| 1 | n/a | # Copyright (c) 2010 Python Software Foundation. All Rights Reserved. |
|---|
| 2 | n/a | # Adapted from Python's Lib/test/test_strtod.py (by Mark Dickinson) |
|---|
| 3 | n/a | |
|---|
| 4 | n/a | # More test cases for deccheck.py. |
|---|
| 5 | n/a | |
|---|
| 6 | n/a | import random |
|---|
| 7 | n/a | |
|---|
| 8 | n/a | TEST_SIZE = 2 |
|---|
| 9 | n/a | |
|---|
| 10 | n/a | |
|---|
| 11 | n/a | def test_short_halfway_cases(): |
|---|
| 12 | n/a | # exact halfway cases with a small number of significant digits |
|---|
| 13 | n/a | for k in 0, 5, 10, 15, 20: |
|---|
| 14 | n/a | # upper = smallest integer >= 2**54/5**k |
|---|
| 15 | n/a | upper = -(-2**54//5**k) |
|---|
| 16 | n/a | # lower = smallest odd number >= 2**53/5**k |
|---|
| 17 | n/a | lower = -(-2**53//5**k) |
|---|
| 18 | n/a | if lower % 2 == 0: |
|---|
| 19 | n/a | lower += 1 |
|---|
| 20 | n/a | for i in range(10 * TEST_SIZE): |
|---|
| 21 | n/a | # Select a random odd n in [2**53/5**k, |
|---|
| 22 | n/a | # 2**54/5**k). Then n * 10**k gives a halfway case |
|---|
| 23 | n/a | # with small number of significant digits. |
|---|
| 24 | n/a | n, e = random.randrange(lower, upper, 2), k |
|---|
| 25 | n/a | |
|---|
| 26 | n/a | # Remove any additional powers of 5. |
|---|
| 27 | n/a | while n % 5 == 0: |
|---|
| 28 | n/a | n, e = n // 5, e + 1 |
|---|
| 29 | n/a | assert n % 10 in (1, 3, 7, 9) |
|---|
| 30 | n/a | |
|---|
| 31 | n/a | # Try numbers of the form n * 2**p2 * 10**e, p2 >= 0, |
|---|
| 32 | n/a | # until n * 2**p2 has more than 20 significant digits. |
|---|
| 33 | n/a | digits, exponent = n, e |
|---|
| 34 | n/a | while digits < 10**20: |
|---|
| 35 | n/a | s = '{}e{}'.format(digits, exponent) |
|---|
| 36 | n/a | yield s |
|---|
| 37 | n/a | # Same again, but with extra trailing zeros. |
|---|
| 38 | n/a | s = '{}e{}'.format(digits * 10**40, exponent - 40) |
|---|
| 39 | n/a | yield s |
|---|
| 40 | n/a | digits *= 2 |
|---|
| 41 | n/a | |
|---|
| 42 | n/a | # Try numbers of the form n * 5**p2 * 10**(e - p5), p5 |
|---|
| 43 | n/a | # >= 0, with n * 5**p5 < 10**20. |
|---|
| 44 | n/a | digits, exponent = n, e |
|---|
| 45 | n/a | while digits < 10**20: |
|---|
| 46 | n/a | s = '{}e{}'.format(digits, exponent) |
|---|
| 47 | n/a | yield s |
|---|
| 48 | n/a | # Same again, but with extra trailing zeros. |
|---|
| 49 | n/a | s = '{}e{}'.format(digits * 10**40, exponent - 40) |
|---|
| 50 | n/a | yield s |
|---|
| 51 | n/a | digits *= 5 |
|---|
| 52 | n/a | exponent -= 1 |
|---|
| 53 | n/a | |
|---|
| 54 | n/a | def test_halfway_cases(): |
|---|
| 55 | n/a | # test halfway cases for the round-half-to-even rule |
|---|
| 56 | n/a | for i in range(1000): |
|---|
| 57 | n/a | for j in range(TEST_SIZE): |
|---|
| 58 | n/a | # bit pattern for a random finite positive (or +0.0) float |
|---|
| 59 | n/a | bits = random.randrange(2047*2**52) |
|---|
| 60 | n/a | |
|---|
| 61 | n/a | # convert bit pattern to a number of the form m * 2**e |
|---|
| 62 | n/a | e, m = divmod(bits, 2**52) |
|---|
| 63 | n/a | if e: |
|---|
| 64 | n/a | m, e = m + 2**52, e - 1 |
|---|
| 65 | n/a | e -= 1074 |
|---|
| 66 | n/a | |
|---|
| 67 | n/a | # add 0.5 ulps |
|---|
| 68 | n/a | m, e = 2*m + 1, e - 1 |
|---|
| 69 | n/a | |
|---|
| 70 | n/a | # convert to a decimal string |
|---|
| 71 | n/a | if e >= 0: |
|---|
| 72 | n/a | digits = m << e |
|---|
| 73 | n/a | exponent = 0 |
|---|
| 74 | n/a | else: |
|---|
| 75 | n/a | # m * 2**e = (m * 5**-e) * 10**e |
|---|
| 76 | n/a | digits = m * 5**-e |
|---|
| 77 | n/a | exponent = e |
|---|
| 78 | n/a | s = '{}e{}'.format(digits, exponent) |
|---|
| 79 | n/a | yield s |
|---|
| 80 | n/a | |
|---|
| 81 | n/a | def test_boundaries(): |
|---|
| 82 | n/a | # boundaries expressed as triples (n, e, u), where |
|---|
| 83 | n/a | # n*10**e is an approximation to the boundary value and |
|---|
| 84 | n/a | # u*10**e is 1ulp |
|---|
| 85 | n/a | boundaries = [ |
|---|
| 86 | n/a | (10000000000000000000, -19, 1110), # a power of 2 boundary (1.0) |
|---|
| 87 | n/a | (17976931348623159077, 289, 1995), # overflow boundary (2.**1024) |
|---|
| 88 | n/a | (22250738585072013831, -327, 4941), # normal/subnormal (2.**-1022) |
|---|
| 89 | n/a | (0, -327, 4941), # zero |
|---|
| 90 | n/a | ] |
|---|
| 91 | n/a | for n, e, u in boundaries: |
|---|
| 92 | n/a | for j in range(1000): |
|---|
| 93 | n/a | for i in range(TEST_SIZE): |
|---|
| 94 | n/a | digits = n + random.randrange(-3*u, 3*u) |
|---|
| 95 | n/a | exponent = e |
|---|
| 96 | n/a | s = '{}e{}'.format(digits, exponent) |
|---|
| 97 | n/a | yield s |
|---|
| 98 | n/a | n *= 10 |
|---|
| 99 | n/a | u *= 10 |
|---|
| 100 | n/a | e -= 1 |
|---|
| 101 | n/a | |
|---|
| 102 | n/a | def test_underflow_boundary(): |
|---|
| 103 | n/a | # test values close to 2**-1075, the underflow boundary; similar |
|---|
| 104 | n/a | # to boundary_tests, except that the random error doesn't scale |
|---|
| 105 | n/a | # with n |
|---|
| 106 | n/a | for exponent in range(-400, -320): |
|---|
| 107 | n/a | base = 10**-exponent // 2**1075 |
|---|
| 108 | n/a | for j in range(TEST_SIZE): |
|---|
| 109 | n/a | digits = base + random.randrange(-1000, 1000) |
|---|
| 110 | n/a | s = '{}e{}'.format(digits, exponent) |
|---|
| 111 | n/a | yield s |
|---|
| 112 | n/a | |
|---|
| 113 | n/a | def test_bigcomp(): |
|---|
| 114 | n/a | for ndigs in 5, 10, 14, 15, 16, 17, 18, 19, 20, 40, 41, 50: |
|---|
| 115 | n/a | dig10 = 10**ndigs |
|---|
| 116 | n/a | for i in range(100 * TEST_SIZE): |
|---|
| 117 | n/a | digits = random.randrange(dig10) |
|---|
| 118 | n/a | exponent = random.randrange(-400, 400) |
|---|
| 119 | n/a | s = '{}e{}'.format(digits, exponent) |
|---|
| 120 | n/a | yield s |
|---|
| 121 | n/a | |
|---|
| 122 | n/a | def test_parsing(): |
|---|
| 123 | n/a | # make '0' more likely to be chosen than other digits |
|---|
| 124 | n/a | digits = '000000123456789' |
|---|
| 125 | n/a | signs = ('+', '-', '') |
|---|
| 126 | n/a | |
|---|
| 127 | n/a | # put together random short valid strings |
|---|
| 128 | n/a | # \d*[.\d*]?e |
|---|
| 129 | n/a | for i in range(1000): |
|---|
| 130 | n/a | for j in range(TEST_SIZE): |
|---|
| 131 | n/a | s = random.choice(signs) |
|---|
| 132 | n/a | intpart_len = random.randrange(5) |
|---|
| 133 | n/a | s += ''.join(random.choice(digits) for _ in range(intpart_len)) |
|---|
| 134 | n/a | if random.choice([True, False]): |
|---|
| 135 | n/a | s += '.' |
|---|
| 136 | n/a | fracpart_len = random.randrange(5) |
|---|
| 137 | n/a | s += ''.join(random.choice(digits) |
|---|
| 138 | n/a | for _ in range(fracpart_len)) |
|---|
| 139 | n/a | else: |
|---|
| 140 | n/a | fracpart_len = 0 |
|---|
| 141 | n/a | if random.choice([True, False]): |
|---|
| 142 | n/a | s += random.choice(['e', 'E']) |
|---|
| 143 | n/a | s += random.choice(signs) |
|---|
| 144 | n/a | exponent_len = random.randrange(1, 4) |
|---|
| 145 | n/a | s += ''.join(random.choice(digits) |
|---|
| 146 | n/a | for _ in range(exponent_len)) |
|---|
| 147 | n/a | |
|---|
| 148 | n/a | if intpart_len + fracpart_len: |
|---|
| 149 | n/a | yield s |
|---|
| 150 | n/a | |
|---|
| 151 | n/a | test_particular = [ |
|---|
| 152 | n/a | # squares |
|---|
| 153 | n/a | '1.00000000100000000025', |
|---|
| 154 | n/a | '1.0000000000000000000000000100000000000000000000000' #... |
|---|
| 155 | n/a | '00025', |
|---|
| 156 | n/a | '1.0000000000000000000000000000000000000000000010000' #... |
|---|
| 157 | n/a | '0000000000000000000000000000000000000000025', |
|---|
| 158 | n/a | '1.0000000000000000000000000000000000000000000000000' #... |
|---|
| 159 | n/a | '000001000000000000000000000000000000000000000000000' #... |
|---|
| 160 | n/a | '000000000025', |
|---|
| 161 | n/a | '0.99999999900000000025', |
|---|
| 162 | n/a | '0.9999999999999999999999999999999999999999999999999' #... |
|---|
| 163 | n/a | '999000000000000000000000000000000000000000000000000' #... |
|---|
| 164 | n/a | '000025', |
|---|
| 165 | n/a | '0.9999999999999999999999999999999999999999999999999' #... |
|---|
| 166 | n/a | '999999999999999999999999999999999999999999999999999' #... |
|---|
| 167 | n/a | '999999999999999999999999999999999999999990000000000' #... |
|---|
| 168 | n/a | '000000000000000000000000000000000000000000000000000' #... |
|---|
| 169 | n/a | '000000000000000000000000000000000000000000000000000' #... |
|---|
| 170 | n/a | '0000000000000000000000000000025', |
|---|
| 171 | n/a | |
|---|
| 172 | n/a | '1.0000000000000000000000000000000000000000000000000' #... |
|---|
| 173 | n/a | '000000000000000000000000000000000000000000000000000' #... |
|---|
| 174 | n/a | '100000000000000000000000000000000000000000000000000' #... |
|---|
| 175 | n/a | '000000000000000000000000000000000000000000000000001', |
|---|
| 176 | n/a | '1.0000000000000000000000000000000000000000000000000' #... |
|---|
| 177 | n/a | '000000000000000000000000000000000000000000000000000' #... |
|---|
| 178 | n/a | '500000000000000000000000000000000000000000000000000' #... |
|---|
| 179 | n/a | '000000000000000000000000000000000000000000000000005', |
|---|
| 180 | n/a | '1.0000000000000000000000000000000000000000000000000' #... |
|---|
| 181 | n/a | '000000000100000000000000000000000000000000000000000' #... |
|---|
| 182 | n/a | '000000000000000000250000000000000002000000000000000' #... |
|---|
| 183 | n/a | '000000000000000000000000000000000000000000010000000' #... |
|---|
| 184 | n/a | '000000000000000000000000000000000000000000000000000' #... |
|---|
| 185 | n/a | '0000000000000000001', |
|---|
| 186 | n/a | '1.0000000000000000000000000000000000000000000000000' #... |
|---|
| 187 | n/a | '000000000100000000000000000000000000000000000000000' #... |
|---|
| 188 | n/a | '000000000000000000249999999999999999999999999999999' #... |
|---|
| 189 | n/a | '999999999999979999999999999999999999999999999999999' #... |
|---|
| 190 | n/a | '999999999999999999999900000000000000000000000000000' #... |
|---|
| 191 | n/a | '000000000000000000000000000000000000000000000000000' #... |
|---|
| 192 | n/a | '00000000000000000000000001', |
|---|
| 193 | n/a | |
|---|
| 194 | n/a | '0.9999999999999999999999999999999999999999999999999' #... |
|---|
| 195 | n/a | '999999999900000000000000000000000000000000000000000' #... |
|---|
| 196 | n/a | '000000000000000000249999999999999998000000000000000' #... |
|---|
| 197 | n/a | '000000000000000000000000000000000000000000010000000' #... |
|---|
| 198 | n/a | '000000000000000000000000000000000000000000000000000' #... |
|---|
| 199 | n/a | '0000000000000000001', |
|---|
| 200 | n/a | '0.9999999999999999999999999999999999999999999999999' #... |
|---|
| 201 | n/a | '999999999900000000000000000000000000000000000000000' #... |
|---|
| 202 | n/a | '000000000000000000250000001999999999999999999999999' #... |
|---|
| 203 | n/a | '999999999999999999999999999999999990000000000000000' #... |
|---|
| 204 | n/a | '000000000000000000000000000000000000000000000000000' #... |
|---|
| 205 | n/a | '1', |
|---|
| 206 | n/a | |
|---|
| 207 | n/a | # tough cases for ln etc. |
|---|
| 208 | n/a | '1.000000000000000000000000000000000000000000000000' #... |
|---|
| 209 | n/a | '00000000000000000000000000000000000000000000000000' #... |
|---|
| 210 | n/a | '00100000000000000000000000000000000000000000000000' #... |
|---|
| 211 | n/a | '00000000000000000000000000000000000000000000000000' #... |
|---|
| 212 | n/a | '0001', |
|---|
| 213 | n/a | '0.999999999999999999999999999999999999999999999999' #... |
|---|
| 214 | n/a | '99999999999999999999999999999999999999999999999999' #... |
|---|
| 215 | n/a | '99899999999999999999999999999999999999999999999999' #... |
|---|
| 216 | n/a | '99999999999999999999999999999999999999999999999999' #... |
|---|
| 217 | n/a | '99999999999999999999999999999999999999999999999999' #... |
|---|
| 218 | n/a | '9999' |
|---|
| 219 | n/a | ] |
|---|
| 220 | n/a | |
|---|
| 221 | n/a | |
|---|
| 222 | n/a | TESTCASES = [ |
|---|
| 223 | n/a | [x for x in test_short_halfway_cases()], |
|---|
| 224 | n/a | [x for x in test_halfway_cases()], |
|---|
| 225 | n/a | [x for x in test_boundaries()], |
|---|
| 226 | n/a | [x for x in test_underflow_boundary()], |
|---|
| 227 | n/a | [x for x in test_bigcomp()], |
|---|
| 228 | n/a | [x for x in test_parsing()], |
|---|
| 229 | n/a | test_particular |
|---|
| 230 | n/a | ] |
|---|
| 231 | n/a | |
|---|
| 232 | n/a | def un_randfloat(): |
|---|
| 233 | n/a | for i in range(1000): |
|---|
| 234 | n/a | l = random.choice(TESTCASES[:6]) |
|---|
| 235 | n/a | yield random.choice(l) |
|---|
| 236 | n/a | for v in test_particular: |
|---|
| 237 | n/a | yield v |
|---|
| 238 | n/a | |
|---|
| 239 | n/a | def bin_randfloat(): |
|---|
| 240 | n/a | for i in range(1000): |
|---|
| 241 | n/a | l1 = random.choice(TESTCASES) |
|---|
| 242 | n/a | l2 = random.choice(TESTCASES) |
|---|
| 243 | n/a | yield random.choice(l1), random.choice(l2) |
|---|
| 244 | n/a | |
|---|
| 245 | n/a | def tern_randfloat(): |
|---|
| 246 | n/a | for i in range(1000): |
|---|
| 247 | n/a | l1 = random.choice(TESTCASES) |
|---|
| 248 | n/a | l2 = random.choice(TESTCASES) |
|---|
| 249 | n/a | l3 = random.choice(TESTCASES) |
|---|
| 250 | n/a | yield random.choice(l1), random.choice(l2), random.choice(l3) |
|---|