| 1 | n/a | /* |
|---|
| 2 | n/a | * Copyright (c) 2008-2016 Stefan Krah. All rights reserved. |
|---|
| 3 | n/a | * |
|---|
| 4 | n/a | * Redistribution and use in source and binary forms, with or without |
|---|
| 5 | n/a | * modification, are permitted provided that the following conditions |
|---|
| 6 | n/a | * are met: |
|---|
| 7 | n/a | * |
|---|
| 8 | n/a | * 1. Redistributions of source code must retain the above copyright |
|---|
| 9 | n/a | * notice, this list of conditions and the following disclaimer. |
|---|
| 10 | n/a | * |
|---|
| 11 | n/a | * 2. Redistributions in binary form must reproduce the above copyright |
|---|
| 12 | n/a | * notice, this list of conditions and the following disclaimer in the |
|---|
| 13 | n/a | * documentation and/or other materials provided with the distribution. |
|---|
| 14 | n/a | * |
|---|
| 15 | n/a | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND |
|---|
| 16 | n/a | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|---|
| 17 | n/a | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|---|
| 18 | n/a | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|---|
| 19 | n/a | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|---|
| 20 | n/a | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|---|
| 21 | n/a | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|---|
| 22 | n/a | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|---|
| 23 | n/a | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|---|
| 24 | n/a | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|---|
| 25 | n/a | * SUCH DAMAGE. |
|---|
| 26 | n/a | */ |
|---|
| 27 | n/a | |
|---|
| 28 | n/a | |
|---|
| 29 | n/a | #include "mpdecimal.h" |
|---|
| 30 | n/a | #include <assert.h> |
|---|
| 31 | n/a | #include "numbertheory.h" |
|---|
| 32 | n/a | #include "sixstep.h" |
|---|
| 33 | n/a | #include "transpose.h" |
|---|
| 34 | n/a | #include "umodarith.h" |
|---|
| 35 | n/a | #include "fourstep.h" |
|---|
| 36 | n/a | |
|---|
| 37 | n/a | |
|---|
| 38 | n/a | /* Bignum: Cache efficient Matrix Fourier Transform for arrays of the |
|---|
| 39 | n/a | form 3 * 2**n (See literature/matrix-transform.txt). */ |
|---|
| 40 | n/a | |
|---|
| 41 | n/a | |
|---|
| 42 | n/a | #ifndef PPRO |
|---|
| 43 | n/a | static inline void |
|---|
| 44 | n/a | std_size3_ntt(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, |
|---|
| 45 | n/a | mpd_uint_t w3table[3], mpd_uint_t umod) |
|---|
| 46 | n/a | { |
|---|
| 47 | n/a | mpd_uint_t r1, r2; |
|---|
| 48 | n/a | mpd_uint_t w; |
|---|
| 49 | n/a | mpd_uint_t s, tmp; |
|---|
| 50 | n/a | |
|---|
| 51 | n/a | |
|---|
| 52 | n/a | /* k = 0 -> w = 1 */ |
|---|
| 53 | n/a | s = *x1; |
|---|
| 54 | n/a | s = addmod(s, *x2, umod); |
|---|
| 55 | n/a | s = addmod(s, *x3, umod); |
|---|
| 56 | n/a | |
|---|
| 57 | n/a | r1 = s; |
|---|
| 58 | n/a | |
|---|
| 59 | n/a | /* k = 1 */ |
|---|
| 60 | n/a | s = *x1; |
|---|
| 61 | n/a | |
|---|
| 62 | n/a | w = w3table[1]; |
|---|
| 63 | n/a | tmp = MULMOD(*x2, w); |
|---|
| 64 | n/a | s = addmod(s, tmp, umod); |
|---|
| 65 | n/a | |
|---|
| 66 | n/a | w = w3table[2]; |
|---|
| 67 | n/a | tmp = MULMOD(*x3, w); |
|---|
| 68 | n/a | s = addmod(s, tmp, umod); |
|---|
| 69 | n/a | |
|---|
| 70 | n/a | r2 = s; |
|---|
| 71 | n/a | |
|---|
| 72 | n/a | /* k = 2 */ |
|---|
| 73 | n/a | s = *x1; |
|---|
| 74 | n/a | |
|---|
| 75 | n/a | w = w3table[2]; |
|---|
| 76 | n/a | tmp = MULMOD(*x2, w); |
|---|
| 77 | n/a | s = addmod(s, tmp, umod); |
|---|
| 78 | n/a | |
|---|
| 79 | n/a | w = w3table[1]; |
|---|
| 80 | n/a | tmp = MULMOD(*x3, w); |
|---|
| 81 | n/a | s = addmod(s, tmp, umod); |
|---|
| 82 | n/a | |
|---|
| 83 | n/a | *x3 = s; |
|---|
| 84 | n/a | *x2 = r2; |
|---|
| 85 | n/a | *x1 = r1; |
|---|
| 86 | n/a | } |
|---|
| 87 | n/a | #else /* PPRO */ |
|---|
| 88 | n/a | static inline void |
|---|
| 89 | n/a | ppro_size3_ntt(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, mpd_uint_t w3table[3], |
|---|
| 90 | n/a | mpd_uint_t umod, double *dmod, uint32_t dinvmod[3]) |
|---|
| 91 | n/a | { |
|---|
| 92 | n/a | mpd_uint_t r1, r2; |
|---|
| 93 | n/a | mpd_uint_t w; |
|---|
| 94 | n/a | mpd_uint_t s, tmp; |
|---|
| 95 | n/a | |
|---|
| 96 | n/a | |
|---|
| 97 | n/a | /* k = 0 -> w = 1 */ |
|---|
| 98 | n/a | s = *x1; |
|---|
| 99 | n/a | s = addmod(s, *x2, umod); |
|---|
| 100 | n/a | s = addmod(s, *x3, umod); |
|---|
| 101 | n/a | |
|---|
| 102 | n/a | r1 = s; |
|---|
| 103 | n/a | |
|---|
| 104 | n/a | /* k = 1 */ |
|---|
| 105 | n/a | s = *x1; |
|---|
| 106 | n/a | |
|---|
| 107 | n/a | w = w3table[1]; |
|---|
| 108 | n/a | tmp = ppro_mulmod(*x2, w, dmod, dinvmod); |
|---|
| 109 | n/a | s = addmod(s, tmp, umod); |
|---|
| 110 | n/a | |
|---|
| 111 | n/a | w = w3table[2]; |
|---|
| 112 | n/a | tmp = ppro_mulmod(*x3, w, dmod, dinvmod); |
|---|
| 113 | n/a | s = addmod(s, tmp, umod); |
|---|
| 114 | n/a | |
|---|
| 115 | n/a | r2 = s; |
|---|
| 116 | n/a | |
|---|
| 117 | n/a | /* k = 2 */ |
|---|
| 118 | n/a | s = *x1; |
|---|
| 119 | n/a | |
|---|
| 120 | n/a | w = w3table[2]; |
|---|
| 121 | n/a | tmp = ppro_mulmod(*x2, w, dmod, dinvmod); |
|---|
| 122 | n/a | s = addmod(s, tmp, umod); |
|---|
| 123 | n/a | |
|---|
| 124 | n/a | w = w3table[1]; |
|---|
| 125 | n/a | tmp = ppro_mulmod(*x3, w, dmod, dinvmod); |
|---|
| 126 | n/a | s = addmod(s, tmp, umod); |
|---|
| 127 | n/a | |
|---|
| 128 | n/a | *x3 = s; |
|---|
| 129 | n/a | *x2 = r2; |
|---|
| 130 | n/a | *x1 = r1; |
|---|
| 131 | n/a | } |
|---|
| 132 | n/a | #endif |
|---|
| 133 | n/a | |
|---|
| 134 | n/a | |
|---|
| 135 | n/a | /* forward transform, sign = -1; transform length = 3 * 2**n */ |
|---|
| 136 | n/a | int |
|---|
| 137 | n/a | four_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum) |
|---|
| 138 | n/a | { |
|---|
| 139 | n/a | mpd_size_t R = 3; /* number of rows */ |
|---|
| 140 | n/a | mpd_size_t C = n / 3; /* number of columns */ |
|---|
| 141 | n/a | mpd_uint_t w3table[3]; |
|---|
| 142 | n/a | mpd_uint_t kernel, w0, w1, wstep; |
|---|
| 143 | n/a | mpd_uint_t *s, *p0, *p1, *p2; |
|---|
| 144 | n/a | mpd_uint_t umod; |
|---|
| 145 | n/a | #ifdef PPRO |
|---|
| 146 | n/a | double dmod; |
|---|
| 147 | n/a | uint32_t dinvmod[3]; |
|---|
| 148 | n/a | #endif |
|---|
| 149 | n/a | mpd_size_t i, k; |
|---|
| 150 | n/a | |
|---|
| 151 | n/a | |
|---|
| 152 | n/a | assert(n >= 48); |
|---|
| 153 | n/a | assert(n <= 3*MPD_MAXTRANSFORM_2N); |
|---|
| 154 | n/a | |
|---|
| 155 | n/a | |
|---|
| 156 | n/a | /* Length R transform on the columns. */ |
|---|
| 157 | n/a | SETMODULUS(modnum); |
|---|
| 158 | n/a | _mpd_init_w3table(w3table, -1, modnum); |
|---|
| 159 | n/a | for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) { |
|---|
| 160 | n/a | |
|---|
| 161 | n/a | SIZE3_NTT(p0, p1, p2, w3table); |
|---|
| 162 | n/a | } |
|---|
| 163 | n/a | |
|---|
| 164 | n/a | /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */ |
|---|
| 165 | n/a | kernel = _mpd_getkernel(n, -1, modnum); |
|---|
| 166 | n/a | for (i = 1; i < R; i++) { |
|---|
| 167 | n/a | w0 = 1; /* r**(i*0): initial value for k=0 */ |
|---|
| 168 | n/a | w1 = POWMOD(kernel, i); /* r**(i*1): initial value for k=1 */ |
|---|
| 169 | n/a | wstep = MULMOD(w1, w1); /* r**(2*i) */ |
|---|
| 170 | n/a | for (k = 0; k < C-1; k += 2) { |
|---|
| 171 | n/a | mpd_uint_t x0 = a[i*C+k]; |
|---|
| 172 | n/a | mpd_uint_t x1 = a[i*C+k+1]; |
|---|
| 173 | n/a | MULMOD2(&x0, w0, &x1, w1); |
|---|
| 174 | n/a | MULMOD2C(&w0, &w1, wstep); /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */ |
|---|
| 175 | n/a | a[i*C+k] = x0; |
|---|
| 176 | n/a | a[i*C+k+1] = x1; |
|---|
| 177 | n/a | } |
|---|
| 178 | n/a | } |
|---|
| 179 | n/a | |
|---|
| 180 | n/a | /* Length C transform on the rows. */ |
|---|
| 181 | n/a | for (s = a; s < a+n; s += C) { |
|---|
| 182 | n/a | if (!six_step_fnt(s, C, modnum)) { |
|---|
| 183 | n/a | return 0; |
|---|
| 184 | n/a | } |
|---|
| 185 | n/a | } |
|---|
| 186 | n/a | |
|---|
| 187 | n/a | #if 0 |
|---|
| 188 | n/a | /* An unordered transform is sufficient for convolution. */ |
|---|
| 189 | n/a | /* Transpose the matrix. */ |
|---|
| 190 | n/a | transpose_3xpow2(a, R, C); |
|---|
| 191 | n/a | #endif |
|---|
| 192 | n/a | |
|---|
| 193 | n/a | return 1; |
|---|
| 194 | n/a | } |
|---|
| 195 | n/a | |
|---|
| 196 | n/a | /* backward transform, sign = 1; transform length = 3 * 2**n */ |
|---|
| 197 | n/a | int |
|---|
| 198 | n/a | inv_four_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum) |
|---|
| 199 | n/a | { |
|---|
| 200 | n/a | mpd_size_t R = 3; /* number of rows */ |
|---|
| 201 | n/a | mpd_size_t C = n / 3; /* number of columns */ |
|---|
| 202 | n/a | mpd_uint_t w3table[3]; |
|---|
| 203 | n/a | mpd_uint_t kernel, w0, w1, wstep; |
|---|
| 204 | n/a | mpd_uint_t *s, *p0, *p1, *p2; |
|---|
| 205 | n/a | mpd_uint_t umod; |
|---|
| 206 | n/a | #ifdef PPRO |
|---|
| 207 | n/a | double dmod; |
|---|
| 208 | n/a | uint32_t dinvmod[3]; |
|---|
| 209 | n/a | #endif |
|---|
| 210 | n/a | mpd_size_t i, k; |
|---|
| 211 | n/a | |
|---|
| 212 | n/a | |
|---|
| 213 | n/a | assert(n >= 48); |
|---|
| 214 | n/a | assert(n <= 3*MPD_MAXTRANSFORM_2N); |
|---|
| 215 | n/a | |
|---|
| 216 | n/a | |
|---|
| 217 | n/a | #if 0 |
|---|
| 218 | n/a | /* An unordered transform is sufficient for convolution. */ |
|---|
| 219 | n/a | /* Transpose the matrix, producing an R*C matrix. */ |
|---|
| 220 | n/a | transpose_3xpow2(a, C, R); |
|---|
| 221 | n/a | #endif |
|---|
| 222 | n/a | |
|---|
| 223 | n/a | /* Length C transform on the rows. */ |
|---|
| 224 | n/a | for (s = a; s < a+n; s += C) { |
|---|
| 225 | n/a | if (!inv_six_step_fnt(s, C, modnum)) { |
|---|
| 226 | n/a | return 0; |
|---|
| 227 | n/a | } |
|---|
| 228 | n/a | } |
|---|
| 229 | n/a | |
|---|
| 230 | n/a | /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */ |
|---|
| 231 | n/a | SETMODULUS(modnum); |
|---|
| 232 | n/a | kernel = _mpd_getkernel(n, 1, modnum); |
|---|
| 233 | n/a | for (i = 1; i < R; i++) { |
|---|
| 234 | n/a | w0 = 1; |
|---|
| 235 | n/a | w1 = POWMOD(kernel, i); |
|---|
| 236 | n/a | wstep = MULMOD(w1, w1); |
|---|
| 237 | n/a | for (k = 0; k < C; k += 2) { |
|---|
| 238 | n/a | mpd_uint_t x0 = a[i*C+k]; |
|---|
| 239 | n/a | mpd_uint_t x1 = a[i*C+k+1]; |
|---|
| 240 | n/a | MULMOD2(&x0, w0, &x1, w1); |
|---|
| 241 | n/a | MULMOD2C(&w0, &w1, wstep); |
|---|
| 242 | n/a | a[i*C+k] = x0; |
|---|
| 243 | n/a | a[i*C+k+1] = x1; |
|---|
| 244 | n/a | } |
|---|
| 245 | n/a | } |
|---|
| 246 | n/a | |
|---|
| 247 | n/a | /* Length R transform on the columns. */ |
|---|
| 248 | n/a | _mpd_init_w3table(w3table, 1, modnum); |
|---|
| 249 | n/a | for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) { |
|---|
| 250 | n/a | |
|---|
| 251 | n/a | SIZE3_NTT(p0, p1, p2, w3table); |
|---|
| 252 | n/a | } |
|---|
| 253 | n/a | |
|---|
| 254 | n/a | return 1; |
|---|
| 255 | n/a | } |
|---|
| 256 | n/a | |
|---|
| 257 | n/a | |
|---|