| 1 | n/a | # |
|---|
| 2 | n/a | # These tests require gmpy and test the limits of the 32-bit build. The |
|---|
| 3 | n/a | # limits of the 64-bit build are so large that they cannot be tested |
|---|
| 4 | n/a | # on accessible hardware. |
|---|
| 5 | n/a | # |
|---|
| 6 | n/a | |
|---|
| 7 | n/a | import sys |
|---|
| 8 | n/a | from decimal import * |
|---|
| 9 | n/a | from gmpy import mpz |
|---|
| 10 | n/a | |
|---|
| 11 | n/a | |
|---|
| 12 | n/a | _PyHASH_MODULUS = sys.hash_info.modulus |
|---|
| 13 | n/a | # hash values to use for positive and negative infinities, and nans |
|---|
| 14 | n/a | _PyHASH_INF = sys.hash_info.inf |
|---|
| 15 | n/a | _PyHASH_NAN = sys.hash_info.nan |
|---|
| 16 | n/a | |
|---|
| 17 | n/a | # _PyHASH_10INV is the inverse of 10 modulo the prime _PyHASH_MODULUS |
|---|
| 18 | n/a | _PyHASH_10INV = pow(10, _PyHASH_MODULUS - 2, _PyHASH_MODULUS) |
|---|
| 19 | n/a | |
|---|
| 20 | n/a | def xhash(coeff, exp): |
|---|
| 21 | n/a | sign = 1 |
|---|
| 22 | n/a | if coeff < 0: |
|---|
| 23 | n/a | sign = -1 |
|---|
| 24 | n/a | coeff = -coeff |
|---|
| 25 | n/a | if exp >= 0: |
|---|
| 26 | n/a | exp_hash = pow(10, exp, _PyHASH_MODULUS) |
|---|
| 27 | n/a | else: |
|---|
| 28 | n/a | exp_hash = pow(_PyHASH_10INV, -exp, _PyHASH_MODULUS) |
|---|
| 29 | n/a | hash_ = coeff * exp_hash % _PyHASH_MODULUS |
|---|
| 30 | n/a | ans = hash_ if sign == 1 else -hash_ |
|---|
| 31 | n/a | return -2 if ans == -1 else ans |
|---|
| 32 | n/a | |
|---|
| 33 | n/a | |
|---|
| 34 | n/a | x = mpz(10) ** 425000000 - 1 |
|---|
| 35 | n/a | coeff = int(x) |
|---|
| 36 | n/a | |
|---|
| 37 | n/a | d = Decimal('9' * 425000000 + 'e-849999999') |
|---|
| 38 | n/a | |
|---|
| 39 | n/a | h1 = xhash(coeff, -849999999) |
|---|
| 40 | n/a | h2 = hash(d) |
|---|
| 41 | n/a | |
|---|
| 42 | n/a | assert h2 == h1 |
|---|