |
---|
171 | n/a | { |
---|
172 | n/a | PyObject *heap, *item, *returnitem; |
---|
173 | n/a | |
---|
174 | n/a | if (!PyArg_UnpackTuple(args, "heapreplace", 2, 2, &heap, &item)) |
---|
175 | n/a | return NULL; |
---|
176 | n/a | |
---|
177 | n/a | if (!PyList_Check(heap)) { |
---|
178 | n/a | PyErr_SetString(PyExc_TypeError, "heap argument must be a list"); |
---|
179 | n/a | return NULL; |
---|
180 | n/a | } |
---|
181 | n/a | |
---|
182 | n/a | if (PyList_GET_SIZE(heap) == 0) { |
---|
183 | n/a | PyErr_SetString(PyExc_IndexError, "index out of range"); |
---|
184 | n/a | return NULL; |
---|
185 | n/a | } |
---|
186 | n/a | |
---|
187 | n/a | returnitem = PyList_GET_ITEM(heap, 0); |
---|
188 | n/a | Py_INCREF(item); |
---|
189 | n/a | PyList_SET_ITEM(heap, 0, item); |
---|
190 | n/a | if (siftup_func((PyListObject *)heap, 0)) { |
---|
191 | n/a | Py_DECREF(returnitem); |
---|
192 | n/a | return NULL; |
---|
193 | n/a | } |
---|
194 | n/a | return returnitem; |
---|
195 | n/a | } |
---|
196 | n/a | |
---|
197 | n/a | static PyObject * |
---|
198 | n/a | heapreplace(PyObject *self, PyObject *args) |
---|
199 | n/a | { |
---|
200 | n/a | return heapreplace_internal(args, siftup); |
---|
201 | n/a | } |
---|
202 | n/a | |
---|
203 | n/a | PyDoc_STRVAR(heapreplace_doc, |
---|
204 | n/a | "heapreplace(heap, item) -> value. Pop and return the current smallest value, and add the new item.\n\ |
---|
205 | n/a | \n\ |
---|
206 | n/a | This is more efficient than heappop() followed by heappush(), and can be\n\ |
---|
207 | n/a | more appropriate when using a fixed-size heap. Note that the value\n\ |
---|
208 | n/a | returned may be larger than item! That constrains reasonable uses of\n\ |
---|
209 | n/a | this routine unless written as part of a conditional replacement:\n\n\ |
---|
210 | n/a | if item > heap[0]:\n\ |
---|
211 | n/a | item = heapreplace(heap, item)\n"); |
---|
212 | n/a | |
---|
213 | n/a | static PyObject * |
---|
214 | n/a | heappushpop(PyObject *self, PyObject *args) |
---|
215 | n/a | { |
---|
216 | n/a | PyObject *heap, *item, *returnitem; |
---|
217 | n/a | int cmp; |
---|
218 | n/a | |
---|
219 | n/a | if (!PyArg_UnpackTuple(args, "heappushpop", 2, 2, &heap, &item)) |
---|
220 | n/a | return NULL; |
---|
221 | n/a | |
---|
222 | n/a | if (!PyList_Check(heap)) { |
---|
223 | n/a | PyErr_SetString(PyExc_TypeError, "heap argument must be a list"); |
---|
224 | n/a | return NULL; |
---|
225 | n/a | } |
---|
226 | n/a | |
---|
227 | n/a | if (PyList_GET_SIZE(heap) == 0) { |
---|
228 | n/a | Py_INCREF(item); |
---|
229 | n/a | return item; |
---|
230 | n/a | } |
---|
231 | n/a | |
---|
232 | n/a | cmp = PyObject_RichCompareBool(PyList_GET_ITEM(heap, 0), item, Py_LT); |
---|
233 | n/a | if (cmp < 0) |
---|
234 | n/a | return NULL; |
---|
235 | n/a | if (cmp == 0) { |
---|
236 | n/a | Py_INCREF(item); |
---|
237 | n/a | return item; |
---|
238 | n/a | } |
---|
239 | n/a | |
---|
240 | n/a | if (PyList_GET_SIZE(heap) == 0) { |
---|
241 | n/a | PyErr_SetString(PyExc_IndexError, "index out of range"); |
---|
242 | n/a | return NULL; |
---|
243 | n/a | } |
---|
244 | n/a | |
---|
245 | n/a | returnitem = PyList_GET_ITEM(heap, 0); |
---|
246 | n/a | Py_INCREF(item); |
---|
247 | n/a | PyList_SET_ITEM(heap, 0, item); |
---|
248 | n/a | if (siftup((PyListObject *)heap, 0)) { |
---|
249 | n/a | Py_DECREF(returnitem); |
---|
250 | n/a | return NULL; |
---|
251 | n/a | } |
---|
252 | n/a | return returnitem; |
---|
253 | n/a | } |
---|
254 | n/a | |
---|
255 | n/a | PyDoc_STRVAR(heappushpop_doc, |
---|
256 | n/a | "heappushpop(heap, item) -> value. Push item on the heap, then pop and return the smallest item\n\ |
---|
257 | n/a | from the heap. The combined action runs more efficiently than\n\ |
---|
258 | n/a | heappush() followed by a separate call to heappop()."); |
---|
259 | n/a | |
---|
260 | n/a | static Py_ssize_t |
---|
261 | n/a | keep_top_bit(Py_ssize_t n) |
---|
262 | n/a | { |
---|
263 | n/a | int i = 0; |
---|
264 | n/a | |
---|
265 | n/a | while (n > 1) { |
---|
266 | n/a | n >>= 1; |
---|
267 | n/a | i++; |
---|
268 | n/a | } |
---|
269 | n/a | return n << i; |
---|
270 | n/a | } |
---|
271 | n/a | |
---|
272 | n/a | /* Cache friendly version of heapify() |
---|
273 | n/a | ----------------------------------- |
---|
274 | n/a | |
---|
275 | n/a | Build-up a heap in O(n) time by performing siftup() operations |
---|
276 | n/a | on nodes whose children are already heaps. |
---|
277 | n/a | |
---|
278 | n/a | The simplest way is to sift the nodes in reverse order from |
---|
279 | n/a | n//2-1 to 0 inclusive. The downside is that children may be |
---|
280 | n/a | out of cache by the time their parent is reached. |
---|
281 | n/a | |
---|
282 | n/a | A better way is to not wait for the children to go out of cache. |
---|
283 | n/a | Once a sibling pair of child nodes have been sifted, immediately |
---|
284 | n/a | sift their parent node (while the children are still in cache). |
---|
285 | n/a | |
---|
286 | n/a | Both ways build child heaps before their parents, so both ways |
---|
287 | n/a | do the exact same number of comparisons and produce exactly |
---|
288 | n/a | the same heap. The only difference is that the traversal |
---|
289 | n/a | order is optimized for cache efficiency. |
---|
290 | n/a | */ |
---|
291 | n/a | |
---|
292 | n/a | static PyObject * |
---|
293 | n/a | cache_friendly_heapify(PyObject *heap, int siftup_func(PyListObject *, Py_ssize_t)) |
---|
294 | n/a | { |
---|
295 | n/a | Py_ssize_t i, j, m, mhalf, leftmost; |
---|
296 | n/a | |
---|
297 | n/a | m = PyList_GET_SIZE(heap) >> 1; /* index of first childless node */ |
---|
298 | n/a | leftmost = keep_top_bit(m + 1) - 1; /* leftmost node in row of m */ |
---|
299 | n/a | mhalf = m >> 1; /* parent of first childless node */ |
---|
300 | n/a | |
---|
301 | n/a | for (i = leftmost - 1 ; i >= mhalf ; i--) { |
---|
302 | n/a | j = i; |
---|
303 | n/a | while (1) { |
---|
304 | n/a | if (siftup_func((PyListObject *)heap, j)) |
---|
305 | n/a | return NULL; |
---|
306 | n/a | if (!(j & 1)) |
---|
307 | n/a | break; |
---|
308 | n/a | j >>= 1; |
---|
309 | n/a | } |
---|
310 | n/a | } |
---|
311 | n/a | |
---|
312 | n/a | for (i = m - 1 ; i >= leftmost ; i--) { |
---|
313 | n/a | j = i; |
---|
314 | n/a | while (1) { |
---|
315 | n/a | if (siftup_func((PyListObject *)heap, j)) |
---|
316 | n/a | return NULL; |
---|
317 | n/a | if (!(j & 1)) |
---|
318 | n/a | break; |
---|
319 | n/a | j >>= 1; |
---|
320 | n/a | } |
---|
321 | n/a | } |
---|
322 | n/a | Py_RETURN_NONE; |
---|
323 | n/a | } |
---|
324 | n/a | |
---|
325 | n/a | static PyObject * |
---|
326 | n/a | heapify_internal(PyObject *heap, int siftup_func(PyListObject *, Py_ssize_t)) |
---|
327 | n/a | { |
---|
328 | n/a | Py_ssize_t i, n; |
---|
329 | n/a | |
---|
330 | n/a | if (!PyList_Check(heap)) { |
---|
331 | n/a | PyErr_SetString(PyExc_TypeError, "heap argument must be a list"); |
---|
332 | n/a | return NULL; |
---|
333 | n/a | } |
---|
334 | n/a | |
---|
335 | n/a | /* For heaps likely to be bigger than L1 cache, we use the cache |
---|
336 | n/a | friendly heapify function. For smaller heaps that fit entirely |
---|
337 | n/a | in cache, we prefer the simpler algorithm with less branching. |
---|
338 | n/a | */ |
---|
339 | n/a | n = PyList_GET_SIZE(heap); |
---|
340 | n/a | if (n > 2500) |
---|
341 | n/a | return cache_friendly_heapify(heap, siftup_func); |
---|
342 | n/a | |
---|
343 | n/a | /* Transform bottom-up. The largest index there's any point to |
---|
344 | n/a | looking at is the largest with a child index in-range, so must |
---|
345 | n/a | have 2*i + 1 < n, or i < (n-1)/2. If n is even = 2*j, this is |
---|
346 | n/a | (2*j-1)/2 = j-1/2 so j-1 is the largest, which is n//2 - 1. If |
---|
347 | n/a | n is odd = 2*j+1, this is (2*j+1-1)/2 = j so j-1 is the largest, |
---|
348 | n/a | and that's again n//2-1. |
---|
349 | n/a | */ |
---|
350 | n/a | for (i = (n >> 1) - 1 ; i >= 0 ; i--) |
---|
351 | n/a | if (siftup_func((PyListObject *)heap, i)) |
---|
352 | n/a | return NULL; |
---|
353 | n/a | Py_RETURN_NONE; |
---|
354 | n/a | } |
---|
355 | n/a | |
---|
356 | n/a | static PyObject * |
---|
357 | n/a | heapify(PyObject *self, PyObject *heap) |
---|
358 | n/a | { |
---|
359 | n/a | return heapify_internal(heap, siftup); |
---|
360 | n/a | } |
---|
361 | n/a | |
---|
362 | n/a | PyDoc_STRVAR(heapify_doc, |
---|
363 | n/a | "Transform list into a heap, in-place, in O(len(heap)) time."); |
---|
364 | n/a | |
---|
365 | n/a | static int |
---|
366 | n/a | siftdown_max(PyListObject *heap, Py_ssize_t startpos, Py_ssize_t pos) |
---|
367 | n/a | { |
---|
368 | n/a | PyObject *newitem, *parent, **arr; |
---|
369 | n/a | Py_ssize_t parentpos, size; |
---|
370 | n/a | int cmp; |
---|
371 | n/a | |
---|
372 | n/a | assert(PyList_Check(heap)); |
---|
373 | n/a | size = PyList_GET_SIZE(heap); |
---|
374 | n/a | if (pos >= size) { |
---|
375 | n/a | PyErr_SetString(PyExc_IndexError, "index out of range"); |
---|
376 | n/a | return -1; |
---|
377 | n/a | } |
---|
378 | n/a | |
---|
379 | n/a | /* Follow the path to the root, moving parents down until finding |
---|
380 | n/a | a place newitem fits. */ |
---|
381 | n/a | arr = _PyList_ITEMS(heap); |
---|
382 | n/a | newitem = arr[pos]; |
---|
383 | n/a | while (pos > startpos) { |
---|
384 | n/a | parentpos = (pos - 1) >> 1; |
---|
385 | n/a | parent = arr[parentpos]; |
---|
386 | n/a | cmp = PyObject_RichCompareBool(parent, newitem, Py_LT); |
---|
387 | n/a | if (cmp < 0) |
---|
388 | n/a | return -1; |
---|
389 | n/a | if (size != PyList_GET_SIZE(heap)) { |
---|
390 | n/a | PyErr_SetString(PyExc_RuntimeError, |
---|
391 | n/a | "list changed size during iteration"); |
---|
392 | n/a | return -1; |
---|
393 | n/a | } |
---|
394 | n/a | if (cmp == 0) |
---|
395 | n/a | break; |
---|
396 | n/a | arr = _PyList_ITEMS(heap); |
---|
397 | n/a | parent = arr[parentpos]; |
---|
398 | n/a | newitem = arr[pos]; |
---|
399 | n/a | arr[parentpos] = newitem; |
---|
400 | n/a | arr[pos] = parent; |
---|
401 | n/a | pos = parentpos; |
---|
402 | n/a | } |
---|
403 | n/a | return 0; |
---|
404 | n/a | } |
---|
405 | n/a | |
---|
406 | n/a | static int |
---|
407 | n/a | siftup_max(PyListObject *heap, Py_ssize_t pos) |
---|
408 | n/a | { |
---|
409 | n/a | Py_ssize_t startpos, endpos, childpos, limit; |
---|
410 | n/a | PyObject *tmp1, *tmp2, **arr; |
---|
411 | n/a | int cmp; |
---|
412 | n/a | |
---|
413 | n/a | assert(PyList_Check(heap)); |
---|
414 | n/a | endpos = PyList_GET_SIZE(heap); |
---|
415 | n/a | startpos = pos; |
---|
416 | n/a | if (pos >= endpos) { |
---|
417 | n/a | PyErr_SetString(PyExc_IndexError, "index out of range"); |
---|
418 | n/a | return -1; |
---|
419 | n/a | } |
---|
420 | n/a | |
---|
421 | n/a | /* Bubble up the smaller child until hitting a leaf. */ |
---|
422 | n/a | arr = _PyList_ITEMS(heap); |
---|
423 | n/a | limit = endpos >> 1; /* smallest pos that has no child */ |
---|
424 | n/a | while (pos < limit) { |
---|
425 | n/a | /* Set childpos to index of smaller child. */ |
---|
426 | n/a | childpos = 2*pos + 1; /* leftmost child position */ |
---|
427 | n/a | if (childpos + 1 < endpos) { |
---|
428 | n/a | cmp = PyObject_RichCompareBool( |
---|
429 | n/a | arr[childpos + 1], |
---|
430 | n/a | arr[childpos], |
---|
431 | n/a | Py_LT); |
---|
432 | n/a | if (cmp < 0) |
---|
433 | n/a | return -1; |
---|
434 | n/a | childpos += ((unsigned)cmp ^ 1); /* increment when cmp==0 */ |
---|
435 | n/a | arr = _PyList_ITEMS(heap); /* arr may have changed */ |
---|
436 | n/a | if (endpos != PyList_GET_SIZE(heap)) { |
---|
437 | n/a | PyErr_SetString(PyExc_RuntimeError, |
---|
438 | n/a | "list changed size during iteration"); |
---|
439 | n/a | return -1; |
---|
440 | n/a | } |
---|
441 | n/a | } |
---|
442 | n/a | /* Move the smaller child up. */ |
---|
443 | n/a | tmp1 = arr[childpos]; |
---|
444 | n/a | tmp2 = arr[pos]; |
---|
445 | n/a | arr[childpos] = tmp2; |
---|
446 | n/a | arr[pos] = tmp1; |
---|
447 | n/a | pos = childpos; |
---|
448 | n/a | } |
---|
449 | n/a | /* Bubble it up to its final resting place (by sifting its parents down). */ |
---|
450 | n/a | return siftdown_max(heap, startpos, pos); |
---|
451 | n/a | } |
---|
452 | n/a | |
---|
453 | n/a | static PyObject * |
---|
454 | n/a | heappop_max(PyObject *self, PyObject *heap) |
---|
455 | n/a | { |
---|
456 | n/a | return heappop_internal(heap, siftup_max); |
---|
457 | n/a | } |
---|
458 | n/a | |
---|
459 | n/a | PyDoc_STRVAR(heappop_max_doc, "Maxheap variant of heappop."); |
---|
460 | n/a | |
---|
461 | n/a | static PyObject * |
---|
462 | n/a | heapreplace_max(PyObject *self, PyObject *args) |
---|
463 | n/a | { |
---|
464 | n/a | return heapreplace_internal(args, siftup_max); |
---|
465 | n/a | } |
---|
466 | n/a | |
---|
467 | n/a | PyDoc_STRVAR(heapreplace_max_doc, "Maxheap variant of heapreplace"); |
---|
468 | n/a | |
---|
469 | n/a | static PyObject * |
---|
470 | n/a | heapify_max(PyObject *self, PyObject *heap) |
---|
471 | n/a | { |
---|
472 | n/a | return heapify_internal(heap, siftup_max); |
---|
473 | n/a | } |
---|
474 | n/a | |
---|
475 | n/a | PyDoc_STRVAR(heapify_max_doc, "Maxheap variant of heapify."); |
---|
476 | n/a | |
---|
477 | n/a | static PyMethodDef heapq_methods[] = { |
---|
478 | n/a | {"heappush", (PyCFunction)heappush, |
---|
479 | n/a | METH_VARARGS, heappush_doc}, |
---|
480 | n/a | {"heappushpop", (PyCFunction)heappushpop, |
---|
481 | n/a | METH_VARARGS, heappushpop_doc}, |
---|
482 | n/a | {"heappop", (PyCFunction)heappop, |
---|
483 | n/a | METH_O, heappop_doc}, |
---|
484 | n/a | {"heapreplace", (PyCFunction)heapreplace, |
---|
485 | n/a | METH_VARARGS, heapreplace_doc}, |
---|
486 | n/a | {"heapify", (PyCFunction)heapify, |
---|
487 | n/a | METH_O, heapify_doc}, |
---|
488 | n/a | {"_heappop_max", (PyCFunction)heappop_max, |
---|
489 | n/a | METH_O, heappop_max_doc}, |
---|
490 | n/a | {"_heapreplace_max",(PyCFunction)heapreplace_max, |
---|
491 | n/a | METH_VARARGS, heapreplace_max_doc}, |
---|
492 | n/a | {"_heapify_max", (PyCFunction)heapify_max, |
---|
493 | n/a | METH_O, heapify_max_doc}, |
---|
494 | n/a | {NULL, NULL} /* sentinel */ |
---|
495 | n/a | }; |
---|
496 | n/a | |
---|
497 | n/a | PyDoc_STRVAR(module_doc, |
---|
498 | n/a | "Heap queue algorithm (a.k.a. priority queue).\n\ |
---|
499 | n/a | \n\ |
---|
500 | n/a | Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for\n\ |
---|
501 | n/a | all k, counting elements from 0. For the sake of comparison,\n\ |
---|
502 | n/a | non-existing elements are considered to be infinite. The interesting\n\ |
---|
503 | n/a | property of a heap is that a[0] is always its smallest element.\n\ |
---|
504 | n/a | \n\ |
---|
505 | n/a | Usage:\n\ |
---|
506 | n/a | \n\ |
---|
507 | n/a | heap = [] # creates an empty heap\n\ |
---|
508 | n/a | heappush(heap, item) # pushes a new item on the heap\n\ |
---|
509 | n/a | item = heappop(heap) # pops the smallest item from the heap\n\ |
---|
510 | n/a | item = heap[0] # smallest item on the heap without popping it\n\ |
---|
511 | n/a | heapify(x) # transforms list into a heap, in-place, in linear time\n\ |
---|
512 | n/a | item = heapreplace(heap, item) # pops and returns smallest item, and adds\n\ |
---|
513 | n/a | # new item; the heap size is unchanged\n\ |
---|
514 | n/a | \n\ |
---|
515 | n/a | Our API differs from textbook heap algorithms as follows:\n\ |
---|
516 | n/a | \n\ |
---|
517 | n/a | - We use 0-based indexing. This makes the relationship between the\n\ |
---|
518 | n/a | index for a node and the indexes for its children slightly less\n\ |
---|
519 | n/a | obvious, but is more suitable since Python uses 0-based indexing.\n\ |
---|
520 | n/a | \n\ |
---|
521 | n/a | - Our heappop() method returns the smallest item, not the largest.\n\ |
---|
522 | n/a | \n\ |
---|
523 | n/a | These two make it possible to view the heap as a regular Python list\n\ |
---|
524 | n/a | without surprises: heap[0] is the smallest item, and heap.sort()\n\ |
---|
525 | n/a | maintains the heap invariant!\n"); |
---|
526 | n/a | |
---|
527 | n/a | |
---|
528 | n/a | PyDoc_STRVAR(__about__, |
---|
529 | n/a | "Heap queues\n\ |
---|
530 | n/a | \n\ |
---|
531 | n/a | [explanation by Fran\xc3\xa7ois Pinard]\n\ |
---|
532 | n/a | \n\ |
---|
533 | n/a | Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for\n\ |
---|
534 | n/a | all k, counting elements from 0. For the sake of comparison,\n\ |
---|
535 | n/a | non-existing elements are considered to be infinite. The interesting\n\ |
---|
536 | n/a | property of a heap is that a[0] is always its smallest element.\n" |
---|
537 | n/a | "\n\ |
---|
538 | n/a | The strange invariant above is meant to be an efficient memory\n\ |
---|
539 | n/a | representation for a tournament. The numbers below are `k', not a[k]:\n\ |
---|
540 | n/a | \n\ |
---|
541 | n/a | 0\n\ |
---|
542 | n/a | \n\ |
---|
543 | n/a | 1 2\n\ |
---|
544 | n/a | \n\ |
---|
545 | n/a | 3 4 5 6\n\ |
---|
546 | n/a | \n\ |
---|
547 | n/a | 7 8 9 10 11 12 13 14\n\ |
---|
548 | n/a | \n\ |
---|
549 | n/a | 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30\n\ |
---|
550 | n/a | \n\ |
---|
551 | n/a | \n\ |
---|
552 | n/a | In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'. In\n\ |
---|
553 | n/a | a usual binary tournament we see in sports, each cell is the winner\n\ |
---|
554 | n/a | over the two cells it tops, and we can trace the winner down the tree\n\ |
---|
555 | n/a | to see all opponents s/he had. However, in many computer applications\n\ |
---|
556 | n/a | of such tournaments, we do not need to trace the history of a winner.\n\ |
---|
557 | n/a | To be more memory efficient, when a winner is promoted, we try to\n\ |
---|
558 | n/a | replace it by something else at a lower level, and the rule becomes\n\ |
---|
559 | n/a | that a cell and the two cells it tops contain three different items,\n\ |
---|
560 | n/a | but the top cell \"wins\" over the two topped cells.\n" |
---|
561 | n/a | "\n\ |
---|
562 | n/a | If this heap invariant is protected at all time, index 0 is clearly\n\ |
---|
563 | n/a | the overall winner. The simplest algorithmic way to remove it and\n\ |
---|
564 | n/a | find the \"next\" winner is to move some loser (let's say cell 30 in the\n\ |
---|
565 | n/a | diagram above) into the 0 position, and then percolate this new 0 down\n\ |
---|
566 | n/a | the tree, exchanging values, until the invariant is re-established.\n\ |
---|
567 | n/a | This is clearly logarithmic on the total number of items in the tree.\n\ |
---|
568 | n/a | By iterating over all items, you get an O(n ln n) sort.\n" |
---|
569 | n/a | "\n\ |
---|
570 | n/a | A nice feature of this sort is that you can efficiently insert new\n\ |
---|
571 | n/a | items while the sort is going on, provided that the inserted items are\n\ |
---|
572 | n/a | not \"better\" than the last 0'th element you extracted. This is\n\ |
---|
573 | n/a | especially useful in simulation contexts, where the tree holds all\n\ |
---|
574 | n/a | incoming events, and the \"win\" condition means the smallest scheduled\n\ |
---|
575 | n/a | time. When an event schedule other events for execution, they are\n\ |
---|
576 | n/a | scheduled into the future, so they can easily go into the heap. So, a\n\ |
---|
577 | n/a | heap is a good structure for implementing schedulers (this is what I\n\ |
---|
578 | n/a | used for my MIDI sequencer :-).\n" |
---|
579 | n/a | "\n\ |
---|
580 | n/a | Various structures for implementing schedulers have been extensively\n\ |
---|
581 | n/a | studied, and heaps are good for this, as they are reasonably speedy,\n\ |
---|
582 | n/a | the speed is almost constant, and the worst case is not much different\n\ |
---|
583 | n/a | than the average case. However, there are other representations which\n\ |
---|
584 | n/a | are more efficient overall, yet the worst cases might be terrible.\n" |
---|
585 | n/a | "\n\ |
---|
586 | n/a | Heaps are also very useful in big disk sorts. You most probably all\n\ |
---|
587 | n/a | know that a big sort implies producing \"runs\" (which are pre-sorted\n\ |
---|
588 | n/a | sequences, which size is usually related to the amount of CPU memory),\n\ |
---|
589 | n/a | followed by a merging passes for these runs, which merging is often\n\ |
---|
590 | n/a | very cleverly organised[1]. It is very important that the initial\n\ |
---|
591 | n/a | sort produces the longest runs possible. Tournaments are a good way\n\ |
---|
592 | n/a | to that. If, using all the memory available to hold a tournament, you\n\ |
---|
593 | n/a | replace and percolate items that happen to fit the current run, you'll\n\ |
---|
594 | n/a | produce runs which are twice the size of the memory for random input,\n\ |
---|
595 | n/a | and much better for input fuzzily ordered.\n" |
---|
596 | n/a | "\n\ |
---|
597 | n/a | Moreover, if you output the 0'th item on disk and get an input which\n\ |
---|
598 | n/a | may not fit in the current tournament (because the value \"wins\" over\n\ |
---|
599 | n/a | the last output value), it cannot fit in the heap, so the size of the\n\ |
---|
600 | n/a | heap decreases. The freed memory could be cleverly reused immediately\n\ |
---|
601 | n/a | for progressively building a second heap, which grows at exactly the\n\ |
---|
602 | n/a | same rate the first heap is melting. When the first heap completely\n\ |
---|
603 | n/a | vanishes, you switch heaps and start a new run. Clever and quite\n\ |
---|
604 | n/a | effective!\n\ |
---|
605 | n/a | \n\ |
---|
606 | n/a | In a word, heaps are useful memory structures to know. I use them in\n\ |
---|
607 | n/a | a few applications, and I think it is good to keep a `heap' module\n\ |
---|
608 | n/a | around. :-)\n" |
---|
609 | n/a | "\n\ |
---|
610 | n/a | --------------------\n\ |
---|
611 | n/a | [1] The disk balancing algorithms which are current, nowadays, are\n\ |
---|
612 | n/a | more annoying than clever, and this is a consequence of the seeking\n\ |
---|
613 | n/a | capabilities of the disks. On devices which cannot seek, like big\n\ |
---|
614 | n/a | tape drives, the story was quite different, and one had to be very\n\ |
---|
615 | n/a | clever to ensure (far in advance) that each tape movement will be the\n\ |
---|
616 | n/a | most effective possible (that is, will best participate at\n\ |
---|
617 | n/a | \"progressing\" the merge). Some tapes were even able to read\n\ |
---|
618 | n/a | backwards, and this was also used to avoid the rewinding time.\n\ |
---|
619 | n/a | Believe me, real good tape sorts were quite spectacular to watch!\n\ |
---|
620 | n/a | From all times, sorting has always been a Great Art! :-)\n"); |
---|
621 | n/a | |
---|
622 | n/a | |
---|
623 | n/a | static struct PyModuleDef _heapqmodule = { |
---|
624 | n/a | PyModuleDef_HEAD_INIT, |
---|
625 | n/a | "_heapq", |
---|
626 | n/a | module_doc, |
---|
627 | n/a | -1, |
---|
628 | n/a | heapq_methods, |
---|
629 | n/a | NULL, |
---|
630 | n/a | NULL, |
---|
631 | n/a | NULL, |
---|
632 | n/a | NULL |
---|
633 | n/a | }; |
---|
634 | n/a | |
---|
635 | n/a | PyMODINIT_FUNC |
---|
636 | n/a | PyInit__heapq(void) |
---|
637 | n/a | { |
---|
638 | n/a | PyObject *m, *about; |
---|
639 | n/a | |
---|
640 | n/a | m = PyModule_Create(&_heapqmodule); |
---|
641 | n/a | if (m == NULL) |
---|
642 | n/a | return NULL; |
---|
643 | n/a | about = PyUnicode_DecodeUTF8(__about__, strlen(__about__), NULL); |
---|
644 | n/a | PyModule_AddObject(m, "__about__", about); |
---|
645 | n/a | return m; |
---|
646 | n/a | } |
---|
647 | n/a | |
---|