| 1 | n/a | /* |
|---|
| 2 | n/a | * Copyright (c) 2008-2016 Stefan Krah. All rights reserved. |
|---|
| 3 | n/a | * |
|---|
| 4 | n/a | * Redistribution and use in source and binary forms, with or without |
|---|
| 5 | n/a | * modification, are permitted provided that the following conditions |
|---|
| 6 | n/a | * are met: |
|---|
| 7 | n/a | * |
|---|
| 8 | n/a | * 1. Redistributions of source code must retain the above copyright |
|---|
| 9 | n/a | * notice, this list of conditions and the following disclaimer. |
|---|
| 10 | n/a | * |
|---|
| 11 | n/a | * 2. Redistributions in binary form must reproduce the above copyright |
|---|
| 12 | n/a | * notice, this list of conditions and the following disclaimer in the |
|---|
| 13 | n/a | * documentation and/or other materials provided with the distribution. |
|---|
| 14 | n/a | * |
|---|
| 15 | n/a | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND |
|---|
| 16 | n/a | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|---|
| 17 | n/a | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|---|
| 18 | n/a | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|---|
| 19 | n/a | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|---|
| 20 | n/a | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|---|
| 21 | n/a | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|---|
| 22 | n/a | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|---|
| 23 | n/a | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|---|
| 24 | n/a | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|---|
| 25 | n/a | * SUCH DAMAGE. |
|---|
| 26 | n/a | */ |
|---|
| 27 | n/a | |
|---|
| 28 | n/a | |
|---|
| 29 | n/a | #include "mpdecimal.h" |
|---|
| 30 | n/a | #include <stdio.h> |
|---|
| 31 | n/a | #include <assert.h> |
|---|
| 32 | n/a | #include "bits.h" |
|---|
| 33 | n/a | #include "numbertheory.h" |
|---|
| 34 | n/a | #include "umodarith.h" |
|---|
| 35 | n/a | #include "difradix2.h" |
|---|
| 36 | n/a | |
|---|
| 37 | n/a | |
|---|
| 38 | n/a | /* Bignum: The actual transform routine (decimation in frequency). */ |
|---|
| 39 | n/a | |
|---|
| 40 | n/a | |
|---|
| 41 | n/a | /* |
|---|
| 42 | n/a | * Generate index pairs (x, bitreverse(x)) and carry out the permutation. |
|---|
| 43 | n/a | * n must be a power of two. |
|---|
| 44 | n/a | * Algorithm due to Brent/Lehmann, see Joerg Arndt, "Matters Computational", |
|---|
| 45 | n/a | * Chapter 1.14.4. [http://www.jjj.de/fxt/] |
|---|
| 46 | n/a | */ |
|---|
| 47 | n/a | static inline void |
|---|
| 48 | n/a | bitreverse_permute(mpd_uint_t a[], mpd_size_t n) |
|---|
| 49 | n/a | { |
|---|
| 50 | n/a | mpd_size_t x = 0; |
|---|
| 51 | n/a | mpd_size_t r = 0; |
|---|
| 52 | n/a | mpd_uint_t t; |
|---|
| 53 | n/a | |
|---|
| 54 | n/a | do { /* Invariant: r = bitreverse(x) */ |
|---|
| 55 | n/a | if (r > x) { |
|---|
| 56 | n/a | t = a[x]; |
|---|
| 57 | n/a | a[x] = a[r]; |
|---|
| 58 | n/a | a[r] = t; |
|---|
| 59 | n/a | } |
|---|
| 60 | n/a | /* Flip trailing consecutive 1 bits and the first zero bit |
|---|
| 61 | n/a | * that absorbs a possible carry. */ |
|---|
| 62 | n/a | x += 1; |
|---|
| 63 | n/a | /* Mirror the operation on r: Flip n_trailing_zeros(x)+1 |
|---|
| 64 | n/a | high bits of r. */ |
|---|
| 65 | n/a | r ^= (n - (n >> (mpd_bsf(x)+1))); |
|---|
| 66 | n/a | /* The loop invariant is preserved. */ |
|---|
| 67 | n/a | } while (x < n); |
|---|
| 68 | n/a | } |
|---|
| 69 | n/a | |
|---|
| 70 | n/a | |
|---|
| 71 | n/a | /* Fast Number Theoretic Transform, decimation in frequency. */ |
|---|
| 72 | n/a | void |
|---|
| 73 | n/a | fnt_dif2(mpd_uint_t a[], mpd_size_t n, struct fnt_params *tparams) |
|---|
| 74 | n/a | { |
|---|
| 75 | n/a | mpd_uint_t *wtable = tparams->wtable; |
|---|
| 76 | n/a | mpd_uint_t umod; |
|---|
| 77 | n/a | #ifdef PPRO |
|---|
| 78 | n/a | double dmod; |
|---|
| 79 | n/a | uint32_t dinvmod[3]; |
|---|
| 80 | n/a | #endif |
|---|
| 81 | n/a | mpd_uint_t u0, u1, v0, v1; |
|---|
| 82 | n/a | mpd_uint_t w, w0, w1, wstep; |
|---|
| 83 | n/a | mpd_size_t m, mhalf; |
|---|
| 84 | n/a | mpd_size_t j, r; |
|---|
| 85 | n/a | |
|---|
| 86 | n/a | |
|---|
| 87 | n/a | assert(ispower2(n)); |
|---|
| 88 | n/a | assert(n >= 4); |
|---|
| 89 | n/a | |
|---|
| 90 | n/a | SETMODULUS(tparams->modnum); |
|---|
| 91 | n/a | |
|---|
| 92 | n/a | /* m == n */ |
|---|
| 93 | n/a | mhalf = n / 2; |
|---|
| 94 | n/a | for (j = 0; j < mhalf; j += 2) { |
|---|
| 95 | n/a | |
|---|
| 96 | n/a | w0 = wtable[j]; |
|---|
| 97 | n/a | w1 = wtable[j+1]; |
|---|
| 98 | n/a | |
|---|
| 99 | n/a | u0 = a[j]; |
|---|
| 100 | n/a | v0 = a[j+mhalf]; |
|---|
| 101 | n/a | |
|---|
| 102 | n/a | u1 = a[j+1]; |
|---|
| 103 | n/a | v1 = a[j+1+mhalf]; |
|---|
| 104 | n/a | |
|---|
| 105 | n/a | a[j] = addmod(u0, v0, umod); |
|---|
| 106 | n/a | v0 = submod(u0, v0, umod); |
|---|
| 107 | n/a | |
|---|
| 108 | n/a | a[j+1] = addmod(u1, v1, umod); |
|---|
| 109 | n/a | v1 = submod(u1, v1, umod); |
|---|
| 110 | n/a | |
|---|
| 111 | n/a | MULMOD2(&v0, w0, &v1, w1); |
|---|
| 112 | n/a | |
|---|
| 113 | n/a | a[j+mhalf] = v0; |
|---|
| 114 | n/a | a[j+1+mhalf] = v1; |
|---|
| 115 | n/a | |
|---|
| 116 | n/a | } |
|---|
| 117 | n/a | |
|---|
| 118 | n/a | wstep = 2; |
|---|
| 119 | n/a | for (m = n/2; m >= 2; m>>=1, wstep<<=1) { |
|---|
| 120 | n/a | |
|---|
| 121 | n/a | mhalf = m / 2; |
|---|
| 122 | n/a | |
|---|
| 123 | n/a | /* j == 0 */ |
|---|
| 124 | n/a | for (r = 0; r < n; r += 2*m) { |
|---|
| 125 | n/a | |
|---|
| 126 | n/a | u0 = a[r]; |
|---|
| 127 | n/a | v0 = a[r+mhalf]; |
|---|
| 128 | n/a | |
|---|
| 129 | n/a | u1 = a[m+r]; |
|---|
| 130 | n/a | v1 = a[m+r+mhalf]; |
|---|
| 131 | n/a | |
|---|
| 132 | n/a | a[r] = addmod(u0, v0, umod); |
|---|
| 133 | n/a | v0 = submod(u0, v0, umod); |
|---|
| 134 | n/a | |
|---|
| 135 | n/a | a[m+r] = addmod(u1, v1, umod); |
|---|
| 136 | n/a | v1 = submod(u1, v1, umod); |
|---|
| 137 | n/a | |
|---|
| 138 | n/a | a[r+mhalf] = v0; |
|---|
| 139 | n/a | a[m+r+mhalf] = v1; |
|---|
| 140 | n/a | } |
|---|
| 141 | n/a | |
|---|
| 142 | n/a | for (j = 1; j < mhalf; j++) { |
|---|
| 143 | n/a | |
|---|
| 144 | n/a | w = wtable[j*wstep]; |
|---|
| 145 | n/a | |
|---|
| 146 | n/a | for (r = 0; r < n; r += 2*m) { |
|---|
| 147 | n/a | |
|---|
| 148 | n/a | u0 = a[r+j]; |
|---|
| 149 | n/a | v0 = a[r+j+mhalf]; |
|---|
| 150 | n/a | |
|---|
| 151 | n/a | u1 = a[m+r+j]; |
|---|
| 152 | n/a | v1 = a[m+r+j+mhalf]; |
|---|
| 153 | n/a | |
|---|
| 154 | n/a | a[r+j] = addmod(u0, v0, umod); |
|---|
| 155 | n/a | v0 = submod(u0, v0, umod); |
|---|
| 156 | n/a | |
|---|
| 157 | n/a | a[m+r+j] = addmod(u1, v1, umod); |
|---|
| 158 | n/a | v1 = submod(u1, v1, umod); |
|---|
| 159 | n/a | |
|---|
| 160 | n/a | MULMOD2C(&v0, &v1, w); |
|---|
| 161 | n/a | |
|---|
| 162 | n/a | a[r+j+mhalf] = v0; |
|---|
| 163 | n/a | a[m+r+j+mhalf] = v1; |
|---|
| 164 | n/a | } |
|---|
| 165 | n/a | |
|---|
| 166 | n/a | } |
|---|
| 167 | n/a | |
|---|
| 168 | n/a | } |
|---|
| 169 | n/a | |
|---|
| 170 | n/a | bitreverse_permute(a, n); |
|---|
| 171 | n/a | } |
|---|
| 172 | n/a | |
|---|
| 173 | n/a | |
|---|