1 | n/a | """Test suite for statistics module, including helper NumericTestCase and |
---|
2 | n/a | approx_equal function. |
---|
3 | n/a | |
---|
4 | n/a | """ |
---|
5 | n/a | |
---|
6 | n/a | import collections |
---|
7 | n/a | import decimal |
---|
8 | n/a | import doctest |
---|
9 | n/a | import math |
---|
10 | n/a | import random |
---|
11 | n/a | import sys |
---|
12 | n/a | import unittest |
---|
13 | n/a | |
---|
14 | n/a | from decimal import Decimal |
---|
15 | n/a | from fractions import Fraction |
---|
16 | n/a | |
---|
17 | n/a | |
---|
18 | n/a | # Module to be tested. |
---|
19 | n/a | import statistics |
---|
20 | n/a | |
---|
21 | n/a | |
---|
22 | n/a | # === Helper functions and class === |
---|
23 | n/a | |
---|
24 | n/a | def sign(x): |
---|
25 | n/a | """Return -1.0 for negatives, including -0.0, otherwise +1.0.""" |
---|
26 | n/a | return math.copysign(1, x) |
---|
27 | n/a | |
---|
28 | n/a | def _nan_equal(a, b): |
---|
29 | n/a | """Return True if a and b are both the same kind of NAN. |
---|
30 | n/a | |
---|
31 | n/a | >>> _nan_equal(Decimal('NAN'), Decimal('NAN')) |
---|
32 | n/a | True |
---|
33 | n/a | >>> _nan_equal(Decimal('sNAN'), Decimal('sNAN')) |
---|
34 | n/a | True |
---|
35 | n/a | >>> _nan_equal(Decimal('NAN'), Decimal('sNAN')) |
---|
36 | n/a | False |
---|
37 | n/a | >>> _nan_equal(Decimal(42), Decimal('NAN')) |
---|
38 | n/a | False |
---|
39 | n/a | |
---|
40 | n/a | >>> _nan_equal(float('NAN'), float('NAN')) |
---|
41 | n/a | True |
---|
42 | n/a | >>> _nan_equal(float('NAN'), 0.5) |
---|
43 | n/a | False |
---|
44 | n/a | |
---|
45 | n/a | >>> _nan_equal(float('NAN'), Decimal('NAN')) |
---|
46 | n/a | False |
---|
47 | n/a | |
---|
48 | n/a | NAN payloads are not compared. |
---|
49 | n/a | """ |
---|
50 | n/a | if type(a) is not type(b): |
---|
51 | n/a | return False |
---|
52 | n/a | if isinstance(a, float): |
---|
53 | n/a | return math.isnan(a) and math.isnan(b) |
---|
54 | n/a | aexp = a.as_tuple()[2] |
---|
55 | n/a | bexp = b.as_tuple()[2] |
---|
56 | n/a | return (aexp == bexp) and (aexp in ('n', 'N')) # Both NAN or both sNAN. |
---|
57 | n/a | |
---|
58 | n/a | |
---|
59 | n/a | def _calc_errors(actual, expected): |
---|
60 | n/a | """Return the absolute and relative errors between two numbers. |
---|
61 | n/a | |
---|
62 | n/a | >>> _calc_errors(100, 75) |
---|
63 | n/a | (25, 0.25) |
---|
64 | n/a | >>> _calc_errors(100, 100) |
---|
65 | n/a | (0, 0.0) |
---|
66 | n/a | |
---|
67 | n/a | Returns the (absolute error, relative error) between the two arguments. |
---|
68 | n/a | """ |
---|
69 | n/a | base = max(abs(actual), abs(expected)) |
---|
70 | n/a | abs_err = abs(actual - expected) |
---|
71 | n/a | rel_err = abs_err/base if base else float('inf') |
---|
72 | n/a | return (abs_err, rel_err) |
---|
73 | n/a | |
---|
74 | n/a | |
---|
75 | n/a | def approx_equal(x, y, tol=1e-12, rel=1e-7): |
---|
76 | n/a | """approx_equal(x, y [, tol [, rel]]) => True|False |
---|
77 | n/a | |
---|
78 | n/a | Return True if numbers x and y are approximately equal, to within some |
---|
79 | n/a | margin of error, otherwise return False. Numbers which compare equal |
---|
80 | n/a | will also compare approximately equal. |
---|
81 | n/a | |
---|
82 | n/a | x is approximately equal to y if the difference between them is less than |
---|
83 | n/a | an absolute error tol or a relative error rel, whichever is bigger. |
---|
84 | n/a | |
---|
85 | n/a | If given, both tol and rel must be finite, non-negative numbers. If not |
---|
86 | n/a | given, default values are tol=1e-12 and rel=1e-7. |
---|
87 | n/a | |
---|
88 | n/a | >>> approx_equal(1.2589, 1.2587, tol=0.0003, rel=0) |
---|
89 | n/a | True |
---|
90 | n/a | >>> approx_equal(1.2589, 1.2587, tol=0.0001, rel=0) |
---|
91 | n/a | False |
---|
92 | n/a | |
---|
93 | n/a | Absolute error is defined as abs(x-y); if that is less than or equal to |
---|
94 | n/a | tol, x and y are considered approximately equal. |
---|
95 | n/a | |
---|
96 | n/a | Relative error is defined as abs((x-y)/x) or abs((x-y)/y), whichever is |
---|
97 | n/a | smaller, provided x or y are not zero. If that figure is less than or |
---|
98 | n/a | equal to rel, x and y are considered approximately equal. |
---|
99 | n/a | |
---|
100 | n/a | Complex numbers are not directly supported. If you wish to compare to |
---|
101 | n/a | complex numbers, extract their real and imaginary parts and compare them |
---|
102 | n/a | individually. |
---|
103 | n/a | |
---|
104 | n/a | NANs always compare unequal, even with themselves. Infinities compare |
---|
105 | n/a | approximately equal if they have the same sign (both positive or both |
---|
106 | n/a | negative). Infinities with different signs compare unequal; so do |
---|
107 | n/a | comparisons of infinities with finite numbers. |
---|
108 | n/a | """ |
---|
109 | n/a | if tol < 0 or rel < 0: |
---|
110 | n/a | raise ValueError('error tolerances must be non-negative') |
---|
111 | n/a | # NANs are never equal to anything, approximately or otherwise. |
---|
112 | n/a | if math.isnan(x) or math.isnan(y): |
---|
113 | n/a | return False |
---|
114 | n/a | # Numbers which compare equal also compare approximately equal. |
---|
115 | n/a | if x == y: |
---|
116 | n/a | # This includes the case of two infinities with the same sign. |
---|
117 | n/a | return True |
---|
118 | n/a | if math.isinf(x) or math.isinf(y): |
---|
119 | n/a | # This includes the case of two infinities of opposite sign, or |
---|
120 | n/a | # one infinity and one finite number. |
---|
121 | n/a | return False |
---|
122 | n/a | # Two finite numbers. |
---|
123 | n/a | actual_error = abs(x - y) |
---|
124 | n/a | allowed_error = max(tol, rel*max(abs(x), abs(y))) |
---|
125 | n/a | return actual_error <= allowed_error |
---|
126 | n/a | |
---|
127 | n/a | |
---|
128 | n/a | # This class exists only as somewhere to stick a docstring containing |
---|
129 | n/a | # doctests. The following docstring and tests were originally in a separate |
---|
130 | n/a | # module. Now that it has been merged in here, I need somewhere to hang the. |
---|
131 | n/a | # docstring. Ultimately, this class will die, and the information below will |
---|
132 | n/a | # either become redundant, or be moved into more appropriate places. |
---|
133 | n/a | class _DoNothing: |
---|
134 | n/a | """ |
---|
135 | n/a | When doing numeric work, especially with floats, exact equality is often |
---|
136 | n/a | not what you want. Due to round-off error, it is often a bad idea to try |
---|
137 | n/a | to compare floats with equality. Instead the usual procedure is to test |
---|
138 | n/a | them with some (hopefully small!) allowance for error. |
---|
139 | n/a | |
---|
140 | n/a | The ``approx_equal`` function allows you to specify either an absolute |
---|
141 | n/a | error tolerance, or a relative error, or both. |
---|
142 | n/a | |
---|
143 | n/a | Absolute error tolerances are simple, but you need to know the magnitude |
---|
144 | n/a | of the quantities being compared: |
---|
145 | n/a | |
---|
146 | n/a | >>> approx_equal(12.345, 12.346, tol=1e-3) |
---|
147 | n/a | True |
---|
148 | n/a | >>> approx_equal(12.345e6, 12.346e6, tol=1e-3) # tol is too small. |
---|
149 | n/a | False |
---|
150 | n/a | |
---|
151 | n/a | Relative errors are more suitable when the values you are comparing can |
---|
152 | n/a | vary in magnitude: |
---|
153 | n/a | |
---|
154 | n/a | >>> approx_equal(12.345, 12.346, rel=1e-4) |
---|
155 | n/a | True |
---|
156 | n/a | >>> approx_equal(12.345e6, 12.346e6, rel=1e-4) |
---|
157 | n/a | True |
---|
158 | n/a | |
---|
159 | n/a | but a naive implementation of relative error testing can run into trouble |
---|
160 | n/a | around zero. |
---|
161 | n/a | |
---|
162 | n/a | If you supply both an absolute tolerance and a relative error, the |
---|
163 | n/a | comparison succeeds if either individual test succeeds: |
---|
164 | n/a | |
---|
165 | n/a | >>> approx_equal(12.345e6, 12.346e6, tol=1e-3, rel=1e-4) |
---|
166 | n/a | True |
---|
167 | n/a | |
---|
168 | n/a | """ |
---|
169 | n/a | pass |
---|
170 | n/a | |
---|
171 | n/a | |
---|
172 | n/a | |
---|
173 | n/a | # We prefer this for testing numeric values that may not be exactly equal, |
---|
174 | n/a | # and avoid using TestCase.assertAlmostEqual, because it sucks :-) |
---|
175 | n/a | |
---|
176 | n/a | class NumericTestCase(unittest.TestCase): |
---|
177 | n/a | """Unit test class for numeric work. |
---|
178 | n/a | |
---|
179 | n/a | This subclasses TestCase. In addition to the standard method |
---|
180 | n/a | ``TestCase.assertAlmostEqual``, ``assertApproxEqual`` is provided. |
---|
181 | n/a | """ |
---|
182 | n/a | # By default, we expect exact equality, unless overridden. |
---|
183 | n/a | tol = rel = 0 |
---|
184 | n/a | |
---|
185 | n/a | def assertApproxEqual( |
---|
186 | n/a | self, first, second, tol=None, rel=None, msg=None |
---|
187 | n/a | ): |
---|
188 | n/a | """Test passes if ``first`` and ``second`` are approximately equal. |
---|
189 | n/a | |
---|
190 | n/a | This test passes if ``first`` and ``second`` are equal to |
---|
191 | n/a | within ``tol``, an absolute error, or ``rel``, a relative error. |
---|
192 | n/a | |
---|
193 | n/a | If either ``tol`` or ``rel`` are None or not given, they default to |
---|
194 | n/a | test attributes of the same name (by default, 0). |
---|
195 | n/a | |
---|
196 | n/a | The objects may be either numbers, or sequences of numbers. Sequences |
---|
197 | n/a | are tested element-by-element. |
---|
198 | n/a | |
---|
199 | n/a | >>> class MyTest(NumericTestCase): |
---|
200 | n/a | ... def test_number(self): |
---|
201 | n/a | ... x = 1.0/6 |
---|
202 | n/a | ... y = sum([x]*6) |
---|
203 | n/a | ... self.assertApproxEqual(y, 1.0, tol=1e-15) |
---|
204 | n/a | ... def test_sequence(self): |
---|
205 | n/a | ... a = [1.001, 1.001e-10, 1.001e10] |
---|
206 | n/a | ... b = [1.0, 1e-10, 1e10] |
---|
207 | n/a | ... self.assertApproxEqual(a, b, rel=1e-3) |
---|
208 | n/a | ... |
---|
209 | n/a | >>> import unittest |
---|
210 | n/a | >>> from io import StringIO # Suppress test runner output. |
---|
211 | n/a | >>> suite = unittest.TestLoader().loadTestsFromTestCase(MyTest) |
---|
212 | n/a | >>> unittest.TextTestRunner(stream=StringIO()).run(suite) |
---|
213 | n/a | <unittest.runner.TextTestResult run=2 errors=0 failures=0> |
---|
214 | n/a | |
---|
215 | n/a | """ |
---|
216 | n/a | if tol is None: |
---|
217 | n/a | tol = self.tol |
---|
218 | n/a | if rel is None: |
---|
219 | n/a | rel = self.rel |
---|
220 | n/a | if ( |
---|
221 | n/a | isinstance(first, collections.Sequence) and |
---|
222 | n/a | isinstance(second, collections.Sequence) |
---|
223 | n/a | ): |
---|
224 | n/a | check = self._check_approx_seq |
---|
225 | n/a | else: |
---|
226 | n/a | check = self._check_approx_num |
---|
227 | n/a | check(first, second, tol, rel, msg) |
---|
228 | n/a | |
---|
229 | n/a | def _check_approx_seq(self, first, second, tol, rel, msg): |
---|
230 | n/a | if len(first) != len(second): |
---|
231 | n/a | standardMsg = ( |
---|
232 | n/a | "sequences differ in length: %d items != %d items" |
---|
233 | n/a | % (len(first), len(second)) |
---|
234 | n/a | ) |
---|
235 | n/a | msg = self._formatMessage(msg, standardMsg) |
---|
236 | n/a | raise self.failureException(msg) |
---|
237 | n/a | for i, (a,e) in enumerate(zip(first, second)): |
---|
238 | n/a | self._check_approx_num(a, e, tol, rel, msg, i) |
---|
239 | n/a | |
---|
240 | n/a | def _check_approx_num(self, first, second, tol, rel, msg, idx=None): |
---|
241 | n/a | if approx_equal(first, second, tol, rel): |
---|
242 | n/a | # Test passes. Return early, we are done. |
---|
243 | n/a | return None |
---|
244 | n/a | # Otherwise we failed. |
---|
245 | n/a | standardMsg = self._make_std_err_msg(first, second, tol, rel, idx) |
---|
246 | n/a | msg = self._formatMessage(msg, standardMsg) |
---|
247 | n/a | raise self.failureException(msg) |
---|
248 | n/a | |
---|
249 | n/a | @staticmethod |
---|
250 | n/a | def _make_std_err_msg(first, second, tol, rel, idx): |
---|
251 | n/a | # Create the standard error message for approx_equal failures. |
---|
252 | n/a | assert first != second |
---|
253 | n/a | template = ( |
---|
254 | n/a | ' %r != %r\n' |
---|
255 | n/a | ' values differ by more than tol=%r and rel=%r\n' |
---|
256 | n/a | ' -> absolute error = %r\n' |
---|
257 | n/a | ' -> relative error = %r' |
---|
258 | n/a | ) |
---|
259 | n/a | if idx is not None: |
---|
260 | n/a | header = 'numeric sequences first differ at index %d.\n' % idx |
---|
261 | n/a | template = header + template |
---|
262 | n/a | # Calculate actual errors: |
---|
263 | n/a | abs_err, rel_err = _calc_errors(first, second) |
---|
264 | n/a | return template % (first, second, tol, rel, abs_err, rel_err) |
---|
265 | n/a | |
---|
266 | n/a | |
---|
267 | n/a | # ======================== |
---|
268 | n/a | # === Test the helpers === |
---|
269 | n/a | # ======================== |
---|
270 | n/a | |
---|
271 | n/a | class TestSign(unittest.TestCase): |
---|
272 | n/a | """Test that the helper function sign() works correctly.""" |
---|
273 | n/a | def testZeroes(self): |
---|
274 | n/a | # Test that signed zeroes report their sign correctly. |
---|
275 | n/a | self.assertEqual(sign(0.0), +1) |
---|
276 | n/a | self.assertEqual(sign(-0.0), -1) |
---|
277 | n/a | |
---|
278 | n/a | |
---|
279 | n/a | # --- Tests for approx_equal --- |
---|
280 | n/a | |
---|
281 | n/a | class ApproxEqualSymmetryTest(unittest.TestCase): |
---|
282 | n/a | # Test symmetry of approx_equal. |
---|
283 | n/a | |
---|
284 | n/a | def test_relative_symmetry(self): |
---|
285 | n/a | # Check that approx_equal treats relative error symmetrically. |
---|
286 | n/a | # (a-b)/a is usually not equal to (a-b)/b. Ensure that this |
---|
287 | n/a | # doesn't matter. |
---|
288 | n/a | # |
---|
289 | n/a | # Note: the reason for this test is that an early version |
---|
290 | n/a | # of approx_equal was not symmetric. A relative error test |
---|
291 | n/a | # would pass, or fail, depending on which value was passed |
---|
292 | n/a | # as the first argument. |
---|
293 | n/a | # |
---|
294 | n/a | args1 = [2456, 37.8, -12.45, Decimal('2.54'), Fraction(17, 54)] |
---|
295 | n/a | args2 = [2459, 37.2, -12.41, Decimal('2.59'), Fraction(15, 54)] |
---|
296 | n/a | assert len(args1) == len(args2) |
---|
297 | n/a | for a, b in zip(args1, args2): |
---|
298 | n/a | self.do_relative_symmetry(a, b) |
---|
299 | n/a | |
---|
300 | n/a | def do_relative_symmetry(self, a, b): |
---|
301 | n/a | a, b = min(a, b), max(a, b) |
---|
302 | n/a | assert a < b |
---|
303 | n/a | delta = b - a # The absolute difference between the values. |
---|
304 | n/a | rel_err1, rel_err2 = abs(delta/a), abs(delta/b) |
---|
305 | n/a | # Choose an error margin halfway between the two. |
---|
306 | n/a | rel = (rel_err1 + rel_err2)/2 |
---|
307 | n/a | # Now see that values a and b compare approx equal regardless of |
---|
308 | n/a | # which is given first. |
---|
309 | n/a | self.assertTrue(approx_equal(a, b, tol=0, rel=rel)) |
---|
310 | n/a | self.assertTrue(approx_equal(b, a, tol=0, rel=rel)) |
---|
311 | n/a | |
---|
312 | n/a | def test_symmetry(self): |
---|
313 | n/a | # Test that approx_equal(a, b) == approx_equal(b, a) |
---|
314 | n/a | args = [-23, -2, 5, 107, 93568] |
---|
315 | n/a | delta = 2 |
---|
316 | n/a | for a in args: |
---|
317 | n/a | for type_ in (int, float, Decimal, Fraction): |
---|
318 | n/a | x = type_(a)*100 |
---|
319 | n/a | y = x + delta |
---|
320 | n/a | r = abs(delta/max(x, y)) |
---|
321 | n/a | # There are five cases to check: |
---|
322 | n/a | # 1) actual error <= tol, <= rel |
---|
323 | n/a | self.do_symmetry_test(x, y, tol=delta, rel=r) |
---|
324 | n/a | self.do_symmetry_test(x, y, tol=delta+1, rel=2*r) |
---|
325 | n/a | # 2) actual error > tol, > rel |
---|
326 | n/a | self.do_symmetry_test(x, y, tol=delta-1, rel=r/2) |
---|
327 | n/a | # 3) actual error <= tol, > rel |
---|
328 | n/a | self.do_symmetry_test(x, y, tol=delta, rel=r/2) |
---|
329 | n/a | # 4) actual error > tol, <= rel |
---|
330 | n/a | self.do_symmetry_test(x, y, tol=delta-1, rel=r) |
---|
331 | n/a | self.do_symmetry_test(x, y, tol=delta-1, rel=2*r) |
---|
332 | n/a | # 5) exact equality test |
---|
333 | n/a | self.do_symmetry_test(x, x, tol=0, rel=0) |
---|
334 | n/a | self.do_symmetry_test(x, y, tol=0, rel=0) |
---|
335 | n/a | |
---|
336 | n/a | def do_symmetry_test(self, a, b, tol, rel): |
---|
337 | n/a | template = "approx_equal comparisons don't match for %r" |
---|
338 | n/a | flag1 = approx_equal(a, b, tol, rel) |
---|
339 | n/a | flag2 = approx_equal(b, a, tol, rel) |
---|
340 | n/a | self.assertEqual(flag1, flag2, template.format((a, b, tol, rel))) |
---|
341 | n/a | |
---|
342 | n/a | |
---|
343 | n/a | class ApproxEqualExactTest(unittest.TestCase): |
---|
344 | n/a | # Test the approx_equal function with exactly equal values. |
---|
345 | n/a | # Equal values should compare as approximately equal. |
---|
346 | n/a | # Test cases for exactly equal values, which should compare approx |
---|
347 | n/a | # equal regardless of the error tolerances given. |
---|
348 | n/a | |
---|
349 | n/a | def do_exactly_equal_test(self, x, tol, rel): |
---|
350 | n/a | result = approx_equal(x, x, tol=tol, rel=rel) |
---|
351 | n/a | self.assertTrue(result, 'equality failure for x=%r' % x) |
---|
352 | n/a | result = approx_equal(-x, -x, tol=tol, rel=rel) |
---|
353 | n/a | self.assertTrue(result, 'equality failure for x=%r' % -x) |
---|
354 | n/a | |
---|
355 | n/a | def test_exactly_equal_ints(self): |
---|
356 | n/a | # Test that equal int values are exactly equal. |
---|
357 | n/a | for n in [42, 19740, 14974, 230, 1795, 700245, 36587]: |
---|
358 | n/a | self.do_exactly_equal_test(n, 0, 0) |
---|
359 | n/a | |
---|
360 | n/a | def test_exactly_equal_floats(self): |
---|
361 | n/a | # Test that equal float values are exactly equal. |
---|
362 | n/a | for x in [0.42, 1.9740, 1497.4, 23.0, 179.5, 70.0245, 36.587]: |
---|
363 | n/a | self.do_exactly_equal_test(x, 0, 0) |
---|
364 | n/a | |
---|
365 | n/a | def test_exactly_equal_fractions(self): |
---|
366 | n/a | # Test that equal Fraction values are exactly equal. |
---|
367 | n/a | F = Fraction |
---|
368 | n/a | for f in [F(1, 2), F(0), F(5, 3), F(9, 7), F(35, 36), F(3, 7)]: |
---|
369 | n/a | self.do_exactly_equal_test(f, 0, 0) |
---|
370 | n/a | |
---|
371 | n/a | def test_exactly_equal_decimals(self): |
---|
372 | n/a | # Test that equal Decimal values are exactly equal. |
---|
373 | n/a | D = Decimal |
---|
374 | n/a | for d in map(D, "8.2 31.274 912.04 16.745 1.2047".split()): |
---|
375 | n/a | self.do_exactly_equal_test(d, 0, 0) |
---|
376 | n/a | |
---|
377 | n/a | def test_exactly_equal_absolute(self): |
---|
378 | n/a | # Test that equal values are exactly equal with an absolute error. |
---|
379 | n/a | for n in [16, 1013, 1372, 1198, 971, 4]: |
---|
380 | n/a | # Test as ints. |
---|
381 | n/a | self.do_exactly_equal_test(n, 0.01, 0) |
---|
382 | n/a | # Test as floats. |
---|
383 | n/a | self.do_exactly_equal_test(n/10, 0.01, 0) |
---|
384 | n/a | # Test as Fractions. |
---|
385 | n/a | f = Fraction(n, 1234) |
---|
386 | n/a | self.do_exactly_equal_test(f, 0.01, 0) |
---|
387 | n/a | |
---|
388 | n/a | def test_exactly_equal_absolute_decimals(self): |
---|
389 | n/a | # Test equal Decimal values are exactly equal with an absolute error. |
---|
390 | n/a | self.do_exactly_equal_test(Decimal("3.571"), Decimal("0.01"), 0) |
---|
391 | n/a | self.do_exactly_equal_test(-Decimal("81.3971"), Decimal("0.01"), 0) |
---|
392 | n/a | |
---|
393 | n/a | def test_exactly_equal_relative(self): |
---|
394 | n/a | # Test that equal values are exactly equal with a relative error. |
---|
395 | n/a | for x in [8347, 101.3, -7910.28, Fraction(5, 21)]: |
---|
396 | n/a | self.do_exactly_equal_test(x, 0, 0.01) |
---|
397 | n/a | self.do_exactly_equal_test(Decimal("11.68"), 0, Decimal("0.01")) |
---|
398 | n/a | |
---|
399 | n/a | def test_exactly_equal_both(self): |
---|
400 | n/a | # Test that equal values are equal when both tol and rel are given. |
---|
401 | n/a | for x in [41017, 16.742, -813.02, Fraction(3, 8)]: |
---|
402 | n/a | self.do_exactly_equal_test(x, 0.1, 0.01) |
---|
403 | n/a | D = Decimal |
---|
404 | n/a | self.do_exactly_equal_test(D("7.2"), D("0.1"), D("0.01")) |
---|
405 | n/a | |
---|
406 | n/a | |
---|
407 | n/a | class ApproxEqualUnequalTest(unittest.TestCase): |
---|
408 | n/a | # Unequal values should compare unequal with zero error tolerances. |
---|
409 | n/a | # Test cases for unequal values, with exact equality test. |
---|
410 | n/a | |
---|
411 | n/a | def do_exactly_unequal_test(self, x): |
---|
412 | n/a | for a in (x, -x): |
---|
413 | n/a | result = approx_equal(a, a+1, tol=0, rel=0) |
---|
414 | n/a | self.assertFalse(result, 'inequality failure for x=%r' % a) |
---|
415 | n/a | |
---|
416 | n/a | def test_exactly_unequal_ints(self): |
---|
417 | n/a | # Test unequal int values are unequal with zero error tolerance. |
---|
418 | n/a | for n in [951, 572305, 478, 917, 17240]: |
---|
419 | n/a | self.do_exactly_unequal_test(n) |
---|
420 | n/a | |
---|
421 | n/a | def test_exactly_unequal_floats(self): |
---|
422 | n/a | # Test unequal float values are unequal with zero error tolerance. |
---|
423 | n/a | for x in [9.51, 5723.05, 47.8, 9.17, 17.24]: |
---|
424 | n/a | self.do_exactly_unequal_test(x) |
---|
425 | n/a | |
---|
426 | n/a | def test_exactly_unequal_fractions(self): |
---|
427 | n/a | # Test that unequal Fractions are unequal with zero error tolerance. |
---|
428 | n/a | F = Fraction |
---|
429 | n/a | for f in [F(1, 5), F(7, 9), F(12, 11), F(101, 99023)]: |
---|
430 | n/a | self.do_exactly_unequal_test(f) |
---|
431 | n/a | |
---|
432 | n/a | def test_exactly_unequal_decimals(self): |
---|
433 | n/a | # Test that unequal Decimals are unequal with zero error tolerance. |
---|
434 | n/a | for d in map(Decimal, "3.1415 298.12 3.47 18.996 0.00245".split()): |
---|
435 | n/a | self.do_exactly_unequal_test(d) |
---|
436 | n/a | |
---|
437 | n/a | |
---|
438 | n/a | class ApproxEqualInexactTest(unittest.TestCase): |
---|
439 | n/a | # Inexact test cases for approx_error. |
---|
440 | n/a | # Test cases when comparing two values that are not exactly equal. |
---|
441 | n/a | |
---|
442 | n/a | # === Absolute error tests === |
---|
443 | n/a | |
---|
444 | n/a | def do_approx_equal_abs_test(self, x, delta): |
---|
445 | n/a | template = "Test failure for x={!r}, y={!r}" |
---|
446 | n/a | for y in (x + delta, x - delta): |
---|
447 | n/a | msg = template.format(x, y) |
---|
448 | n/a | self.assertTrue(approx_equal(x, y, tol=2*delta, rel=0), msg) |
---|
449 | n/a | self.assertFalse(approx_equal(x, y, tol=delta/2, rel=0), msg) |
---|
450 | n/a | |
---|
451 | n/a | def test_approx_equal_absolute_ints(self): |
---|
452 | n/a | # Test approximate equality of ints with an absolute error. |
---|
453 | n/a | for n in [-10737, -1975, -7, -2, 0, 1, 9, 37, 423, 9874, 23789110]: |
---|
454 | n/a | self.do_approx_equal_abs_test(n, 10) |
---|
455 | n/a | self.do_approx_equal_abs_test(n, 2) |
---|
456 | n/a | |
---|
457 | n/a | def test_approx_equal_absolute_floats(self): |
---|
458 | n/a | # Test approximate equality of floats with an absolute error. |
---|
459 | n/a | for x in [-284.126, -97.1, -3.4, -2.15, 0.5, 1.0, 7.8, 4.23, 3817.4]: |
---|
460 | n/a | self.do_approx_equal_abs_test(x, 1.5) |
---|
461 | n/a | self.do_approx_equal_abs_test(x, 0.01) |
---|
462 | n/a | self.do_approx_equal_abs_test(x, 0.0001) |
---|
463 | n/a | |
---|
464 | n/a | def test_approx_equal_absolute_fractions(self): |
---|
465 | n/a | # Test approximate equality of Fractions with an absolute error. |
---|
466 | n/a | delta = Fraction(1, 29) |
---|
467 | n/a | numerators = [-84, -15, -2, -1, 0, 1, 5, 17, 23, 34, 71] |
---|
468 | n/a | for f in (Fraction(n, 29) for n in numerators): |
---|
469 | n/a | self.do_approx_equal_abs_test(f, delta) |
---|
470 | n/a | self.do_approx_equal_abs_test(f, float(delta)) |
---|
471 | n/a | |
---|
472 | n/a | def test_approx_equal_absolute_decimals(self): |
---|
473 | n/a | # Test approximate equality of Decimals with an absolute error. |
---|
474 | n/a | delta = Decimal("0.01") |
---|
475 | n/a | for d in map(Decimal, "1.0 3.5 36.08 61.79 7912.3648".split()): |
---|
476 | n/a | self.do_approx_equal_abs_test(d, delta) |
---|
477 | n/a | self.do_approx_equal_abs_test(-d, delta) |
---|
478 | n/a | |
---|
479 | n/a | def test_cross_zero(self): |
---|
480 | n/a | # Test for the case of the two values having opposite signs. |
---|
481 | n/a | self.assertTrue(approx_equal(1e-5, -1e-5, tol=1e-4, rel=0)) |
---|
482 | n/a | |
---|
483 | n/a | # === Relative error tests === |
---|
484 | n/a | |
---|
485 | n/a | def do_approx_equal_rel_test(self, x, delta): |
---|
486 | n/a | template = "Test failure for x={!r}, y={!r}" |
---|
487 | n/a | for y in (x*(1+delta), x*(1-delta)): |
---|
488 | n/a | msg = template.format(x, y) |
---|
489 | n/a | self.assertTrue(approx_equal(x, y, tol=0, rel=2*delta), msg) |
---|
490 | n/a | self.assertFalse(approx_equal(x, y, tol=0, rel=delta/2), msg) |
---|
491 | n/a | |
---|
492 | n/a | def test_approx_equal_relative_ints(self): |
---|
493 | n/a | # Test approximate equality of ints with a relative error. |
---|
494 | n/a | self.assertTrue(approx_equal(64, 47, tol=0, rel=0.36)) |
---|
495 | n/a | self.assertTrue(approx_equal(64, 47, tol=0, rel=0.37)) |
---|
496 | n/a | # --- |
---|
497 | n/a | self.assertTrue(approx_equal(449, 512, tol=0, rel=0.125)) |
---|
498 | n/a | self.assertTrue(approx_equal(448, 512, tol=0, rel=0.125)) |
---|
499 | n/a | self.assertFalse(approx_equal(447, 512, tol=0, rel=0.125)) |
---|
500 | n/a | |
---|
501 | n/a | def test_approx_equal_relative_floats(self): |
---|
502 | n/a | # Test approximate equality of floats with a relative error. |
---|
503 | n/a | for x in [-178.34, -0.1, 0.1, 1.0, 36.97, 2847.136, 9145.074]: |
---|
504 | n/a | self.do_approx_equal_rel_test(x, 0.02) |
---|
505 | n/a | self.do_approx_equal_rel_test(x, 0.0001) |
---|
506 | n/a | |
---|
507 | n/a | def test_approx_equal_relative_fractions(self): |
---|
508 | n/a | # Test approximate equality of Fractions with a relative error. |
---|
509 | n/a | F = Fraction |
---|
510 | n/a | delta = Fraction(3, 8) |
---|
511 | n/a | for f in [F(3, 84), F(17, 30), F(49, 50), F(92, 85)]: |
---|
512 | n/a | for d in (delta, float(delta)): |
---|
513 | n/a | self.do_approx_equal_rel_test(f, d) |
---|
514 | n/a | self.do_approx_equal_rel_test(-f, d) |
---|
515 | n/a | |
---|
516 | n/a | def test_approx_equal_relative_decimals(self): |
---|
517 | n/a | # Test approximate equality of Decimals with a relative error. |
---|
518 | n/a | for d in map(Decimal, "0.02 1.0 5.7 13.67 94.138 91027.9321".split()): |
---|
519 | n/a | self.do_approx_equal_rel_test(d, Decimal("0.001")) |
---|
520 | n/a | self.do_approx_equal_rel_test(-d, Decimal("0.05")) |
---|
521 | n/a | |
---|
522 | n/a | # === Both absolute and relative error tests === |
---|
523 | n/a | |
---|
524 | n/a | # There are four cases to consider: |
---|
525 | n/a | # 1) actual error <= both absolute and relative error |
---|
526 | n/a | # 2) actual error <= absolute error but > relative error |
---|
527 | n/a | # 3) actual error <= relative error but > absolute error |
---|
528 | n/a | # 4) actual error > both absolute and relative error |
---|
529 | n/a | |
---|
530 | n/a | def do_check_both(self, a, b, tol, rel, tol_flag, rel_flag): |
---|
531 | n/a | check = self.assertTrue if tol_flag else self.assertFalse |
---|
532 | n/a | check(approx_equal(a, b, tol=tol, rel=0)) |
---|
533 | n/a | check = self.assertTrue if rel_flag else self.assertFalse |
---|
534 | n/a | check(approx_equal(a, b, tol=0, rel=rel)) |
---|
535 | n/a | check = self.assertTrue if (tol_flag or rel_flag) else self.assertFalse |
---|
536 | n/a | check(approx_equal(a, b, tol=tol, rel=rel)) |
---|
537 | n/a | |
---|
538 | n/a | def test_approx_equal_both1(self): |
---|
539 | n/a | # Test actual error <= both absolute and relative error. |
---|
540 | n/a | self.do_check_both(7.955, 7.952, 0.004, 3.8e-4, True, True) |
---|
541 | n/a | self.do_check_both(-7.387, -7.386, 0.002, 0.0002, True, True) |
---|
542 | n/a | |
---|
543 | n/a | def test_approx_equal_both2(self): |
---|
544 | n/a | # Test actual error <= absolute error but > relative error. |
---|
545 | n/a | self.do_check_both(7.955, 7.952, 0.004, 3.7e-4, True, False) |
---|
546 | n/a | |
---|
547 | n/a | def test_approx_equal_both3(self): |
---|
548 | n/a | # Test actual error <= relative error but > absolute error. |
---|
549 | n/a | self.do_check_both(7.955, 7.952, 0.001, 3.8e-4, False, True) |
---|
550 | n/a | |
---|
551 | n/a | def test_approx_equal_both4(self): |
---|
552 | n/a | # Test actual error > both absolute and relative error. |
---|
553 | n/a | self.do_check_both(2.78, 2.75, 0.01, 0.001, False, False) |
---|
554 | n/a | self.do_check_both(971.44, 971.47, 0.02, 3e-5, False, False) |
---|
555 | n/a | |
---|
556 | n/a | |
---|
557 | n/a | class ApproxEqualSpecialsTest(unittest.TestCase): |
---|
558 | n/a | # Test approx_equal with NANs and INFs and zeroes. |
---|
559 | n/a | |
---|
560 | n/a | def test_inf(self): |
---|
561 | n/a | for type_ in (float, Decimal): |
---|
562 | n/a | inf = type_('inf') |
---|
563 | n/a | self.assertTrue(approx_equal(inf, inf)) |
---|
564 | n/a | self.assertTrue(approx_equal(inf, inf, 0, 0)) |
---|
565 | n/a | self.assertTrue(approx_equal(inf, inf, 1, 0.01)) |
---|
566 | n/a | self.assertTrue(approx_equal(-inf, -inf)) |
---|
567 | n/a | self.assertFalse(approx_equal(inf, -inf)) |
---|
568 | n/a | self.assertFalse(approx_equal(inf, 1000)) |
---|
569 | n/a | |
---|
570 | n/a | def test_nan(self): |
---|
571 | n/a | for type_ in (float, Decimal): |
---|
572 | n/a | nan = type_('nan') |
---|
573 | n/a | for other in (nan, type_('inf'), 1000): |
---|
574 | n/a | self.assertFalse(approx_equal(nan, other)) |
---|
575 | n/a | |
---|
576 | n/a | def test_float_zeroes(self): |
---|
577 | n/a | nzero = math.copysign(0.0, -1) |
---|
578 | n/a | self.assertTrue(approx_equal(nzero, 0.0, tol=0.1, rel=0.1)) |
---|
579 | n/a | |
---|
580 | n/a | def test_decimal_zeroes(self): |
---|
581 | n/a | nzero = Decimal("-0.0") |
---|
582 | n/a | self.assertTrue(approx_equal(nzero, Decimal(0), tol=0.1, rel=0.1)) |
---|
583 | n/a | |
---|
584 | n/a | |
---|
585 | n/a | class TestApproxEqualErrors(unittest.TestCase): |
---|
586 | n/a | # Test error conditions of approx_equal. |
---|
587 | n/a | |
---|
588 | n/a | def test_bad_tol(self): |
---|
589 | n/a | # Test negative tol raises. |
---|
590 | n/a | self.assertRaises(ValueError, approx_equal, 100, 100, -1, 0.1) |
---|
591 | n/a | |
---|
592 | n/a | def test_bad_rel(self): |
---|
593 | n/a | # Test negative rel raises. |
---|
594 | n/a | self.assertRaises(ValueError, approx_equal, 100, 100, 1, -0.1) |
---|
595 | n/a | |
---|
596 | n/a | |
---|
597 | n/a | # --- Tests for NumericTestCase --- |
---|
598 | n/a | |
---|
599 | n/a | # The formatting routine that generates the error messages is complex enough |
---|
600 | n/a | # that it too needs testing. |
---|
601 | n/a | |
---|
602 | n/a | class TestNumericTestCase(unittest.TestCase): |
---|
603 | n/a | # The exact wording of NumericTestCase error messages is *not* guaranteed, |
---|
604 | n/a | # but we need to give them some sort of test to ensure that they are |
---|
605 | n/a | # generated correctly. As a compromise, we look for specific substrings |
---|
606 | n/a | # that are expected to be found even if the overall error message changes. |
---|
607 | n/a | |
---|
608 | n/a | def do_test(self, args): |
---|
609 | n/a | actual_msg = NumericTestCase._make_std_err_msg(*args) |
---|
610 | n/a | expected = self.generate_substrings(*args) |
---|
611 | n/a | for substring in expected: |
---|
612 | n/a | self.assertIn(substring, actual_msg) |
---|
613 | n/a | |
---|
614 | n/a | def test_numerictestcase_is_testcase(self): |
---|
615 | n/a | # Ensure that NumericTestCase actually is a TestCase. |
---|
616 | n/a | self.assertTrue(issubclass(NumericTestCase, unittest.TestCase)) |
---|
617 | n/a | |
---|
618 | n/a | def test_error_msg_numeric(self): |
---|
619 | n/a | # Test the error message generated for numeric comparisons. |
---|
620 | n/a | args = (2.5, 4.0, 0.5, 0.25, None) |
---|
621 | n/a | self.do_test(args) |
---|
622 | n/a | |
---|
623 | n/a | def test_error_msg_sequence(self): |
---|
624 | n/a | # Test the error message generated for sequence comparisons. |
---|
625 | n/a | args = (3.75, 8.25, 1.25, 0.5, 7) |
---|
626 | n/a | self.do_test(args) |
---|
627 | n/a | |
---|
628 | n/a | def generate_substrings(self, first, second, tol, rel, idx): |
---|
629 | n/a | """Return substrings we expect to see in error messages.""" |
---|
630 | n/a | abs_err, rel_err = _calc_errors(first, second) |
---|
631 | n/a | substrings = [ |
---|
632 | n/a | 'tol=%r' % tol, |
---|
633 | n/a | 'rel=%r' % rel, |
---|
634 | n/a | 'absolute error = %r' % abs_err, |
---|
635 | n/a | 'relative error = %r' % rel_err, |
---|
636 | n/a | ] |
---|
637 | n/a | if idx is not None: |
---|
638 | n/a | substrings.append('differ at index %d' % idx) |
---|
639 | n/a | return substrings |
---|
640 | n/a | |
---|
641 | n/a | |
---|
642 | n/a | # ======================================= |
---|
643 | n/a | # === Tests for the statistics module === |
---|
644 | n/a | # ======================================= |
---|
645 | n/a | |
---|
646 | n/a | |
---|
647 | n/a | class GlobalsTest(unittest.TestCase): |
---|
648 | n/a | module = statistics |
---|
649 | n/a | expected_metadata = ["__doc__", "__all__"] |
---|
650 | n/a | |
---|
651 | n/a | def test_meta(self): |
---|
652 | n/a | # Test for the existence of metadata. |
---|
653 | n/a | for meta in self.expected_metadata: |
---|
654 | n/a | self.assertTrue(hasattr(self.module, meta), |
---|
655 | n/a | "%s not present" % meta) |
---|
656 | n/a | |
---|
657 | n/a | def test_check_all(self): |
---|
658 | n/a | # Check everything in __all__ exists and is public. |
---|
659 | n/a | module = self.module |
---|
660 | n/a | for name in module.__all__: |
---|
661 | n/a | # No private names in __all__: |
---|
662 | n/a | self.assertFalse(name.startswith("_"), |
---|
663 | n/a | 'private name "%s" in __all__' % name) |
---|
664 | n/a | # And anything in __all__ must exist: |
---|
665 | n/a | self.assertTrue(hasattr(module, name), |
---|
666 | n/a | 'missing name "%s" in __all__' % name) |
---|
667 | n/a | |
---|
668 | n/a | |
---|
669 | n/a | class DocTests(unittest.TestCase): |
---|
670 | n/a | @unittest.skipIf(sys.flags.optimize >= 2, |
---|
671 | n/a | "Docstrings are omitted with -OO and above") |
---|
672 | n/a | def test_doc_tests(self): |
---|
673 | n/a | failed, tried = doctest.testmod(statistics, optionflags=doctest.ELLIPSIS) |
---|
674 | n/a | self.assertGreater(tried, 0) |
---|
675 | n/a | self.assertEqual(failed, 0) |
---|
676 | n/a | |
---|
677 | n/a | class StatisticsErrorTest(unittest.TestCase): |
---|
678 | n/a | def test_has_exception(self): |
---|
679 | n/a | errmsg = ( |
---|
680 | n/a | "Expected StatisticsError to be a ValueError, but got a" |
---|
681 | n/a | " subclass of %r instead." |
---|
682 | n/a | ) |
---|
683 | n/a | self.assertTrue(hasattr(statistics, 'StatisticsError')) |
---|
684 | n/a | self.assertTrue( |
---|
685 | n/a | issubclass(statistics.StatisticsError, ValueError), |
---|
686 | n/a | errmsg % statistics.StatisticsError.__base__ |
---|
687 | n/a | ) |
---|
688 | n/a | |
---|
689 | n/a | |
---|
690 | n/a | # === Tests for private utility functions === |
---|
691 | n/a | |
---|
692 | n/a | class ExactRatioTest(unittest.TestCase): |
---|
693 | n/a | # Test _exact_ratio utility. |
---|
694 | n/a | |
---|
695 | n/a | def test_int(self): |
---|
696 | n/a | for i in (-20, -3, 0, 5, 99, 10**20): |
---|
697 | n/a | self.assertEqual(statistics._exact_ratio(i), (i, 1)) |
---|
698 | n/a | |
---|
699 | n/a | def test_fraction(self): |
---|
700 | n/a | numerators = (-5, 1, 12, 38) |
---|
701 | n/a | for n in numerators: |
---|
702 | n/a | f = Fraction(n, 37) |
---|
703 | n/a | self.assertEqual(statistics._exact_ratio(f), (n, 37)) |
---|
704 | n/a | |
---|
705 | n/a | def test_float(self): |
---|
706 | n/a | self.assertEqual(statistics._exact_ratio(0.125), (1, 8)) |
---|
707 | n/a | self.assertEqual(statistics._exact_ratio(1.125), (9, 8)) |
---|
708 | n/a | data = [random.uniform(-100, 100) for _ in range(100)] |
---|
709 | n/a | for x in data: |
---|
710 | n/a | num, den = statistics._exact_ratio(x) |
---|
711 | n/a | self.assertEqual(x, num/den) |
---|
712 | n/a | |
---|
713 | n/a | def test_decimal(self): |
---|
714 | n/a | D = Decimal |
---|
715 | n/a | _exact_ratio = statistics._exact_ratio |
---|
716 | n/a | self.assertEqual(_exact_ratio(D("0.125")), (1, 8)) |
---|
717 | n/a | self.assertEqual(_exact_ratio(D("12.345")), (2469, 200)) |
---|
718 | n/a | self.assertEqual(_exact_ratio(D("-1.98")), (-99, 50)) |
---|
719 | n/a | |
---|
720 | n/a | def test_inf(self): |
---|
721 | n/a | INF = float("INF") |
---|
722 | n/a | class MyFloat(float): |
---|
723 | n/a | pass |
---|
724 | n/a | class MyDecimal(Decimal): |
---|
725 | n/a | pass |
---|
726 | n/a | for inf in (INF, -INF): |
---|
727 | n/a | for type_ in (float, MyFloat, Decimal, MyDecimal): |
---|
728 | n/a | x = type_(inf) |
---|
729 | n/a | ratio = statistics._exact_ratio(x) |
---|
730 | n/a | self.assertEqual(ratio, (x, None)) |
---|
731 | n/a | self.assertEqual(type(ratio[0]), type_) |
---|
732 | n/a | self.assertTrue(math.isinf(ratio[0])) |
---|
733 | n/a | |
---|
734 | n/a | def test_float_nan(self): |
---|
735 | n/a | NAN = float("NAN") |
---|
736 | n/a | class MyFloat(float): |
---|
737 | n/a | pass |
---|
738 | n/a | for nan in (NAN, MyFloat(NAN)): |
---|
739 | n/a | ratio = statistics._exact_ratio(nan) |
---|
740 | n/a | self.assertTrue(math.isnan(ratio[0])) |
---|
741 | n/a | self.assertIs(ratio[1], None) |
---|
742 | n/a | self.assertEqual(type(ratio[0]), type(nan)) |
---|
743 | n/a | |
---|
744 | n/a | def test_decimal_nan(self): |
---|
745 | n/a | NAN = Decimal("NAN") |
---|
746 | n/a | sNAN = Decimal("sNAN") |
---|
747 | n/a | class MyDecimal(Decimal): |
---|
748 | n/a | pass |
---|
749 | n/a | for nan in (NAN, MyDecimal(NAN), sNAN, MyDecimal(sNAN)): |
---|
750 | n/a | ratio = statistics._exact_ratio(nan) |
---|
751 | n/a | self.assertTrue(_nan_equal(ratio[0], nan)) |
---|
752 | n/a | self.assertIs(ratio[1], None) |
---|
753 | n/a | self.assertEqual(type(ratio[0]), type(nan)) |
---|
754 | n/a | |
---|
755 | n/a | |
---|
756 | n/a | class DecimalToRatioTest(unittest.TestCase): |
---|
757 | n/a | # Test _exact_ratio private function. |
---|
758 | n/a | |
---|
759 | n/a | def test_infinity(self): |
---|
760 | n/a | # Test that INFs are handled correctly. |
---|
761 | n/a | inf = Decimal('INF') |
---|
762 | n/a | self.assertEqual(statistics._exact_ratio(inf), (inf, None)) |
---|
763 | n/a | self.assertEqual(statistics._exact_ratio(-inf), (-inf, None)) |
---|
764 | n/a | |
---|
765 | n/a | def test_nan(self): |
---|
766 | n/a | # Test that NANs are handled correctly. |
---|
767 | n/a | for nan in (Decimal('NAN'), Decimal('sNAN')): |
---|
768 | n/a | num, den = statistics._exact_ratio(nan) |
---|
769 | n/a | # Because NANs always compare non-equal, we cannot use assertEqual. |
---|
770 | n/a | # Nor can we use an identity test, as we don't guarantee anything |
---|
771 | n/a | # about the object identity. |
---|
772 | n/a | self.assertTrue(_nan_equal(num, nan)) |
---|
773 | n/a | self.assertIs(den, None) |
---|
774 | n/a | |
---|
775 | n/a | def test_sign(self): |
---|
776 | n/a | # Test sign is calculated correctly. |
---|
777 | n/a | numbers = [Decimal("9.8765e12"), Decimal("9.8765e-12")] |
---|
778 | n/a | for d in numbers: |
---|
779 | n/a | # First test positive decimals. |
---|
780 | n/a | assert d > 0 |
---|
781 | n/a | num, den = statistics._exact_ratio(d) |
---|
782 | n/a | self.assertGreaterEqual(num, 0) |
---|
783 | n/a | self.assertGreater(den, 0) |
---|
784 | n/a | # Then test negative decimals. |
---|
785 | n/a | num, den = statistics._exact_ratio(-d) |
---|
786 | n/a | self.assertLessEqual(num, 0) |
---|
787 | n/a | self.assertGreater(den, 0) |
---|
788 | n/a | |
---|
789 | n/a | def test_negative_exponent(self): |
---|
790 | n/a | # Test result when the exponent is negative. |
---|
791 | n/a | t = statistics._exact_ratio(Decimal("0.1234")) |
---|
792 | n/a | self.assertEqual(t, (617, 5000)) |
---|
793 | n/a | |
---|
794 | n/a | def test_positive_exponent(self): |
---|
795 | n/a | # Test results when the exponent is positive. |
---|
796 | n/a | t = statistics._exact_ratio(Decimal("1.234e7")) |
---|
797 | n/a | self.assertEqual(t, (12340000, 1)) |
---|
798 | n/a | |
---|
799 | n/a | def test_regression_20536(self): |
---|
800 | n/a | # Regression test for issue 20536. |
---|
801 | n/a | # See http://bugs.python.org/issue20536 |
---|
802 | n/a | t = statistics._exact_ratio(Decimal("1e2")) |
---|
803 | n/a | self.assertEqual(t, (100, 1)) |
---|
804 | n/a | t = statistics._exact_ratio(Decimal("1.47e5")) |
---|
805 | n/a | self.assertEqual(t, (147000, 1)) |
---|
806 | n/a | |
---|
807 | n/a | |
---|
808 | n/a | class IsFiniteTest(unittest.TestCase): |
---|
809 | n/a | # Test _isfinite private function. |
---|
810 | n/a | |
---|
811 | n/a | def test_finite(self): |
---|
812 | n/a | # Test that finite numbers are recognised as finite. |
---|
813 | n/a | for x in (5, Fraction(1, 3), 2.5, Decimal("5.5")): |
---|
814 | n/a | self.assertTrue(statistics._isfinite(x)) |
---|
815 | n/a | |
---|
816 | n/a | def test_infinity(self): |
---|
817 | n/a | # Test that INFs are not recognised as finite. |
---|
818 | n/a | for x in (float("inf"), Decimal("inf")): |
---|
819 | n/a | self.assertFalse(statistics._isfinite(x)) |
---|
820 | n/a | |
---|
821 | n/a | def test_nan(self): |
---|
822 | n/a | # Test that NANs are not recognised as finite. |
---|
823 | n/a | for x in (float("nan"), Decimal("NAN"), Decimal("sNAN")): |
---|
824 | n/a | self.assertFalse(statistics._isfinite(x)) |
---|
825 | n/a | |
---|
826 | n/a | |
---|
827 | n/a | class CoerceTest(unittest.TestCase): |
---|
828 | n/a | # Test that private function _coerce correctly deals with types. |
---|
829 | n/a | |
---|
830 | n/a | # The coercion rules are currently an implementation detail, although at |
---|
831 | n/a | # some point that should change. The tests and comments here define the |
---|
832 | n/a | # correct implementation. |
---|
833 | n/a | |
---|
834 | n/a | # Pre-conditions of _coerce: |
---|
835 | n/a | # |
---|
836 | n/a | # - The first time _sum calls _coerce, the |
---|
837 | n/a | # - coerce(T, S) will never be called with bool as the first argument; |
---|
838 | n/a | # this is a pre-condition, guarded with an assertion. |
---|
839 | n/a | |
---|
840 | n/a | # |
---|
841 | n/a | # - coerce(T, T) will always return T; we assume T is a valid numeric |
---|
842 | n/a | # type. Violate this assumption at your own risk. |
---|
843 | n/a | # |
---|
844 | n/a | # - Apart from as above, bool is treated as if it were actually int. |
---|
845 | n/a | # |
---|
846 | n/a | # - coerce(int, X) and coerce(X, int) return X. |
---|
847 | n/a | # - |
---|
848 | n/a | def test_bool(self): |
---|
849 | n/a | # bool is somewhat special, due to the pre-condition that it is |
---|
850 | n/a | # never given as the first argument to _coerce, and that it cannot |
---|
851 | n/a | # be subclassed. So we test it specially. |
---|
852 | n/a | for T in (int, float, Fraction, Decimal): |
---|
853 | n/a | self.assertIs(statistics._coerce(T, bool), T) |
---|
854 | n/a | class MyClass(T): pass |
---|
855 | n/a | self.assertIs(statistics._coerce(MyClass, bool), MyClass) |
---|
856 | n/a | |
---|
857 | n/a | def assertCoerceTo(self, A, B): |
---|
858 | n/a | """Assert that type A coerces to B.""" |
---|
859 | n/a | self.assertIs(statistics._coerce(A, B), B) |
---|
860 | n/a | self.assertIs(statistics._coerce(B, A), B) |
---|
861 | n/a | |
---|
862 | n/a | def check_coerce_to(self, A, B): |
---|
863 | n/a | """Checks that type A coerces to B, including subclasses.""" |
---|
864 | n/a | # Assert that type A is coerced to B. |
---|
865 | n/a | self.assertCoerceTo(A, B) |
---|
866 | n/a | # Subclasses of A are also coerced to B. |
---|
867 | n/a | class SubclassOfA(A): pass |
---|
868 | n/a | self.assertCoerceTo(SubclassOfA, B) |
---|
869 | n/a | # A, and subclasses of A, are coerced to subclasses of B. |
---|
870 | n/a | class SubclassOfB(B): pass |
---|
871 | n/a | self.assertCoerceTo(A, SubclassOfB) |
---|
872 | n/a | self.assertCoerceTo(SubclassOfA, SubclassOfB) |
---|
873 | n/a | |
---|
874 | n/a | def assertCoerceRaises(self, A, B): |
---|
875 | n/a | """Assert that coercing A to B, or vice versa, raises TypeError.""" |
---|
876 | n/a | self.assertRaises(TypeError, statistics._coerce, (A, B)) |
---|
877 | n/a | self.assertRaises(TypeError, statistics._coerce, (B, A)) |
---|
878 | n/a | |
---|
879 | n/a | def check_type_coercions(self, T): |
---|
880 | n/a | """Check that type T coerces correctly with subclasses of itself.""" |
---|
881 | n/a | assert T is not bool |
---|
882 | n/a | # Coercing a type with itself returns the same type. |
---|
883 | n/a | self.assertIs(statistics._coerce(T, T), T) |
---|
884 | n/a | # Coercing a type with a subclass of itself returns the subclass. |
---|
885 | n/a | class U(T): pass |
---|
886 | n/a | class V(T): pass |
---|
887 | n/a | class W(U): pass |
---|
888 | n/a | for typ in (U, V, W): |
---|
889 | n/a | self.assertCoerceTo(T, typ) |
---|
890 | n/a | self.assertCoerceTo(U, W) |
---|
891 | n/a | # Coercing two subclasses that aren't parent/child is an error. |
---|
892 | n/a | self.assertCoerceRaises(U, V) |
---|
893 | n/a | self.assertCoerceRaises(V, W) |
---|
894 | n/a | |
---|
895 | n/a | def test_int(self): |
---|
896 | n/a | # Check that int coerces correctly. |
---|
897 | n/a | self.check_type_coercions(int) |
---|
898 | n/a | for typ in (float, Fraction, Decimal): |
---|
899 | n/a | self.check_coerce_to(int, typ) |
---|
900 | n/a | |
---|
901 | n/a | def test_fraction(self): |
---|
902 | n/a | # Check that Fraction coerces correctly. |
---|
903 | n/a | self.check_type_coercions(Fraction) |
---|
904 | n/a | self.check_coerce_to(Fraction, float) |
---|
905 | n/a | |
---|
906 | n/a | def test_decimal(self): |
---|
907 | n/a | # Check that Decimal coerces correctly. |
---|
908 | n/a | self.check_type_coercions(Decimal) |
---|
909 | n/a | |
---|
910 | n/a | def test_float(self): |
---|
911 | n/a | # Check that float coerces correctly. |
---|
912 | n/a | self.check_type_coercions(float) |
---|
913 | n/a | |
---|
914 | n/a | def test_non_numeric_types(self): |
---|
915 | n/a | for bad_type in (str, list, type(None), tuple, dict): |
---|
916 | n/a | for good_type in (int, float, Fraction, Decimal): |
---|
917 | n/a | self.assertCoerceRaises(good_type, bad_type) |
---|
918 | n/a | |
---|
919 | n/a | def test_incompatible_types(self): |
---|
920 | n/a | # Test that incompatible types raise. |
---|
921 | n/a | for T in (float, Fraction): |
---|
922 | n/a | class MySubclass(T): pass |
---|
923 | n/a | self.assertCoerceRaises(T, Decimal) |
---|
924 | n/a | self.assertCoerceRaises(MySubclass, Decimal) |
---|
925 | n/a | |
---|
926 | n/a | |
---|
927 | n/a | class ConvertTest(unittest.TestCase): |
---|
928 | n/a | # Test private _convert function. |
---|
929 | n/a | |
---|
930 | n/a | def check_exact_equal(self, x, y): |
---|
931 | n/a | """Check that x equals y, and has the same type as well.""" |
---|
932 | n/a | self.assertEqual(x, y) |
---|
933 | n/a | self.assertIs(type(x), type(y)) |
---|
934 | n/a | |
---|
935 | n/a | def test_int(self): |
---|
936 | n/a | # Test conversions to int. |
---|
937 | n/a | x = statistics._convert(Fraction(71), int) |
---|
938 | n/a | self.check_exact_equal(x, 71) |
---|
939 | n/a | class MyInt(int): pass |
---|
940 | n/a | x = statistics._convert(Fraction(17), MyInt) |
---|
941 | n/a | self.check_exact_equal(x, MyInt(17)) |
---|
942 | n/a | |
---|
943 | n/a | def test_fraction(self): |
---|
944 | n/a | # Test conversions to Fraction. |
---|
945 | n/a | x = statistics._convert(Fraction(95, 99), Fraction) |
---|
946 | n/a | self.check_exact_equal(x, Fraction(95, 99)) |
---|
947 | n/a | class MyFraction(Fraction): |
---|
948 | n/a | def __truediv__(self, other): |
---|
949 | n/a | return self.__class__(super().__truediv__(other)) |
---|
950 | n/a | x = statistics._convert(Fraction(71, 13), MyFraction) |
---|
951 | n/a | self.check_exact_equal(x, MyFraction(71, 13)) |
---|
952 | n/a | |
---|
953 | n/a | def test_float(self): |
---|
954 | n/a | # Test conversions to float. |
---|
955 | n/a | x = statistics._convert(Fraction(-1, 2), float) |
---|
956 | n/a | self.check_exact_equal(x, -0.5) |
---|
957 | n/a | class MyFloat(float): |
---|
958 | n/a | def __truediv__(self, other): |
---|
959 | n/a | return self.__class__(super().__truediv__(other)) |
---|
960 | n/a | x = statistics._convert(Fraction(9, 8), MyFloat) |
---|
961 | n/a | self.check_exact_equal(x, MyFloat(1.125)) |
---|
962 | n/a | |
---|
963 | n/a | def test_decimal(self): |
---|
964 | n/a | # Test conversions to Decimal. |
---|
965 | n/a | x = statistics._convert(Fraction(1, 40), Decimal) |
---|
966 | n/a | self.check_exact_equal(x, Decimal("0.025")) |
---|
967 | n/a | class MyDecimal(Decimal): |
---|
968 | n/a | def __truediv__(self, other): |
---|
969 | n/a | return self.__class__(super().__truediv__(other)) |
---|
970 | n/a | x = statistics._convert(Fraction(-15, 16), MyDecimal) |
---|
971 | n/a | self.check_exact_equal(x, MyDecimal("-0.9375")) |
---|
972 | n/a | |
---|
973 | n/a | def test_inf(self): |
---|
974 | n/a | for INF in (float('inf'), Decimal('inf')): |
---|
975 | n/a | for inf in (INF, -INF): |
---|
976 | n/a | x = statistics._convert(inf, type(inf)) |
---|
977 | n/a | self.check_exact_equal(x, inf) |
---|
978 | n/a | |
---|
979 | n/a | def test_nan(self): |
---|
980 | n/a | for nan in (float('nan'), Decimal('NAN'), Decimal('sNAN')): |
---|
981 | n/a | x = statistics._convert(nan, type(nan)) |
---|
982 | n/a | self.assertTrue(_nan_equal(x, nan)) |
---|
983 | n/a | |
---|
984 | n/a | |
---|
985 | n/a | class FailNegTest(unittest.TestCase): |
---|
986 | n/a | """Test _fail_neg private function.""" |
---|
987 | n/a | |
---|
988 | n/a | def test_pass_through(self): |
---|
989 | n/a | # Test that values are passed through unchanged. |
---|
990 | n/a | values = [1, 2.0, Fraction(3), Decimal(4)] |
---|
991 | n/a | new = list(statistics._fail_neg(values)) |
---|
992 | n/a | self.assertEqual(values, new) |
---|
993 | n/a | |
---|
994 | n/a | def test_negatives_raise(self): |
---|
995 | n/a | # Test that negatives raise an exception. |
---|
996 | n/a | for x in [1, 2.0, Fraction(3), Decimal(4)]: |
---|
997 | n/a | seq = [-x] |
---|
998 | n/a | it = statistics._fail_neg(seq) |
---|
999 | n/a | self.assertRaises(statistics.StatisticsError, next, it) |
---|
1000 | n/a | |
---|
1001 | n/a | def test_error_msg(self): |
---|
1002 | n/a | # Test that a given error message is used. |
---|
1003 | n/a | msg = "badness #%d" % random.randint(10000, 99999) |
---|
1004 | n/a | try: |
---|
1005 | n/a | next(statistics._fail_neg([-1], msg)) |
---|
1006 | n/a | except statistics.StatisticsError as e: |
---|
1007 | n/a | errmsg = e.args[0] |
---|
1008 | n/a | else: |
---|
1009 | n/a | self.fail("expected exception, but it didn't happen") |
---|
1010 | n/a | self.assertEqual(errmsg, msg) |
---|
1011 | n/a | |
---|
1012 | n/a | |
---|
1013 | n/a | # === Tests for public functions === |
---|
1014 | n/a | |
---|
1015 | n/a | class UnivariateCommonMixin: |
---|
1016 | n/a | # Common tests for most univariate functions that take a data argument. |
---|
1017 | n/a | |
---|
1018 | n/a | def test_no_args(self): |
---|
1019 | n/a | # Fail if given no arguments. |
---|
1020 | n/a | self.assertRaises(TypeError, self.func) |
---|
1021 | n/a | |
---|
1022 | n/a | def test_empty_data(self): |
---|
1023 | n/a | # Fail when the data argument (first argument) is empty. |
---|
1024 | n/a | for empty in ([], (), iter([])): |
---|
1025 | n/a | self.assertRaises(statistics.StatisticsError, self.func, empty) |
---|
1026 | n/a | |
---|
1027 | n/a | def prepare_data(self): |
---|
1028 | n/a | """Return int data for various tests.""" |
---|
1029 | n/a | data = list(range(10)) |
---|
1030 | n/a | while data == sorted(data): |
---|
1031 | n/a | random.shuffle(data) |
---|
1032 | n/a | return data |
---|
1033 | n/a | |
---|
1034 | n/a | def test_no_inplace_modifications(self): |
---|
1035 | n/a | # Test that the function does not modify its input data. |
---|
1036 | n/a | data = self.prepare_data() |
---|
1037 | n/a | assert len(data) != 1 # Necessary to avoid infinite loop. |
---|
1038 | n/a | assert data != sorted(data) |
---|
1039 | n/a | saved = data[:] |
---|
1040 | n/a | assert data is not saved |
---|
1041 | n/a | _ = self.func(data) |
---|
1042 | n/a | self.assertListEqual(data, saved, "data has been modified") |
---|
1043 | n/a | |
---|
1044 | n/a | def test_order_doesnt_matter(self): |
---|
1045 | n/a | # Test that the order of data points doesn't change the result. |
---|
1046 | n/a | |
---|
1047 | n/a | # CAUTION: due to floating point rounding errors, the result actually |
---|
1048 | n/a | # may depend on the order. Consider this test representing an ideal. |
---|
1049 | n/a | # To avoid this test failing, only test with exact values such as ints |
---|
1050 | n/a | # or Fractions. |
---|
1051 | n/a | data = [1, 2, 3, 3, 3, 4, 5, 6]*100 |
---|
1052 | n/a | expected = self.func(data) |
---|
1053 | n/a | random.shuffle(data) |
---|
1054 | n/a | actual = self.func(data) |
---|
1055 | n/a | self.assertEqual(expected, actual) |
---|
1056 | n/a | |
---|
1057 | n/a | def test_type_of_data_collection(self): |
---|
1058 | n/a | # Test that the type of iterable data doesn't effect the result. |
---|
1059 | n/a | class MyList(list): |
---|
1060 | n/a | pass |
---|
1061 | n/a | class MyTuple(tuple): |
---|
1062 | n/a | pass |
---|
1063 | n/a | def generator(data): |
---|
1064 | n/a | return (obj for obj in data) |
---|
1065 | n/a | data = self.prepare_data() |
---|
1066 | n/a | expected = self.func(data) |
---|
1067 | n/a | for kind in (list, tuple, iter, MyList, MyTuple, generator): |
---|
1068 | n/a | result = self.func(kind(data)) |
---|
1069 | n/a | self.assertEqual(result, expected) |
---|
1070 | n/a | |
---|
1071 | n/a | def test_range_data(self): |
---|
1072 | n/a | # Test that functions work with range objects. |
---|
1073 | n/a | data = range(20, 50, 3) |
---|
1074 | n/a | expected = self.func(list(data)) |
---|
1075 | n/a | self.assertEqual(self.func(data), expected) |
---|
1076 | n/a | |
---|
1077 | n/a | def test_bad_arg_types(self): |
---|
1078 | n/a | # Test that function raises when given data of the wrong type. |
---|
1079 | n/a | |
---|
1080 | n/a | # Don't roll the following into a loop like this: |
---|
1081 | n/a | # for bad in list_of_bad: |
---|
1082 | n/a | # self.check_for_type_error(bad) |
---|
1083 | n/a | # |
---|
1084 | n/a | # Since assertRaises doesn't show the arguments that caused the test |
---|
1085 | n/a | # failure, it is very difficult to debug these test failures when the |
---|
1086 | n/a | # following are in a loop. |
---|
1087 | n/a | self.check_for_type_error(None) |
---|
1088 | n/a | self.check_for_type_error(23) |
---|
1089 | n/a | self.check_for_type_error(42.0) |
---|
1090 | n/a | self.check_for_type_error(object()) |
---|
1091 | n/a | |
---|
1092 | n/a | def check_for_type_error(self, *args): |
---|
1093 | n/a | self.assertRaises(TypeError, self.func, *args) |
---|
1094 | n/a | |
---|
1095 | n/a | def test_type_of_data_element(self): |
---|
1096 | n/a | # Check the type of data elements doesn't affect the numeric result. |
---|
1097 | n/a | # This is a weaker test than UnivariateTypeMixin.testTypesConserved, |
---|
1098 | n/a | # because it checks the numeric result by equality, but not by type. |
---|
1099 | n/a | class MyFloat(float): |
---|
1100 | n/a | def __truediv__(self, other): |
---|
1101 | n/a | return type(self)(super().__truediv__(other)) |
---|
1102 | n/a | def __add__(self, other): |
---|
1103 | n/a | return type(self)(super().__add__(other)) |
---|
1104 | n/a | __radd__ = __add__ |
---|
1105 | n/a | |
---|
1106 | n/a | raw = self.prepare_data() |
---|
1107 | n/a | expected = self.func(raw) |
---|
1108 | n/a | for kind in (float, MyFloat, Decimal, Fraction): |
---|
1109 | n/a | data = [kind(x) for x in raw] |
---|
1110 | n/a | result = type(expected)(self.func(data)) |
---|
1111 | n/a | self.assertEqual(result, expected) |
---|
1112 | n/a | |
---|
1113 | n/a | |
---|
1114 | n/a | class UnivariateTypeMixin: |
---|
1115 | n/a | """Mixin class for type-conserving functions. |
---|
1116 | n/a | |
---|
1117 | n/a | This mixin class holds test(s) for functions which conserve the type of |
---|
1118 | n/a | individual data points. E.g. the mean of a list of Fractions should itself |
---|
1119 | n/a | be a Fraction. |
---|
1120 | n/a | |
---|
1121 | n/a | Not all tests to do with types need go in this class. Only those that |
---|
1122 | n/a | rely on the function returning the same type as its input data. |
---|
1123 | n/a | """ |
---|
1124 | n/a | def prepare_types_for_conservation_test(self): |
---|
1125 | n/a | """Return the types which are expected to be conserved.""" |
---|
1126 | n/a | class MyFloat(float): |
---|
1127 | n/a | def __truediv__(self, other): |
---|
1128 | n/a | return type(self)(super().__truediv__(other)) |
---|
1129 | n/a | def __rtruediv__(self, other): |
---|
1130 | n/a | return type(self)(super().__rtruediv__(other)) |
---|
1131 | n/a | def __sub__(self, other): |
---|
1132 | n/a | return type(self)(super().__sub__(other)) |
---|
1133 | n/a | def __rsub__(self, other): |
---|
1134 | n/a | return type(self)(super().__rsub__(other)) |
---|
1135 | n/a | def __pow__(self, other): |
---|
1136 | n/a | return type(self)(super().__pow__(other)) |
---|
1137 | n/a | def __add__(self, other): |
---|
1138 | n/a | return type(self)(super().__add__(other)) |
---|
1139 | n/a | __radd__ = __add__ |
---|
1140 | n/a | return (float, Decimal, Fraction, MyFloat) |
---|
1141 | n/a | |
---|
1142 | n/a | def test_types_conserved(self): |
---|
1143 | n/a | # Test that functions keeps the same type as their data points. |
---|
1144 | n/a | # (Excludes mixed data types.) This only tests the type of the return |
---|
1145 | n/a | # result, not the value. |
---|
1146 | n/a | data = self.prepare_data() |
---|
1147 | n/a | for kind in self.prepare_types_for_conservation_test(): |
---|
1148 | n/a | d = [kind(x) for x in data] |
---|
1149 | n/a | result = self.func(d) |
---|
1150 | n/a | self.assertIs(type(result), kind) |
---|
1151 | n/a | |
---|
1152 | n/a | |
---|
1153 | n/a | class TestSumCommon(UnivariateCommonMixin, UnivariateTypeMixin): |
---|
1154 | n/a | # Common test cases for statistics._sum() function. |
---|
1155 | n/a | |
---|
1156 | n/a | # This test suite looks only at the numeric value returned by _sum, |
---|
1157 | n/a | # after conversion to the appropriate type. |
---|
1158 | n/a | def setUp(self): |
---|
1159 | n/a | def simplified_sum(*args): |
---|
1160 | n/a | T, value, n = statistics._sum(*args) |
---|
1161 | n/a | return statistics._coerce(value, T) |
---|
1162 | n/a | self.func = simplified_sum |
---|
1163 | n/a | |
---|
1164 | n/a | |
---|
1165 | n/a | class TestSum(NumericTestCase): |
---|
1166 | n/a | # Test cases for statistics._sum() function. |
---|
1167 | n/a | |
---|
1168 | n/a | # These tests look at the entire three value tuple returned by _sum. |
---|
1169 | n/a | |
---|
1170 | n/a | def setUp(self): |
---|
1171 | n/a | self.func = statistics._sum |
---|
1172 | n/a | |
---|
1173 | n/a | def test_empty_data(self): |
---|
1174 | n/a | # Override test for empty data. |
---|
1175 | n/a | for data in ([], (), iter([])): |
---|
1176 | n/a | self.assertEqual(self.func(data), (int, Fraction(0), 0)) |
---|
1177 | n/a | self.assertEqual(self.func(data, 23), (int, Fraction(23), 0)) |
---|
1178 | n/a | self.assertEqual(self.func(data, 2.3), (float, Fraction(2.3), 0)) |
---|
1179 | n/a | |
---|
1180 | n/a | def test_ints(self): |
---|
1181 | n/a | self.assertEqual(self.func([1, 5, 3, -4, -8, 20, 42, 1]), |
---|
1182 | n/a | (int, Fraction(60), 8)) |
---|
1183 | n/a | self.assertEqual(self.func([4, 2, 3, -8, 7], 1000), |
---|
1184 | n/a | (int, Fraction(1008), 5)) |
---|
1185 | n/a | |
---|
1186 | n/a | def test_floats(self): |
---|
1187 | n/a | self.assertEqual(self.func([0.25]*20), |
---|
1188 | n/a | (float, Fraction(5.0), 20)) |
---|
1189 | n/a | self.assertEqual(self.func([0.125, 0.25, 0.5, 0.75], 1.5), |
---|
1190 | n/a | (float, Fraction(3.125), 4)) |
---|
1191 | n/a | |
---|
1192 | n/a | def test_fractions(self): |
---|
1193 | n/a | self.assertEqual(self.func([Fraction(1, 1000)]*500), |
---|
1194 | n/a | (Fraction, Fraction(1, 2), 500)) |
---|
1195 | n/a | |
---|
1196 | n/a | def test_decimals(self): |
---|
1197 | n/a | D = Decimal |
---|
1198 | n/a | data = [D("0.001"), D("5.246"), D("1.702"), D("-0.025"), |
---|
1199 | n/a | D("3.974"), D("2.328"), D("4.617"), D("2.843"), |
---|
1200 | n/a | ] |
---|
1201 | n/a | self.assertEqual(self.func(data), |
---|
1202 | n/a | (Decimal, Decimal("20.686"), 8)) |
---|
1203 | n/a | |
---|
1204 | n/a | def test_compare_with_math_fsum(self): |
---|
1205 | n/a | # Compare with the math.fsum function. |
---|
1206 | n/a | # Ideally we ought to get the exact same result, but sometimes |
---|
1207 | n/a | # we differ by a very slight amount :-( |
---|
1208 | n/a | data = [random.uniform(-100, 1000) for _ in range(1000)] |
---|
1209 | n/a | self.assertApproxEqual(float(self.func(data)[1]), math.fsum(data), rel=2e-16) |
---|
1210 | n/a | |
---|
1211 | n/a | def test_start_argument(self): |
---|
1212 | n/a | # Test that the optional start argument works correctly. |
---|
1213 | n/a | data = [random.uniform(1, 1000) for _ in range(100)] |
---|
1214 | n/a | t = self.func(data)[1] |
---|
1215 | n/a | self.assertEqual(t+42, self.func(data, 42)[1]) |
---|
1216 | n/a | self.assertEqual(t-23, self.func(data, -23)[1]) |
---|
1217 | n/a | self.assertEqual(t+Fraction(1e20), self.func(data, 1e20)[1]) |
---|
1218 | n/a | |
---|
1219 | n/a | def test_strings_fail(self): |
---|
1220 | n/a | # Sum of strings should fail. |
---|
1221 | n/a | self.assertRaises(TypeError, self.func, [1, 2, 3], '999') |
---|
1222 | n/a | self.assertRaises(TypeError, self.func, [1, 2, 3, '999']) |
---|
1223 | n/a | |
---|
1224 | n/a | def test_bytes_fail(self): |
---|
1225 | n/a | # Sum of bytes should fail. |
---|
1226 | n/a | self.assertRaises(TypeError, self.func, [1, 2, 3], b'999') |
---|
1227 | n/a | self.assertRaises(TypeError, self.func, [1, 2, 3, b'999']) |
---|
1228 | n/a | |
---|
1229 | n/a | def test_mixed_sum(self): |
---|
1230 | n/a | # Mixed input types are not (currently) allowed. |
---|
1231 | n/a | # Check that mixed data types fail. |
---|
1232 | n/a | self.assertRaises(TypeError, self.func, [1, 2.0, Decimal(1)]) |
---|
1233 | n/a | # And so does mixed start argument. |
---|
1234 | n/a | self.assertRaises(TypeError, self.func, [1, 2.0], Decimal(1)) |
---|
1235 | n/a | |
---|
1236 | n/a | |
---|
1237 | n/a | class SumTortureTest(NumericTestCase): |
---|
1238 | n/a | def test_torture(self): |
---|
1239 | n/a | # Tim Peters' torture test for sum, and variants of same. |
---|
1240 | n/a | self.assertEqual(statistics._sum([1, 1e100, 1, -1e100]*10000), |
---|
1241 | n/a | (float, Fraction(20000.0), 40000)) |
---|
1242 | n/a | self.assertEqual(statistics._sum([1e100, 1, 1, -1e100]*10000), |
---|
1243 | n/a | (float, Fraction(20000.0), 40000)) |
---|
1244 | n/a | T, num, count = statistics._sum([1e-100, 1, 1e-100, -1]*10000) |
---|
1245 | n/a | self.assertIs(T, float) |
---|
1246 | n/a | self.assertEqual(count, 40000) |
---|
1247 | n/a | self.assertApproxEqual(float(num), 2.0e-96, rel=5e-16) |
---|
1248 | n/a | |
---|
1249 | n/a | |
---|
1250 | n/a | class SumSpecialValues(NumericTestCase): |
---|
1251 | n/a | # Test that sum works correctly with IEEE-754 special values. |
---|
1252 | n/a | |
---|
1253 | n/a | def test_nan(self): |
---|
1254 | n/a | for type_ in (float, Decimal): |
---|
1255 | n/a | nan = type_('nan') |
---|
1256 | n/a | result = statistics._sum([1, nan, 2])[1] |
---|
1257 | n/a | self.assertIs(type(result), type_) |
---|
1258 | n/a | self.assertTrue(math.isnan(result)) |
---|
1259 | n/a | |
---|
1260 | n/a | def check_infinity(self, x, inf): |
---|
1261 | n/a | """Check x is an infinity of the same type and sign as inf.""" |
---|
1262 | n/a | self.assertTrue(math.isinf(x)) |
---|
1263 | n/a | self.assertIs(type(x), type(inf)) |
---|
1264 | n/a | self.assertEqual(x > 0, inf > 0) |
---|
1265 | n/a | assert x == inf |
---|
1266 | n/a | |
---|
1267 | n/a | def do_test_inf(self, inf): |
---|
1268 | n/a | # Adding a single infinity gives infinity. |
---|
1269 | n/a | result = statistics._sum([1, 2, inf, 3])[1] |
---|
1270 | n/a | self.check_infinity(result, inf) |
---|
1271 | n/a | # Adding two infinities of the same sign also gives infinity. |
---|
1272 | n/a | result = statistics._sum([1, 2, inf, 3, inf, 4])[1] |
---|
1273 | n/a | self.check_infinity(result, inf) |
---|
1274 | n/a | |
---|
1275 | n/a | def test_float_inf(self): |
---|
1276 | n/a | inf = float('inf') |
---|
1277 | n/a | for sign in (+1, -1): |
---|
1278 | n/a | self.do_test_inf(sign*inf) |
---|
1279 | n/a | |
---|
1280 | n/a | def test_decimal_inf(self): |
---|
1281 | n/a | inf = Decimal('inf') |
---|
1282 | n/a | for sign in (+1, -1): |
---|
1283 | n/a | self.do_test_inf(sign*inf) |
---|
1284 | n/a | |
---|
1285 | n/a | def test_float_mismatched_infs(self): |
---|
1286 | n/a | # Test that adding two infinities of opposite sign gives a NAN. |
---|
1287 | n/a | inf = float('inf') |
---|
1288 | n/a | result = statistics._sum([1, 2, inf, 3, -inf, 4])[1] |
---|
1289 | n/a | self.assertTrue(math.isnan(result)) |
---|
1290 | n/a | |
---|
1291 | n/a | def test_decimal_extendedcontext_mismatched_infs_to_nan(self): |
---|
1292 | n/a | # Test adding Decimal INFs with opposite sign returns NAN. |
---|
1293 | n/a | inf = Decimal('inf') |
---|
1294 | n/a | data = [1, 2, inf, 3, -inf, 4] |
---|
1295 | n/a | with decimal.localcontext(decimal.ExtendedContext): |
---|
1296 | n/a | self.assertTrue(math.isnan(statistics._sum(data)[1])) |
---|
1297 | n/a | |
---|
1298 | n/a | def test_decimal_basiccontext_mismatched_infs_to_nan(self): |
---|
1299 | n/a | # Test adding Decimal INFs with opposite sign raises InvalidOperation. |
---|
1300 | n/a | inf = Decimal('inf') |
---|
1301 | n/a | data = [1, 2, inf, 3, -inf, 4] |
---|
1302 | n/a | with decimal.localcontext(decimal.BasicContext): |
---|
1303 | n/a | self.assertRaises(decimal.InvalidOperation, statistics._sum, data) |
---|
1304 | n/a | |
---|
1305 | n/a | def test_decimal_snan_raises(self): |
---|
1306 | n/a | # Adding sNAN should raise InvalidOperation. |
---|
1307 | n/a | sNAN = Decimal('sNAN') |
---|
1308 | n/a | data = [1, sNAN, 2] |
---|
1309 | n/a | self.assertRaises(decimal.InvalidOperation, statistics._sum, data) |
---|
1310 | n/a | |
---|
1311 | n/a | |
---|
1312 | n/a | # === Tests for averages === |
---|
1313 | n/a | |
---|
1314 | n/a | class AverageMixin(UnivariateCommonMixin): |
---|
1315 | n/a | # Mixin class holding common tests for averages. |
---|
1316 | n/a | |
---|
1317 | n/a | def test_single_value(self): |
---|
1318 | n/a | # Average of a single value is the value itself. |
---|
1319 | n/a | for x in (23, 42.5, 1.3e15, Fraction(15, 19), Decimal('0.28')): |
---|
1320 | n/a | self.assertEqual(self.func([x]), x) |
---|
1321 | n/a | |
---|
1322 | n/a | def prepare_values_for_repeated_single_test(self): |
---|
1323 | n/a | return (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.9712')) |
---|
1324 | n/a | |
---|
1325 | n/a | def test_repeated_single_value(self): |
---|
1326 | n/a | # The average of a single repeated value is the value itself. |
---|
1327 | n/a | for x in self.prepare_values_for_repeated_single_test(): |
---|
1328 | n/a | for count in (2, 5, 10, 20): |
---|
1329 | n/a | with self.subTest(x=x, count=count): |
---|
1330 | n/a | data = [x]*count |
---|
1331 | n/a | self.assertEqual(self.func(data), x) |
---|
1332 | n/a | |
---|
1333 | n/a | |
---|
1334 | n/a | class TestMean(NumericTestCase, AverageMixin, UnivariateTypeMixin): |
---|
1335 | n/a | def setUp(self): |
---|
1336 | n/a | self.func = statistics.mean |
---|
1337 | n/a | |
---|
1338 | n/a | def test_torture_pep(self): |
---|
1339 | n/a | # "Torture Test" from PEP-450. |
---|
1340 | n/a | self.assertEqual(self.func([1e100, 1, 3, -1e100]), 1) |
---|
1341 | n/a | |
---|
1342 | n/a | def test_ints(self): |
---|
1343 | n/a | # Test mean with ints. |
---|
1344 | n/a | data = [0, 1, 2, 3, 3, 3, 4, 5, 5, 6, 7, 7, 7, 7, 8, 9] |
---|
1345 | n/a | random.shuffle(data) |
---|
1346 | n/a | self.assertEqual(self.func(data), 4.8125) |
---|
1347 | n/a | |
---|
1348 | n/a | def test_floats(self): |
---|
1349 | n/a | # Test mean with floats. |
---|
1350 | n/a | data = [17.25, 19.75, 20.0, 21.5, 21.75, 23.25, 25.125, 27.5] |
---|
1351 | n/a | random.shuffle(data) |
---|
1352 | n/a | self.assertEqual(self.func(data), 22.015625) |
---|
1353 | n/a | |
---|
1354 | n/a | def test_decimals(self): |
---|
1355 | n/a | # Test mean with Decimals. |
---|
1356 | n/a | D = Decimal |
---|
1357 | n/a | data = [D("1.634"), D("2.517"), D("3.912"), D("4.072"), D("5.813")] |
---|
1358 | n/a | random.shuffle(data) |
---|
1359 | n/a | self.assertEqual(self.func(data), D("3.5896")) |
---|
1360 | n/a | |
---|
1361 | n/a | def test_fractions(self): |
---|
1362 | n/a | # Test mean with Fractions. |
---|
1363 | n/a | F = Fraction |
---|
1364 | n/a | data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)] |
---|
1365 | n/a | random.shuffle(data) |
---|
1366 | n/a | self.assertEqual(self.func(data), F(1479, 1960)) |
---|
1367 | n/a | |
---|
1368 | n/a | def test_inf(self): |
---|
1369 | n/a | # Test mean with infinities. |
---|
1370 | n/a | raw = [1, 3, 5, 7, 9] # Use only ints, to avoid TypeError later. |
---|
1371 | n/a | for kind in (float, Decimal): |
---|
1372 | n/a | for sign in (1, -1): |
---|
1373 | n/a | inf = kind("inf")*sign |
---|
1374 | n/a | data = raw + [inf] |
---|
1375 | n/a | result = self.func(data) |
---|
1376 | n/a | self.assertTrue(math.isinf(result)) |
---|
1377 | n/a | self.assertEqual(result, inf) |
---|
1378 | n/a | |
---|
1379 | n/a | def test_mismatched_infs(self): |
---|
1380 | n/a | # Test mean with infinities of opposite sign. |
---|
1381 | n/a | data = [2, 4, 6, float('inf'), 1, 3, 5, float('-inf')] |
---|
1382 | n/a | result = self.func(data) |
---|
1383 | n/a | self.assertTrue(math.isnan(result)) |
---|
1384 | n/a | |
---|
1385 | n/a | def test_nan(self): |
---|
1386 | n/a | # Test mean with NANs. |
---|
1387 | n/a | raw = [1, 3, 5, 7, 9] # Use only ints, to avoid TypeError later. |
---|
1388 | n/a | for kind in (float, Decimal): |
---|
1389 | n/a | inf = kind("nan") |
---|
1390 | n/a | data = raw + [inf] |
---|
1391 | n/a | result = self.func(data) |
---|
1392 | n/a | self.assertTrue(math.isnan(result)) |
---|
1393 | n/a | |
---|
1394 | n/a | def test_big_data(self): |
---|
1395 | n/a | # Test adding a large constant to every data point. |
---|
1396 | n/a | c = 1e9 |
---|
1397 | n/a | data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4] |
---|
1398 | n/a | expected = self.func(data) + c |
---|
1399 | n/a | assert expected != c |
---|
1400 | n/a | result = self.func([x+c for x in data]) |
---|
1401 | n/a | self.assertEqual(result, expected) |
---|
1402 | n/a | |
---|
1403 | n/a | def test_doubled_data(self): |
---|
1404 | n/a | # Mean of [a,b,c...z] should be same as for [a,a,b,b,c,c...z,z]. |
---|
1405 | n/a | data = [random.uniform(-3, 5) for _ in range(1000)] |
---|
1406 | n/a | expected = self.func(data) |
---|
1407 | n/a | actual = self.func(data*2) |
---|
1408 | n/a | self.assertApproxEqual(actual, expected) |
---|
1409 | n/a | |
---|
1410 | n/a | def test_regression_20561(self): |
---|
1411 | n/a | # Regression test for issue 20561. |
---|
1412 | n/a | # See http://bugs.python.org/issue20561 |
---|
1413 | n/a | d = Decimal('1e4') |
---|
1414 | n/a | self.assertEqual(statistics.mean([d]), d) |
---|
1415 | n/a | |
---|
1416 | n/a | def test_regression_25177(self): |
---|
1417 | n/a | # Regression test for issue 25177. |
---|
1418 | n/a | # Ensure very big and very small floats don't overflow. |
---|
1419 | n/a | # See http://bugs.python.org/issue25177. |
---|
1420 | n/a | self.assertEqual(statistics.mean( |
---|
1421 | n/a | [8.988465674311579e+307, 8.98846567431158e+307]), |
---|
1422 | n/a | 8.98846567431158e+307) |
---|
1423 | n/a | big = 8.98846567431158e+307 |
---|
1424 | n/a | tiny = 5e-324 |
---|
1425 | n/a | for n in (2, 3, 5, 200): |
---|
1426 | n/a | self.assertEqual(statistics.mean([big]*n), big) |
---|
1427 | n/a | self.assertEqual(statistics.mean([tiny]*n), tiny) |
---|
1428 | n/a | |
---|
1429 | n/a | |
---|
1430 | n/a | class TestHarmonicMean(NumericTestCase, AverageMixin, UnivariateTypeMixin): |
---|
1431 | n/a | def setUp(self): |
---|
1432 | n/a | self.func = statistics.harmonic_mean |
---|
1433 | n/a | |
---|
1434 | n/a | def prepare_data(self): |
---|
1435 | n/a | # Override mixin method. |
---|
1436 | n/a | values = super().prepare_data() |
---|
1437 | n/a | values.remove(0) |
---|
1438 | n/a | return values |
---|
1439 | n/a | |
---|
1440 | n/a | def prepare_values_for_repeated_single_test(self): |
---|
1441 | n/a | # Override mixin method. |
---|
1442 | n/a | return (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.125')) |
---|
1443 | n/a | |
---|
1444 | n/a | def test_zero(self): |
---|
1445 | n/a | # Test that harmonic mean returns zero when given zero. |
---|
1446 | n/a | values = [1, 0, 2] |
---|
1447 | n/a | self.assertEqual(self.func(values), 0) |
---|
1448 | n/a | |
---|
1449 | n/a | def test_negative_error(self): |
---|
1450 | n/a | # Test that harmonic mean raises when given a negative value. |
---|
1451 | n/a | exc = statistics.StatisticsError |
---|
1452 | n/a | for values in ([-1], [1, -2, 3]): |
---|
1453 | n/a | with self.subTest(values=values): |
---|
1454 | n/a | self.assertRaises(exc, self.func, values) |
---|
1455 | n/a | |
---|
1456 | n/a | def test_ints(self): |
---|
1457 | n/a | # Test harmonic mean with ints. |
---|
1458 | n/a | data = [2, 4, 4, 8, 16, 16] |
---|
1459 | n/a | random.shuffle(data) |
---|
1460 | n/a | self.assertEqual(self.func(data), 6*4/5) |
---|
1461 | n/a | |
---|
1462 | n/a | def test_floats_exact(self): |
---|
1463 | n/a | # Test harmonic mean with some carefully chosen floats. |
---|
1464 | n/a | data = [1/8, 1/4, 1/4, 1/2, 1/2] |
---|
1465 | n/a | random.shuffle(data) |
---|
1466 | n/a | self.assertEqual(self.func(data), 1/4) |
---|
1467 | n/a | self.assertEqual(self.func([0.25, 0.5, 1.0, 1.0]), 0.5) |
---|
1468 | n/a | |
---|
1469 | n/a | def test_singleton_lists(self): |
---|
1470 | n/a | # Test that harmonic mean([x]) returns (approximately) x. |
---|
1471 | n/a | for x in range(1, 101): |
---|
1472 | n/a | self.assertEqual(self.func([x]), x) |
---|
1473 | n/a | |
---|
1474 | n/a | def test_decimals_exact(self): |
---|
1475 | n/a | # Test harmonic mean with some carefully chosen Decimals. |
---|
1476 | n/a | D = Decimal |
---|
1477 | n/a | self.assertEqual(self.func([D(15), D(30), D(60), D(60)]), D(30)) |
---|
1478 | n/a | data = [D("0.05"), D("0.10"), D("0.20"), D("0.20")] |
---|
1479 | n/a | random.shuffle(data) |
---|
1480 | n/a | self.assertEqual(self.func(data), D("0.10")) |
---|
1481 | n/a | data = [D("1.68"), D("0.32"), D("5.94"), D("2.75")] |
---|
1482 | n/a | random.shuffle(data) |
---|
1483 | n/a | self.assertEqual(self.func(data), D(66528)/70723) |
---|
1484 | n/a | |
---|
1485 | n/a | def test_fractions(self): |
---|
1486 | n/a | # Test harmonic mean with Fractions. |
---|
1487 | n/a | F = Fraction |
---|
1488 | n/a | data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)] |
---|
1489 | n/a | random.shuffle(data) |
---|
1490 | n/a | self.assertEqual(self.func(data), F(7*420, 4029)) |
---|
1491 | n/a | |
---|
1492 | n/a | def test_inf(self): |
---|
1493 | n/a | # Test harmonic mean with infinity. |
---|
1494 | n/a | values = [2.0, float('inf'), 1.0] |
---|
1495 | n/a | self.assertEqual(self.func(values), 2.0) |
---|
1496 | n/a | |
---|
1497 | n/a | def test_nan(self): |
---|
1498 | n/a | # Test harmonic mean with NANs. |
---|
1499 | n/a | values = [2.0, float('nan'), 1.0] |
---|
1500 | n/a | self.assertTrue(math.isnan(self.func(values))) |
---|
1501 | n/a | |
---|
1502 | n/a | def test_multiply_data_points(self): |
---|
1503 | n/a | # Test multiplying every data point by a constant. |
---|
1504 | n/a | c = 111 |
---|
1505 | n/a | data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4] |
---|
1506 | n/a | expected = self.func(data)*c |
---|
1507 | n/a | result = self.func([x*c for x in data]) |
---|
1508 | n/a | self.assertEqual(result, expected) |
---|
1509 | n/a | |
---|
1510 | n/a | def test_doubled_data(self): |
---|
1511 | n/a | # Harmonic mean of [a,b...z] should be same as for [a,a,b,b...z,z]. |
---|
1512 | n/a | data = [random.uniform(1, 5) for _ in range(1000)] |
---|
1513 | n/a | expected = self.func(data) |
---|
1514 | n/a | actual = self.func(data*2) |
---|
1515 | n/a | self.assertApproxEqual(actual, expected) |
---|
1516 | n/a | |
---|
1517 | n/a | |
---|
1518 | n/a | class TestMedian(NumericTestCase, AverageMixin): |
---|
1519 | n/a | # Common tests for median and all median.* functions. |
---|
1520 | n/a | def setUp(self): |
---|
1521 | n/a | self.func = statistics.median |
---|
1522 | n/a | |
---|
1523 | n/a | def prepare_data(self): |
---|
1524 | n/a | """Overload method from UnivariateCommonMixin.""" |
---|
1525 | n/a | data = super().prepare_data() |
---|
1526 | n/a | if len(data)%2 != 1: |
---|
1527 | n/a | data.append(2) |
---|
1528 | n/a | return data |
---|
1529 | n/a | |
---|
1530 | n/a | def test_even_ints(self): |
---|
1531 | n/a | # Test median with an even number of int data points. |
---|
1532 | n/a | data = [1, 2, 3, 4, 5, 6] |
---|
1533 | n/a | assert len(data)%2 == 0 |
---|
1534 | n/a | self.assertEqual(self.func(data), 3.5) |
---|
1535 | n/a | |
---|
1536 | n/a | def test_odd_ints(self): |
---|
1537 | n/a | # Test median with an odd number of int data points. |
---|
1538 | n/a | data = [1, 2, 3, 4, 5, 6, 9] |
---|
1539 | n/a | assert len(data)%2 == 1 |
---|
1540 | n/a | self.assertEqual(self.func(data), 4) |
---|
1541 | n/a | |
---|
1542 | n/a | def test_odd_fractions(self): |
---|
1543 | n/a | # Test median works with an odd number of Fractions. |
---|
1544 | n/a | F = Fraction |
---|
1545 | n/a | data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7)] |
---|
1546 | n/a | assert len(data)%2 == 1 |
---|
1547 | n/a | random.shuffle(data) |
---|
1548 | n/a | self.assertEqual(self.func(data), F(3, 7)) |
---|
1549 | n/a | |
---|
1550 | n/a | def test_even_fractions(self): |
---|
1551 | n/a | # Test median works with an even number of Fractions. |
---|
1552 | n/a | F = Fraction |
---|
1553 | n/a | data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)] |
---|
1554 | n/a | assert len(data)%2 == 0 |
---|
1555 | n/a | random.shuffle(data) |
---|
1556 | n/a | self.assertEqual(self.func(data), F(1, 2)) |
---|
1557 | n/a | |
---|
1558 | n/a | def test_odd_decimals(self): |
---|
1559 | n/a | # Test median works with an odd number of Decimals. |
---|
1560 | n/a | D = Decimal |
---|
1561 | n/a | data = [D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')] |
---|
1562 | n/a | assert len(data)%2 == 1 |
---|
1563 | n/a | random.shuffle(data) |
---|
1564 | n/a | self.assertEqual(self.func(data), D('4.2')) |
---|
1565 | n/a | |
---|
1566 | n/a | def test_even_decimals(self): |
---|
1567 | n/a | # Test median works with an even number of Decimals. |
---|
1568 | n/a | D = Decimal |
---|
1569 | n/a | data = [D('1.2'), D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')] |
---|
1570 | n/a | assert len(data)%2 == 0 |
---|
1571 | n/a | random.shuffle(data) |
---|
1572 | n/a | self.assertEqual(self.func(data), D('3.65')) |
---|
1573 | n/a | |
---|
1574 | n/a | |
---|
1575 | n/a | class TestMedianDataType(NumericTestCase, UnivariateTypeMixin): |
---|
1576 | n/a | # Test conservation of data element type for median. |
---|
1577 | n/a | def setUp(self): |
---|
1578 | n/a | self.func = statistics.median |
---|
1579 | n/a | |
---|
1580 | n/a | def prepare_data(self): |
---|
1581 | n/a | data = list(range(15)) |
---|
1582 | n/a | assert len(data)%2 == 1 |
---|
1583 | n/a | while data == sorted(data): |
---|
1584 | n/a | random.shuffle(data) |
---|
1585 | n/a | return data |
---|
1586 | n/a | |
---|
1587 | n/a | |
---|
1588 | n/a | class TestMedianLow(TestMedian, UnivariateTypeMixin): |
---|
1589 | n/a | def setUp(self): |
---|
1590 | n/a | self.func = statistics.median_low |
---|
1591 | n/a | |
---|
1592 | n/a | def test_even_ints(self): |
---|
1593 | n/a | # Test median_low with an even number of ints. |
---|
1594 | n/a | data = [1, 2, 3, 4, 5, 6] |
---|
1595 | n/a | assert len(data)%2 == 0 |
---|
1596 | n/a | self.assertEqual(self.func(data), 3) |
---|
1597 | n/a | |
---|
1598 | n/a | def test_even_fractions(self): |
---|
1599 | n/a | # Test median_low works with an even number of Fractions. |
---|
1600 | n/a | F = Fraction |
---|
1601 | n/a | data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)] |
---|
1602 | n/a | assert len(data)%2 == 0 |
---|
1603 | n/a | random.shuffle(data) |
---|
1604 | n/a | self.assertEqual(self.func(data), F(3, 7)) |
---|
1605 | n/a | |
---|
1606 | n/a | def test_even_decimals(self): |
---|
1607 | n/a | # Test median_low works with an even number of Decimals. |
---|
1608 | n/a | D = Decimal |
---|
1609 | n/a | data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')] |
---|
1610 | n/a | assert len(data)%2 == 0 |
---|
1611 | n/a | random.shuffle(data) |
---|
1612 | n/a | self.assertEqual(self.func(data), D('3.3')) |
---|
1613 | n/a | |
---|
1614 | n/a | |
---|
1615 | n/a | class TestMedianHigh(TestMedian, UnivariateTypeMixin): |
---|
1616 | n/a | def setUp(self): |
---|
1617 | n/a | self.func = statistics.median_high |
---|
1618 | n/a | |
---|
1619 | n/a | def test_even_ints(self): |
---|
1620 | n/a | # Test median_high with an even number of ints. |
---|
1621 | n/a | data = [1, 2, 3, 4, 5, 6] |
---|
1622 | n/a | assert len(data)%2 == 0 |
---|
1623 | n/a | self.assertEqual(self.func(data), 4) |
---|
1624 | n/a | |
---|
1625 | n/a | def test_even_fractions(self): |
---|
1626 | n/a | # Test median_high works with an even number of Fractions. |
---|
1627 | n/a | F = Fraction |
---|
1628 | n/a | data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)] |
---|
1629 | n/a | assert len(data)%2 == 0 |
---|
1630 | n/a | random.shuffle(data) |
---|
1631 | n/a | self.assertEqual(self.func(data), F(4, 7)) |
---|
1632 | n/a | |
---|
1633 | n/a | def test_even_decimals(self): |
---|
1634 | n/a | # Test median_high works with an even number of Decimals. |
---|
1635 | n/a | D = Decimal |
---|
1636 | n/a | data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')] |
---|
1637 | n/a | assert len(data)%2 == 0 |
---|
1638 | n/a | random.shuffle(data) |
---|
1639 | n/a | self.assertEqual(self.func(data), D('4.4')) |
---|
1640 | n/a | |
---|
1641 | n/a | |
---|
1642 | n/a | class TestMedianGrouped(TestMedian): |
---|
1643 | n/a | # Test median_grouped. |
---|
1644 | n/a | # Doesn't conserve data element types, so don't use TestMedianType. |
---|
1645 | n/a | def setUp(self): |
---|
1646 | n/a | self.func = statistics.median_grouped |
---|
1647 | n/a | |
---|
1648 | n/a | def test_odd_number_repeated(self): |
---|
1649 | n/a | # Test median.grouped with repeated median values. |
---|
1650 | n/a | data = [12, 13, 14, 14, 14, 15, 15] |
---|
1651 | n/a | assert len(data)%2 == 1 |
---|
1652 | n/a | self.assertEqual(self.func(data), 14) |
---|
1653 | n/a | #--- |
---|
1654 | n/a | data = [12, 13, 14, 14, 14, 14, 15] |
---|
1655 | n/a | assert len(data)%2 == 1 |
---|
1656 | n/a | self.assertEqual(self.func(data), 13.875) |
---|
1657 | n/a | #--- |
---|
1658 | n/a | data = [5, 10, 10, 15, 20, 20, 20, 20, 25, 25, 30] |
---|
1659 | n/a | assert len(data)%2 == 1 |
---|
1660 | n/a | self.assertEqual(self.func(data, 5), 19.375) |
---|
1661 | n/a | #--- |
---|
1662 | n/a | data = [16, 18, 18, 18, 18, 20, 20, 20, 22, 22, 22, 24, 24, 26, 28] |
---|
1663 | n/a | assert len(data)%2 == 1 |
---|
1664 | n/a | self.assertApproxEqual(self.func(data, 2), 20.66666667, tol=1e-8) |
---|
1665 | n/a | |
---|
1666 | n/a | def test_even_number_repeated(self): |
---|
1667 | n/a | # Test median.grouped with repeated median values. |
---|
1668 | n/a | data = [5, 10, 10, 15, 20, 20, 20, 25, 25, 30] |
---|
1669 | n/a | assert len(data)%2 == 0 |
---|
1670 | n/a | self.assertApproxEqual(self.func(data, 5), 19.16666667, tol=1e-8) |
---|
1671 | n/a | #--- |
---|
1672 | n/a | data = [2, 3, 4, 4, 4, 5] |
---|
1673 | n/a | assert len(data)%2 == 0 |
---|
1674 | n/a | self.assertApproxEqual(self.func(data), 3.83333333, tol=1e-8) |
---|
1675 | n/a | #--- |
---|
1676 | n/a | data = [2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6] |
---|
1677 | n/a | assert len(data)%2 == 0 |
---|
1678 | n/a | self.assertEqual(self.func(data), 4.5) |
---|
1679 | n/a | #--- |
---|
1680 | n/a | data = [3, 4, 4, 4, 5, 5, 5, 5, 6, 6] |
---|
1681 | n/a | assert len(data)%2 == 0 |
---|
1682 | n/a | self.assertEqual(self.func(data), 4.75) |
---|
1683 | n/a | |
---|
1684 | n/a | def test_repeated_single_value(self): |
---|
1685 | n/a | # Override method from AverageMixin. |
---|
1686 | n/a | # Yet again, failure of median_grouped to conserve the data type |
---|
1687 | n/a | # causes me headaches :-( |
---|
1688 | n/a | for x in (5.3, 68, 4.3e17, Fraction(29, 101), Decimal('32.9714')): |
---|
1689 | n/a | for count in (2, 5, 10, 20): |
---|
1690 | n/a | data = [x]*count |
---|
1691 | n/a | self.assertEqual(self.func(data), float(x)) |
---|
1692 | n/a | |
---|
1693 | n/a | def test_odd_fractions(self): |
---|
1694 | n/a | # Test median_grouped works with an odd number of Fractions. |
---|
1695 | n/a | F = Fraction |
---|
1696 | n/a | data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4)] |
---|
1697 | n/a | assert len(data)%2 == 1 |
---|
1698 | n/a | random.shuffle(data) |
---|
1699 | n/a | self.assertEqual(self.func(data), 3.0) |
---|
1700 | n/a | |
---|
1701 | n/a | def test_even_fractions(self): |
---|
1702 | n/a | # Test median_grouped works with an even number of Fractions. |
---|
1703 | n/a | F = Fraction |
---|
1704 | n/a | data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4), F(17, 4)] |
---|
1705 | n/a | assert len(data)%2 == 0 |
---|
1706 | n/a | random.shuffle(data) |
---|
1707 | n/a | self.assertEqual(self.func(data), 3.25) |
---|
1708 | n/a | |
---|
1709 | n/a | def test_odd_decimals(self): |
---|
1710 | n/a | # Test median_grouped works with an odd number of Decimals. |
---|
1711 | n/a | D = Decimal |
---|
1712 | n/a | data = [D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')] |
---|
1713 | n/a | assert len(data)%2 == 1 |
---|
1714 | n/a | random.shuffle(data) |
---|
1715 | n/a | self.assertEqual(self.func(data), 6.75) |
---|
1716 | n/a | |
---|
1717 | n/a | def test_even_decimals(self): |
---|
1718 | n/a | # Test median_grouped works with an even number of Decimals. |
---|
1719 | n/a | D = Decimal |
---|
1720 | n/a | data = [D('5.5'), D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')] |
---|
1721 | n/a | assert len(data)%2 == 0 |
---|
1722 | n/a | random.shuffle(data) |
---|
1723 | n/a | self.assertEqual(self.func(data), 6.5) |
---|
1724 | n/a | #--- |
---|
1725 | n/a | data = [D('5.5'), D('5.5'), D('6.5'), D('7.5'), D('7.5'), D('8.5')] |
---|
1726 | n/a | assert len(data)%2 == 0 |
---|
1727 | n/a | random.shuffle(data) |
---|
1728 | n/a | self.assertEqual(self.func(data), 7.0) |
---|
1729 | n/a | |
---|
1730 | n/a | def test_interval(self): |
---|
1731 | n/a | # Test median_grouped with interval argument. |
---|
1732 | n/a | data = [2.25, 2.5, 2.5, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75] |
---|
1733 | n/a | self.assertEqual(self.func(data, 0.25), 2.875) |
---|
1734 | n/a | data = [2.25, 2.5, 2.5, 2.75, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75] |
---|
1735 | n/a | self.assertApproxEqual(self.func(data, 0.25), 2.83333333, tol=1e-8) |
---|
1736 | n/a | data = [220, 220, 240, 260, 260, 260, 260, 280, 280, 300, 320, 340] |
---|
1737 | n/a | self.assertEqual(self.func(data, 20), 265.0) |
---|
1738 | n/a | |
---|
1739 | n/a | def test_data_type_error(self): |
---|
1740 | n/a | # Test median_grouped with str, bytes data types for data and interval |
---|
1741 | n/a | data = ["", "", ""] |
---|
1742 | n/a | self.assertRaises(TypeError, self.func, data) |
---|
1743 | n/a | #--- |
---|
1744 | n/a | data = [b"", b"", b""] |
---|
1745 | n/a | self.assertRaises(TypeError, self.func, data) |
---|
1746 | n/a | #--- |
---|
1747 | n/a | data = [1, 2, 3] |
---|
1748 | n/a | interval = "" |
---|
1749 | n/a | self.assertRaises(TypeError, self.func, data, interval) |
---|
1750 | n/a | #--- |
---|
1751 | n/a | data = [1, 2, 3] |
---|
1752 | n/a | interval = b"" |
---|
1753 | n/a | self.assertRaises(TypeError, self.func, data, interval) |
---|
1754 | n/a | |
---|
1755 | n/a | |
---|
1756 | n/a | class TestMode(NumericTestCase, AverageMixin, UnivariateTypeMixin): |
---|
1757 | n/a | # Test cases for the discrete version of mode. |
---|
1758 | n/a | def setUp(self): |
---|
1759 | n/a | self.func = statistics.mode |
---|
1760 | n/a | |
---|
1761 | n/a | def prepare_data(self): |
---|
1762 | n/a | """Overload method from UnivariateCommonMixin.""" |
---|
1763 | n/a | # Make sure test data has exactly one mode. |
---|
1764 | n/a | return [1, 1, 1, 1, 3, 4, 7, 9, 0, 8, 2] |
---|
1765 | n/a | |
---|
1766 | n/a | def test_range_data(self): |
---|
1767 | n/a | # Override test from UnivariateCommonMixin. |
---|
1768 | n/a | data = range(20, 50, 3) |
---|
1769 | n/a | self.assertRaises(statistics.StatisticsError, self.func, data) |
---|
1770 | n/a | |
---|
1771 | n/a | def test_nominal_data(self): |
---|
1772 | n/a | # Test mode with nominal data. |
---|
1773 | n/a | data = 'abcbdb' |
---|
1774 | n/a | self.assertEqual(self.func(data), 'b') |
---|
1775 | n/a | data = 'fe fi fo fum fi fi'.split() |
---|
1776 | n/a | self.assertEqual(self.func(data), 'fi') |
---|
1777 | n/a | |
---|
1778 | n/a | def test_discrete_data(self): |
---|
1779 | n/a | # Test mode with discrete numeric data. |
---|
1780 | n/a | data = list(range(10)) |
---|
1781 | n/a | for i in range(10): |
---|
1782 | n/a | d = data + [i] |
---|
1783 | n/a | random.shuffle(d) |
---|
1784 | n/a | self.assertEqual(self.func(d), i) |
---|
1785 | n/a | |
---|
1786 | n/a | def test_bimodal_data(self): |
---|
1787 | n/a | # Test mode with bimodal data. |
---|
1788 | n/a | data = [1, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6, 6, 6, 7, 8, 9, 9] |
---|
1789 | n/a | assert data.count(2) == data.count(6) == 4 |
---|
1790 | n/a | # Check for an exception. |
---|
1791 | n/a | self.assertRaises(statistics.StatisticsError, self.func, data) |
---|
1792 | n/a | |
---|
1793 | n/a | def test_unique_data_failure(self): |
---|
1794 | n/a | # Test mode exception when data points are all unique. |
---|
1795 | n/a | data = list(range(10)) |
---|
1796 | n/a | self.assertRaises(statistics.StatisticsError, self.func, data) |
---|
1797 | n/a | |
---|
1798 | n/a | def test_none_data(self): |
---|
1799 | n/a | # Test that mode raises TypeError if given None as data. |
---|
1800 | n/a | |
---|
1801 | n/a | # This test is necessary because the implementation of mode uses |
---|
1802 | n/a | # collections.Counter, which accepts None and returns an empty dict. |
---|
1803 | n/a | self.assertRaises(TypeError, self.func, None) |
---|
1804 | n/a | |
---|
1805 | n/a | def test_counter_data(self): |
---|
1806 | n/a | # Test that a Counter is treated like any other iterable. |
---|
1807 | n/a | data = collections.Counter([1, 1, 1, 2]) |
---|
1808 | n/a | # Since the keys of the counter are treated as data points, not the |
---|
1809 | n/a | # counts, this should raise. |
---|
1810 | n/a | self.assertRaises(statistics.StatisticsError, self.func, data) |
---|
1811 | n/a | |
---|
1812 | n/a | |
---|
1813 | n/a | |
---|
1814 | n/a | # === Tests for variances and standard deviations === |
---|
1815 | n/a | |
---|
1816 | n/a | class VarianceStdevMixin(UnivariateCommonMixin): |
---|
1817 | n/a | # Mixin class holding common tests for variance and std dev. |
---|
1818 | n/a | |
---|
1819 | n/a | # Subclasses should inherit from this before NumericTestClass, in order |
---|
1820 | n/a | # to see the rel attribute below. See testShiftData for an explanation. |
---|
1821 | n/a | |
---|
1822 | n/a | rel = 1e-12 |
---|
1823 | n/a | |
---|
1824 | n/a | def test_single_value(self): |
---|
1825 | n/a | # Deviation of a single value is zero. |
---|
1826 | n/a | for x in (11, 19.8, 4.6e14, Fraction(21, 34), Decimal('8.392')): |
---|
1827 | n/a | self.assertEqual(self.func([x]), 0) |
---|
1828 | n/a | |
---|
1829 | n/a | def test_repeated_single_value(self): |
---|
1830 | n/a | # The deviation of a single repeated value is zero. |
---|
1831 | n/a | for x in (7.2, 49, 8.1e15, Fraction(3, 7), Decimal('62.4802')): |
---|
1832 | n/a | for count in (2, 3, 5, 15): |
---|
1833 | n/a | data = [x]*count |
---|
1834 | n/a | self.assertEqual(self.func(data), 0) |
---|
1835 | n/a | |
---|
1836 | n/a | def test_domain_error_regression(self): |
---|
1837 | n/a | # Regression test for a domain error exception. |
---|
1838 | n/a | # (Thanks to Geremy Condra.) |
---|
1839 | n/a | data = [0.123456789012345]*10000 |
---|
1840 | n/a | # All the items are identical, so variance should be exactly zero. |
---|
1841 | n/a | # We allow some small round-off error, but not much. |
---|
1842 | n/a | result = self.func(data) |
---|
1843 | n/a | self.assertApproxEqual(result, 0.0, tol=5e-17) |
---|
1844 | n/a | self.assertGreaterEqual(result, 0) # A negative result must fail. |
---|
1845 | n/a | |
---|
1846 | n/a | def test_shift_data(self): |
---|
1847 | n/a | # Test that shifting the data by a constant amount does not affect |
---|
1848 | n/a | # the variance or stdev. Or at least not much. |
---|
1849 | n/a | |
---|
1850 | n/a | # Due to rounding, this test should be considered an ideal. We allow |
---|
1851 | n/a | # some tolerance away from "no change at all" by setting tol and/or rel |
---|
1852 | n/a | # attributes. Subclasses may set tighter or looser error tolerances. |
---|
1853 | n/a | raw = [1.03, 1.27, 1.94, 2.04, 2.58, 3.14, 4.75, 4.98, 5.42, 6.78] |
---|
1854 | n/a | expected = self.func(raw) |
---|
1855 | n/a | # Don't set shift too high, the bigger it is, the more rounding error. |
---|
1856 | n/a | shift = 1e5 |
---|
1857 | n/a | data = [x + shift for x in raw] |
---|
1858 | n/a | self.assertApproxEqual(self.func(data), expected) |
---|
1859 | n/a | |
---|
1860 | n/a | def test_shift_data_exact(self): |
---|
1861 | n/a | # Like test_shift_data, but result is always exact. |
---|
1862 | n/a | raw = [1, 3, 3, 4, 5, 7, 9, 10, 11, 16] |
---|
1863 | n/a | assert all(x==int(x) for x in raw) |
---|
1864 | n/a | expected = self.func(raw) |
---|
1865 | n/a | shift = 10**9 |
---|
1866 | n/a | data = [x + shift for x in raw] |
---|
1867 | n/a | self.assertEqual(self.func(data), expected) |
---|
1868 | n/a | |
---|
1869 | n/a | def test_iter_list_same(self): |
---|
1870 | n/a | # Test that iter data and list data give the same result. |
---|
1871 | n/a | |
---|
1872 | n/a | # This is an explicit test that iterators and lists are treated the |
---|
1873 | n/a | # same; justification for this test over and above the similar test |
---|
1874 | n/a | # in UnivariateCommonMixin is that an earlier design had variance and |
---|
1875 | n/a | # friends swap between one- and two-pass algorithms, which would |
---|
1876 | n/a | # sometimes give different results. |
---|
1877 | n/a | data = [random.uniform(-3, 8) for _ in range(1000)] |
---|
1878 | n/a | expected = self.func(data) |
---|
1879 | n/a | self.assertEqual(self.func(iter(data)), expected) |
---|
1880 | n/a | |
---|
1881 | n/a | |
---|
1882 | n/a | class TestPVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin): |
---|
1883 | n/a | # Tests for population variance. |
---|
1884 | n/a | def setUp(self): |
---|
1885 | n/a | self.func = statistics.pvariance |
---|
1886 | n/a | |
---|
1887 | n/a | def test_exact_uniform(self): |
---|
1888 | n/a | # Test the variance against an exact result for uniform data. |
---|
1889 | n/a | data = list(range(10000)) |
---|
1890 | n/a | random.shuffle(data) |
---|
1891 | n/a | expected = (10000**2 - 1)/12 # Exact value. |
---|
1892 | n/a | self.assertEqual(self.func(data), expected) |
---|
1893 | n/a | |
---|
1894 | n/a | def test_ints(self): |
---|
1895 | n/a | # Test population variance with int data. |
---|
1896 | n/a | data = [4, 7, 13, 16] |
---|
1897 | n/a | exact = 22.5 |
---|
1898 | n/a | self.assertEqual(self.func(data), exact) |
---|
1899 | n/a | |
---|
1900 | n/a | def test_fractions(self): |
---|
1901 | n/a | # Test population variance with Fraction data. |
---|
1902 | n/a | F = Fraction |
---|
1903 | n/a | data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)] |
---|
1904 | n/a | exact = F(3, 8) |
---|
1905 | n/a | result = self.func(data) |
---|
1906 | n/a | self.assertEqual(result, exact) |
---|
1907 | n/a | self.assertIsInstance(result, Fraction) |
---|
1908 | n/a | |
---|
1909 | n/a | def test_decimals(self): |
---|
1910 | n/a | # Test population variance with Decimal data. |
---|
1911 | n/a | D = Decimal |
---|
1912 | n/a | data = [D("12.1"), D("12.2"), D("12.5"), D("12.9")] |
---|
1913 | n/a | exact = D('0.096875') |
---|
1914 | n/a | result = self.func(data) |
---|
1915 | n/a | self.assertEqual(result, exact) |
---|
1916 | n/a | self.assertIsInstance(result, Decimal) |
---|
1917 | n/a | |
---|
1918 | n/a | |
---|
1919 | n/a | class TestVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin): |
---|
1920 | n/a | # Tests for sample variance. |
---|
1921 | n/a | def setUp(self): |
---|
1922 | n/a | self.func = statistics.variance |
---|
1923 | n/a | |
---|
1924 | n/a | def test_single_value(self): |
---|
1925 | n/a | # Override method from VarianceStdevMixin. |
---|
1926 | n/a | for x in (35, 24.7, 8.2e15, Fraction(19, 30), Decimal('4.2084')): |
---|
1927 | n/a | self.assertRaises(statistics.StatisticsError, self.func, [x]) |
---|
1928 | n/a | |
---|
1929 | n/a | def test_ints(self): |
---|
1930 | n/a | # Test sample variance with int data. |
---|
1931 | n/a | data = [4, 7, 13, 16] |
---|
1932 | n/a | exact = 30 |
---|
1933 | n/a | self.assertEqual(self.func(data), exact) |
---|
1934 | n/a | |
---|
1935 | n/a | def test_fractions(self): |
---|
1936 | n/a | # Test sample variance with Fraction data. |
---|
1937 | n/a | F = Fraction |
---|
1938 | n/a | data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)] |
---|
1939 | n/a | exact = F(1, 2) |
---|
1940 | n/a | result = self.func(data) |
---|
1941 | n/a | self.assertEqual(result, exact) |
---|
1942 | n/a | self.assertIsInstance(result, Fraction) |
---|
1943 | n/a | |
---|
1944 | n/a | def test_decimals(self): |
---|
1945 | n/a | # Test sample variance with Decimal data. |
---|
1946 | n/a | D = Decimal |
---|
1947 | n/a | data = [D(2), D(2), D(7), D(9)] |
---|
1948 | n/a | exact = 4*D('9.5')/D(3) |
---|
1949 | n/a | result = self.func(data) |
---|
1950 | n/a | self.assertEqual(result, exact) |
---|
1951 | n/a | self.assertIsInstance(result, Decimal) |
---|
1952 | n/a | |
---|
1953 | n/a | |
---|
1954 | n/a | class TestPStdev(VarianceStdevMixin, NumericTestCase): |
---|
1955 | n/a | # Tests for population standard deviation. |
---|
1956 | n/a | def setUp(self): |
---|
1957 | n/a | self.func = statistics.pstdev |
---|
1958 | n/a | |
---|
1959 | n/a | def test_compare_to_variance(self): |
---|
1960 | n/a | # Test that stdev is, in fact, the square root of variance. |
---|
1961 | n/a | data = [random.uniform(-17, 24) for _ in range(1000)] |
---|
1962 | n/a | expected = math.sqrt(statistics.pvariance(data)) |
---|
1963 | n/a | self.assertEqual(self.func(data), expected) |
---|
1964 | n/a | |
---|
1965 | n/a | |
---|
1966 | n/a | class TestStdev(VarianceStdevMixin, NumericTestCase): |
---|
1967 | n/a | # Tests for sample standard deviation. |
---|
1968 | n/a | def setUp(self): |
---|
1969 | n/a | self.func = statistics.stdev |
---|
1970 | n/a | |
---|
1971 | n/a | def test_single_value(self): |
---|
1972 | n/a | # Override method from VarianceStdevMixin. |
---|
1973 | n/a | for x in (81, 203.74, 3.9e14, Fraction(5, 21), Decimal('35.719')): |
---|
1974 | n/a | self.assertRaises(statistics.StatisticsError, self.func, [x]) |
---|
1975 | n/a | |
---|
1976 | n/a | def test_compare_to_variance(self): |
---|
1977 | n/a | # Test that stdev is, in fact, the square root of variance. |
---|
1978 | n/a | data = [random.uniform(-2, 9) for _ in range(1000)] |
---|
1979 | n/a | expected = math.sqrt(statistics.variance(data)) |
---|
1980 | n/a | self.assertEqual(self.func(data), expected) |
---|
1981 | n/a | |
---|
1982 | n/a | |
---|
1983 | n/a | # === Run tests === |
---|
1984 | n/a | |
---|
1985 | n/a | def load_tests(loader, tests, ignore): |
---|
1986 | n/a | """Used for doctest/unittest integration.""" |
---|
1987 | n/a | tests.addTests(doctest.DocTestSuite()) |
---|
1988 | n/a | return tests |
---|
1989 | n/a | |
---|
1990 | n/a | |
---|
1991 | n/a | if __name__ == "__main__": |
---|
1992 | n/a | unittest.main() |
---|