| 1 | n/a | """Test suite for statistics module, including helper NumericTestCase and |
|---|
| 2 | n/a | approx_equal function. |
|---|
| 3 | n/a | |
|---|
| 4 | n/a | """ |
|---|
| 5 | n/a | |
|---|
| 6 | n/a | import collections |
|---|
| 7 | n/a | import decimal |
|---|
| 8 | n/a | import doctest |
|---|
| 9 | n/a | import math |
|---|
| 10 | n/a | import random |
|---|
| 11 | n/a | import sys |
|---|
| 12 | n/a | import unittest |
|---|
| 13 | n/a | |
|---|
| 14 | n/a | from decimal import Decimal |
|---|
| 15 | n/a | from fractions import Fraction |
|---|
| 16 | n/a | |
|---|
| 17 | n/a | |
|---|
| 18 | n/a | # Module to be tested. |
|---|
| 19 | n/a | import statistics |
|---|
| 20 | n/a | |
|---|
| 21 | n/a | |
|---|
| 22 | n/a | # === Helper functions and class === |
|---|
| 23 | n/a | |
|---|
| 24 | n/a | def sign(x): |
|---|
| 25 | n/a | """Return -1.0 for negatives, including -0.0, otherwise +1.0.""" |
|---|
| 26 | n/a | return math.copysign(1, x) |
|---|
| 27 | n/a | |
|---|
| 28 | n/a | def _nan_equal(a, b): |
|---|
| 29 | n/a | """Return True if a and b are both the same kind of NAN. |
|---|
| 30 | n/a | |
|---|
| 31 | n/a | >>> _nan_equal(Decimal('NAN'), Decimal('NAN')) |
|---|
| 32 | n/a | True |
|---|
| 33 | n/a | >>> _nan_equal(Decimal('sNAN'), Decimal('sNAN')) |
|---|
| 34 | n/a | True |
|---|
| 35 | n/a | >>> _nan_equal(Decimal('NAN'), Decimal('sNAN')) |
|---|
| 36 | n/a | False |
|---|
| 37 | n/a | >>> _nan_equal(Decimal(42), Decimal('NAN')) |
|---|
| 38 | n/a | False |
|---|
| 39 | n/a | |
|---|
| 40 | n/a | >>> _nan_equal(float('NAN'), float('NAN')) |
|---|
| 41 | n/a | True |
|---|
| 42 | n/a | >>> _nan_equal(float('NAN'), 0.5) |
|---|
| 43 | n/a | False |
|---|
| 44 | n/a | |
|---|
| 45 | n/a | >>> _nan_equal(float('NAN'), Decimal('NAN')) |
|---|
| 46 | n/a | False |
|---|
| 47 | n/a | |
|---|
| 48 | n/a | NAN payloads are not compared. |
|---|
| 49 | n/a | """ |
|---|
| 50 | n/a | if type(a) is not type(b): |
|---|
| 51 | n/a | return False |
|---|
| 52 | n/a | if isinstance(a, float): |
|---|
| 53 | n/a | return math.isnan(a) and math.isnan(b) |
|---|
| 54 | n/a | aexp = a.as_tuple()[2] |
|---|
| 55 | n/a | bexp = b.as_tuple()[2] |
|---|
| 56 | n/a | return (aexp == bexp) and (aexp in ('n', 'N')) # Both NAN or both sNAN. |
|---|
| 57 | n/a | |
|---|
| 58 | n/a | |
|---|
| 59 | n/a | def _calc_errors(actual, expected): |
|---|
| 60 | n/a | """Return the absolute and relative errors between two numbers. |
|---|
| 61 | n/a | |
|---|
| 62 | n/a | >>> _calc_errors(100, 75) |
|---|
| 63 | n/a | (25, 0.25) |
|---|
| 64 | n/a | >>> _calc_errors(100, 100) |
|---|
| 65 | n/a | (0, 0.0) |
|---|
| 66 | n/a | |
|---|
| 67 | n/a | Returns the (absolute error, relative error) between the two arguments. |
|---|
| 68 | n/a | """ |
|---|
| 69 | n/a | base = max(abs(actual), abs(expected)) |
|---|
| 70 | n/a | abs_err = abs(actual - expected) |
|---|
| 71 | n/a | rel_err = abs_err/base if base else float('inf') |
|---|
| 72 | n/a | return (abs_err, rel_err) |
|---|
| 73 | n/a | |
|---|
| 74 | n/a | |
|---|
| 75 | n/a | def approx_equal(x, y, tol=1e-12, rel=1e-7): |
|---|
| 76 | n/a | """approx_equal(x, y [, tol [, rel]]) => True|False |
|---|
| 77 | n/a | |
|---|
| 78 | n/a | Return True if numbers x and y are approximately equal, to within some |
|---|
| 79 | n/a | margin of error, otherwise return False. Numbers which compare equal |
|---|
| 80 | n/a | will also compare approximately equal. |
|---|
| 81 | n/a | |
|---|
| 82 | n/a | x is approximately equal to y if the difference between them is less than |
|---|
| 83 | n/a | an absolute error tol or a relative error rel, whichever is bigger. |
|---|
| 84 | n/a | |
|---|
| 85 | n/a | If given, both tol and rel must be finite, non-negative numbers. If not |
|---|
| 86 | n/a | given, default values are tol=1e-12 and rel=1e-7. |
|---|
| 87 | n/a | |
|---|
| 88 | n/a | >>> approx_equal(1.2589, 1.2587, tol=0.0003, rel=0) |
|---|
| 89 | n/a | True |
|---|
| 90 | n/a | >>> approx_equal(1.2589, 1.2587, tol=0.0001, rel=0) |
|---|
| 91 | n/a | False |
|---|
| 92 | n/a | |
|---|
| 93 | n/a | Absolute error is defined as abs(x-y); if that is less than or equal to |
|---|
| 94 | n/a | tol, x and y are considered approximately equal. |
|---|
| 95 | n/a | |
|---|
| 96 | n/a | Relative error is defined as abs((x-y)/x) or abs((x-y)/y), whichever is |
|---|
| 97 | n/a | smaller, provided x or y are not zero. If that figure is less than or |
|---|
| 98 | n/a | equal to rel, x and y are considered approximately equal. |
|---|
| 99 | n/a | |
|---|
| 100 | n/a | Complex numbers are not directly supported. If you wish to compare to |
|---|
| 101 | n/a | complex numbers, extract their real and imaginary parts and compare them |
|---|
| 102 | n/a | individually. |
|---|
| 103 | n/a | |
|---|
| 104 | n/a | NANs always compare unequal, even with themselves. Infinities compare |
|---|
| 105 | n/a | approximately equal if they have the same sign (both positive or both |
|---|
| 106 | n/a | negative). Infinities with different signs compare unequal; so do |
|---|
| 107 | n/a | comparisons of infinities with finite numbers. |
|---|
| 108 | n/a | """ |
|---|
| 109 | n/a | if tol < 0 or rel < 0: |
|---|
| 110 | n/a | raise ValueError('error tolerances must be non-negative') |
|---|
| 111 | n/a | # NANs are never equal to anything, approximately or otherwise. |
|---|
| 112 | n/a | if math.isnan(x) or math.isnan(y): |
|---|
| 113 | n/a | return False |
|---|
| 114 | n/a | # Numbers which compare equal also compare approximately equal. |
|---|
| 115 | n/a | if x == y: |
|---|
| 116 | n/a | # This includes the case of two infinities with the same sign. |
|---|
| 117 | n/a | return True |
|---|
| 118 | n/a | if math.isinf(x) or math.isinf(y): |
|---|
| 119 | n/a | # This includes the case of two infinities of opposite sign, or |
|---|
| 120 | n/a | # one infinity and one finite number. |
|---|
| 121 | n/a | return False |
|---|
| 122 | n/a | # Two finite numbers. |
|---|
| 123 | n/a | actual_error = abs(x - y) |
|---|
| 124 | n/a | allowed_error = max(tol, rel*max(abs(x), abs(y))) |
|---|
| 125 | n/a | return actual_error <= allowed_error |
|---|
| 126 | n/a | |
|---|
| 127 | n/a | |
|---|
| 128 | n/a | # This class exists only as somewhere to stick a docstring containing |
|---|
| 129 | n/a | # doctests. The following docstring and tests were originally in a separate |
|---|
| 130 | n/a | # module. Now that it has been merged in here, I need somewhere to hang the. |
|---|
| 131 | n/a | # docstring. Ultimately, this class will die, and the information below will |
|---|
| 132 | n/a | # either become redundant, or be moved into more appropriate places. |
|---|
| 133 | n/a | class _DoNothing: |
|---|
| 134 | n/a | """ |
|---|
| 135 | n/a | When doing numeric work, especially with floats, exact equality is often |
|---|
| 136 | n/a | not what you want. Due to round-off error, it is often a bad idea to try |
|---|
| 137 | n/a | to compare floats with equality. Instead the usual procedure is to test |
|---|
| 138 | n/a | them with some (hopefully small!) allowance for error. |
|---|
| 139 | n/a | |
|---|
| 140 | n/a | The ``approx_equal`` function allows you to specify either an absolute |
|---|
| 141 | n/a | error tolerance, or a relative error, or both. |
|---|
| 142 | n/a | |
|---|
| 143 | n/a | Absolute error tolerances are simple, but you need to know the magnitude |
|---|
| 144 | n/a | of the quantities being compared: |
|---|
| 145 | n/a | |
|---|
| 146 | n/a | >>> approx_equal(12.345, 12.346, tol=1e-3) |
|---|
| 147 | n/a | True |
|---|
| 148 | n/a | >>> approx_equal(12.345e6, 12.346e6, tol=1e-3) # tol is too small. |
|---|
| 149 | n/a | False |
|---|
| 150 | n/a | |
|---|
| 151 | n/a | Relative errors are more suitable when the values you are comparing can |
|---|
| 152 | n/a | vary in magnitude: |
|---|
| 153 | n/a | |
|---|
| 154 | n/a | >>> approx_equal(12.345, 12.346, rel=1e-4) |
|---|
| 155 | n/a | True |
|---|
| 156 | n/a | >>> approx_equal(12.345e6, 12.346e6, rel=1e-4) |
|---|
| 157 | n/a | True |
|---|
| 158 | n/a | |
|---|
| 159 | n/a | but a naive implementation of relative error testing can run into trouble |
|---|
| 160 | n/a | around zero. |
|---|
| 161 | n/a | |
|---|
| 162 | n/a | If you supply both an absolute tolerance and a relative error, the |
|---|
| 163 | n/a | comparison succeeds if either individual test succeeds: |
|---|
| 164 | n/a | |
|---|
| 165 | n/a | >>> approx_equal(12.345e6, 12.346e6, tol=1e-3, rel=1e-4) |
|---|
| 166 | n/a | True |
|---|
| 167 | n/a | |
|---|
| 168 | n/a | """ |
|---|
| 169 | n/a | pass |
|---|
| 170 | n/a | |
|---|
| 171 | n/a | |
|---|
| 172 | n/a | |
|---|
| 173 | n/a | # We prefer this for testing numeric values that may not be exactly equal, |
|---|
| 174 | n/a | # and avoid using TestCase.assertAlmostEqual, because it sucks :-) |
|---|
| 175 | n/a | |
|---|
| 176 | n/a | class NumericTestCase(unittest.TestCase): |
|---|
| 177 | n/a | """Unit test class for numeric work. |
|---|
| 178 | n/a | |
|---|
| 179 | n/a | This subclasses TestCase. In addition to the standard method |
|---|
| 180 | n/a | ``TestCase.assertAlmostEqual``, ``assertApproxEqual`` is provided. |
|---|
| 181 | n/a | """ |
|---|
| 182 | n/a | # By default, we expect exact equality, unless overridden. |
|---|
| 183 | n/a | tol = rel = 0 |
|---|
| 184 | n/a | |
|---|
| 185 | n/a | def assertApproxEqual( |
|---|
| 186 | n/a | self, first, second, tol=None, rel=None, msg=None |
|---|
| 187 | n/a | ): |
|---|
| 188 | n/a | """Test passes if ``first`` and ``second`` are approximately equal. |
|---|
| 189 | n/a | |
|---|
| 190 | n/a | This test passes if ``first`` and ``second`` are equal to |
|---|
| 191 | n/a | within ``tol``, an absolute error, or ``rel``, a relative error. |
|---|
| 192 | n/a | |
|---|
| 193 | n/a | If either ``tol`` or ``rel`` are None or not given, they default to |
|---|
| 194 | n/a | test attributes of the same name (by default, 0). |
|---|
| 195 | n/a | |
|---|
| 196 | n/a | The objects may be either numbers, or sequences of numbers. Sequences |
|---|
| 197 | n/a | are tested element-by-element. |
|---|
| 198 | n/a | |
|---|
| 199 | n/a | >>> class MyTest(NumericTestCase): |
|---|
| 200 | n/a | ... def test_number(self): |
|---|
| 201 | n/a | ... x = 1.0/6 |
|---|
| 202 | n/a | ... y = sum([x]*6) |
|---|
| 203 | n/a | ... self.assertApproxEqual(y, 1.0, tol=1e-15) |
|---|
| 204 | n/a | ... def test_sequence(self): |
|---|
| 205 | n/a | ... a = [1.001, 1.001e-10, 1.001e10] |
|---|
| 206 | n/a | ... b = [1.0, 1e-10, 1e10] |
|---|
| 207 | n/a | ... self.assertApproxEqual(a, b, rel=1e-3) |
|---|
| 208 | n/a | ... |
|---|
| 209 | n/a | >>> import unittest |
|---|
| 210 | n/a | >>> from io import StringIO # Suppress test runner output. |
|---|
| 211 | n/a | >>> suite = unittest.TestLoader().loadTestsFromTestCase(MyTest) |
|---|
| 212 | n/a | >>> unittest.TextTestRunner(stream=StringIO()).run(suite) |
|---|
| 213 | n/a | <unittest.runner.TextTestResult run=2 errors=0 failures=0> |
|---|
| 214 | n/a | |
|---|
| 215 | n/a | """ |
|---|
| 216 | n/a | if tol is None: |
|---|
| 217 | n/a | tol = self.tol |
|---|
| 218 | n/a | if rel is None: |
|---|
| 219 | n/a | rel = self.rel |
|---|
| 220 | n/a | if ( |
|---|
| 221 | n/a | isinstance(first, collections.Sequence) and |
|---|
| 222 | n/a | isinstance(second, collections.Sequence) |
|---|
| 223 | n/a | ): |
|---|
| 224 | n/a | check = self._check_approx_seq |
|---|
| 225 | n/a | else: |
|---|
| 226 | n/a | check = self._check_approx_num |
|---|
| 227 | n/a | check(first, second, tol, rel, msg) |
|---|
| 228 | n/a | |
|---|
| 229 | n/a | def _check_approx_seq(self, first, second, tol, rel, msg): |
|---|
| 230 | n/a | if len(first) != len(second): |
|---|
| 231 | n/a | standardMsg = ( |
|---|
| 232 | n/a | "sequences differ in length: %d items != %d items" |
|---|
| 233 | n/a | % (len(first), len(second)) |
|---|
| 234 | n/a | ) |
|---|
| 235 | n/a | msg = self._formatMessage(msg, standardMsg) |
|---|
| 236 | n/a | raise self.failureException(msg) |
|---|
| 237 | n/a | for i, (a,e) in enumerate(zip(first, second)): |
|---|
| 238 | n/a | self._check_approx_num(a, e, tol, rel, msg, i) |
|---|
| 239 | n/a | |
|---|
| 240 | n/a | def _check_approx_num(self, first, second, tol, rel, msg, idx=None): |
|---|
| 241 | n/a | if approx_equal(first, second, tol, rel): |
|---|
| 242 | n/a | # Test passes. Return early, we are done. |
|---|
| 243 | n/a | return None |
|---|
| 244 | n/a | # Otherwise we failed. |
|---|
| 245 | n/a | standardMsg = self._make_std_err_msg(first, second, tol, rel, idx) |
|---|
| 246 | n/a | msg = self._formatMessage(msg, standardMsg) |
|---|
| 247 | n/a | raise self.failureException(msg) |
|---|
| 248 | n/a | |
|---|
| 249 | n/a | @staticmethod |
|---|
| 250 | n/a | def _make_std_err_msg(first, second, tol, rel, idx): |
|---|
| 251 | n/a | # Create the standard error message for approx_equal failures. |
|---|
| 252 | n/a | assert first != second |
|---|
| 253 | n/a | template = ( |
|---|
| 254 | n/a | ' %r != %r\n' |
|---|
| 255 | n/a | ' values differ by more than tol=%r and rel=%r\n' |
|---|
| 256 | n/a | ' -> absolute error = %r\n' |
|---|
| 257 | n/a | ' -> relative error = %r' |
|---|
| 258 | n/a | ) |
|---|
| 259 | n/a | if idx is not None: |
|---|
| 260 | n/a | header = 'numeric sequences first differ at index %d.\n' % idx |
|---|
| 261 | n/a | template = header + template |
|---|
| 262 | n/a | # Calculate actual errors: |
|---|
| 263 | n/a | abs_err, rel_err = _calc_errors(first, second) |
|---|
| 264 | n/a | return template % (first, second, tol, rel, abs_err, rel_err) |
|---|
| 265 | n/a | |
|---|
| 266 | n/a | |
|---|
| 267 | n/a | # ======================== |
|---|
| 268 | n/a | # === Test the helpers === |
|---|
| 269 | n/a | # ======================== |
|---|
| 270 | n/a | |
|---|
| 271 | n/a | class TestSign(unittest.TestCase): |
|---|
| 272 | n/a | """Test that the helper function sign() works correctly.""" |
|---|
| 273 | n/a | def testZeroes(self): |
|---|
| 274 | n/a | # Test that signed zeroes report their sign correctly. |
|---|
| 275 | n/a | self.assertEqual(sign(0.0), +1) |
|---|
| 276 | n/a | self.assertEqual(sign(-0.0), -1) |
|---|
| 277 | n/a | |
|---|
| 278 | n/a | |
|---|
| 279 | n/a | # --- Tests for approx_equal --- |
|---|
| 280 | n/a | |
|---|
| 281 | n/a | class ApproxEqualSymmetryTest(unittest.TestCase): |
|---|
| 282 | n/a | # Test symmetry of approx_equal. |
|---|
| 283 | n/a | |
|---|
| 284 | n/a | def test_relative_symmetry(self): |
|---|
| 285 | n/a | # Check that approx_equal treats relative error symmetrically. |
|---|
| 286 | n/a | # (a-b)/a is usually not equal to (a-b)/b. Ensure that this |
|---|
| 287 | n/a | # doesn't matter. |
|---|
| 288 | n/a | # |
|---|
| 289 | n/a | # Note: the reason for this test is that an early version |
|---|
| 290 | n/a | # of approx_equal was not symmetric. A relative error test |
|---|
| 291 | n/a | # would pass, or fail, depending on which value was passed |
|---|
| 292 | n/a | # as the first argument. |
|---|
| 293 | n/a | # |
|---|
| 294 | n/a | args1 = [2456, 37.8, -12.45, Decimal('2.54'), Fraction(17, 54)] |
|---|
| 295 | n/a | args2 = [2459, 37.2, -12.41, Decimal('2.59'), Fraction(15, 54)] |
|---|
| 296 | n/a | assert len(args1) == len(args2) |
|---|
| 297 | n/a | for a, b in zip(args1, args2): |
|---|
| 298 | n/a | self.do_relative_symmetry(a, b) |
|---|
| 299 | n/a | |
|---|
| 300 | n/a | def do_relative_symmetry(self, a, b): |
|---|
| 301 | n/a | a, b = min(a, b), max(a, b) |
|---|
| 302 | n/a | assert a < b |
|---|
| 303 | n/a | delta = b - a # The absolute difference between the values. |
|---|
| 304 | n/a | rel_err1, rel_err2 = abs(delta/a), abs(delta/b) |
|---|
| 305 | n/a | # Choose an error margin halfway between the two. |
|---|
| 306 | n/a | rel = (rel_err1 + rel_err2)/2 |
|---|
| 307 | n/a | # Now see that values a and b compare approx equal regardless of |
|---|
| 308 | n/a | # which is given first. |
|---|
| 309 | n/a | self.assertTrue(approx_equal(a, b, tol=0, rel=rel)) |
|---|
| 310 | n/a | self.assertTrue(approx_equal(b, a, tol=0, rel=rel)) |
|---|
| 311 | n/a | |
|---|
| 312 | n/a | def test_symmetry(self): |
|---|
| 313 | n/a | # Test that approx_equal(a, b) == approx_equal(b, a) |
|---|
| 314 | n/a | args = [-23, -2, 5, 107, 93568] |
|---|
| 315 | n/a | delta = 2 |
|---|
| 316 | n/a | for a in args: |
|---|
| 317 | n/a | for type_ in (int, float, Decimal, Fraction): |
|---|
| 318 | n/a | x = type_(a)*100 |
|---|
| 319 | n/a | y = x + delta |
|---|
| 320 | n/a | r = abs(delta/max(x, y)) |
|---|
| 321 | n/a | # There are five cases to check: |
|---|
| 322 | n/a | # 1) actual error <= tol, <= rel |
|---|
| 323 | n/a | self.do_symmetry_test(x, y, tol=delta, rel=r) |
|---|
| 324 | n/a | self.do_symmetry_test(x, y, tol=delta+1, rel=2*r) |
|---|
| 325 | n/a | # 2) actual error > tol, > rel |
|---|
| 326 | n/a | self.do_symmetry_test(x, y, tol=delta-1, rel=r/2) |
|---|
| 327 | n/a | # 3) actual error <= tol, > rel |
|---|
| 328 | n/a | self.do_symmetry_test(x, y, tol=delta, rel=r/2) |
|---|
| 329 | n/a | # 4) actual error > tol, <= rel |
|---|
| 330 | n/a | self.do_symmetry_test(x, y, tol=delta-1, rel=r) |
|---|
| 331 | n/a | self.do_symmetry_test(x, y, tol=delta-1, rel=2*r) |
|---|
| 332 | n/a | # 5) exact equality test |
|---|
| 333 | n/a | self.do_symmetry_test(x, x, tol=0, rel=0) |
|---|
| 334 | n/a | self.do_symmetry_test(x, y, tol=0, rel=0) |
|---|
| 335 | n/a | |
|---|
| 336 | n/a | def do_symmetry_test(self, a, b, tol, rel): |
|---|
| 337 | n/a | template = "approx_equal comparisons don't match for %r" |
|---|
| 338 | n/a | flag1 = approx_equal(a, b, tol, rel) |
|---|
| 339 | n/a | flag2 = approx_equal(b, a, tol, rel) |
|---|
| 340 | n/a | self.assertEqual(flag1, flag2, template.format((a, b, tol, rel))) |
|---|
| 341 | n/a | |
|---|
| 342 | n/a | |
|---|
| 343 | n/a | class ApproxEqualExactTest(unittest.TestCase): |
|---|
| 344 | n/a | # Test the approx_equal function with exactly equal values. |
|---|
| 345 | n/a | # Equal values should compare as approximately equal. |
|---|
| 346 | n/a | # Test cases for exactly equal values, which should compare approx |
|---|
| 347 | n/a | # equal regardless of the error tolerances given. |
|---|
| 348 | n/a | |
|---|
| 349 | n/a | def do_exactly_equal_test(self, x, tol, rel): |
|---|
| 350 | n/a | result = approx_equal(x, x, tol=tol, rel=rel) |
|---|
| 351 | n/a | self.assertTrue(result, 'equality failure for x=%r' % x) |
|---|
| 352 | n/a | result = approx_equal(-x, -x, tol=tol, rel=rel) |
|---|
| 353 | n/a | self.assertTrue(result, 'equality failure for x=%r' % -x) |
|---|
| 354 | n/a | |
|---|
| 355 | n/a | def test_exactly_equal_ints(self): |
|---|
| 356 | n/a | # Test that equal int values are exactly equal. |
|---|
| 357 | n/a | for n in [42, 19740, 14974, 230, 1795, 700245, 36587]: |
|---|
| 358 | n/a | self.do_exactly_equal_test(n, 0, 0) |
|---|
| 359 | n/a | |
|---|
| 360 | n/a | def test_exactly_equal_floats(self): |
|---|
| 361 | n/a | # Test that equal float values are exactly equal. |
|---|
| 362 | n/a | for x in [0.42, 1.9740, 1497.4, 23.0, 179.5, 70.0245, 36.587]: |
|---|
| 363 | n/a | self.do_exactly_equal_test(x, 0, 0) |
|---|
| 364 | n/a | |
|---|
| 365 | n/a | def test_exactly_equal_fractions(self): |
|---|
| 366 | n/a | # Test that equal Fraction values are exactly equal. |
|---|
| 367 | n/a | F = Fraction |
|---|
| 368 | n/a | for f in [F(1, 2), F(0), F(5, 3), F(9, 7), F(35, 36), F(3, 7)]: |
|---|
| 369 | n/a | self.do_exactly_equal_test(f, 0, 0) |
|---|
| 370 | n/a | |
|---|
| 371 | n/a | def test_exactly_equal_decimals(self): |
|---|
| 372 | n/a | # Test that equal Decimal values are exactly equal. |
|---|
| 373 | n/a | D = Decimal |
|---|
| 374 | n/a | for d in map(D, "8.2 31.274 912.04 16.745 1.2047".split()): |
|---|
| 375 | n/a | self.do_exactly_equal_test(d, 0, 0) |
|---|
| 376 | n/a | |
|---|
| 377 | n/a | def test_exactly_equal_absolute(self): |
|---|
| 378 | n/a | # Test that equal values are exactly equal with an absolute error. |
|---|
| 379 | n/a | for n in [16, 1013, 1372, 1198, 971, 4]: |
|---|
| 380 | n/a | # Test as ints. |
|---|
| 381 | n/a | self.do_exactly_equal_test(n, 0.01, 0) |
|---|
| 382 | n/a | # Test as floats. |
|---|
| 383 | n/a | self.do_exactly_equal_test(n/10, 0.01, 0) |
|---|
| 384 | n/a | # Test as Fractions. |
|---|
| 385 | n/a | f = Fraction(n, 1234) |
|---|
| 386 | n/a | self.do_exactly_equal_test(f, 0.01, 0) |
|---|
| 387 | n/a | |
|---|
| 388 | n/a | def test_exactly_equal_absolute_decimals(self): |
|---|
| 389 | n/a | # Test equal Decimal values are exactly equal with an absolute error. |
|---|
| 390 | n/a | self.do_exactly_equal_test(Decimal("3.571"), Decimal("0.01"), 0) |
|---|
| 391 | n/a | self.do_exactly_equal_test(-Decimal("81.3971"), Decimal("0.01"), 0) |
|---|
| 392 | n/a | |
|---|
| 393 | n/a | def test_exactly_equal_relative(self): |
|---|
| 394 | n/a | # Test that equal values are exactly equal with a relative error. |
|---|
| 395 | n/a | for x in [8347, 101.3, -7910.28, Fraction(5, 21)]: |
|---|
| 396 | n/a | self.do_exactly_equal_test(x, 0, 0.01) |
|---|
| 397 | n/a | self.do_exactly_equal_test(Decimal("11.68"), 0, Decimal("0.01")) |
|---|
| 398 | n/a | |
|---|
| 399 | n/a | def test_exactly_equal_both(self): |
|---|
| 400 | n/a | # Test that equal values are equal when both tol and rel are given. |
|---|
| 401 | n/a | for x in [41017, 16.742, -813.02, Fraction(3, 8)]: |
|---|
| 402 | n/a | self.do_exactly_equal_test(x, 0.1, 0.01) |
|---|
| 403 | n/a | D = Decimal |
|---|
| 404 | n/a | self.do_exactly_equal_test(D("7.2"), D("0.1"), D("0.01")) |
|---|
| 405 | n/a | |
|---|
| 406 | n/a | |
|---|
| 407 | n/a | class ApproxEqualUnequalTest(unittest.TestCase): |
|---|
| 408 | n/a | # Unequal values should compare unequal with zero error tolerances. |
|---|
| 409 | n/a | # Test cases for unequal values, with exact equality test. |
|---|
| 410 | n/a | |
|---|
| 411 | n/a | def do_exactly_unequal_test(self, x): |
|---|
| 412 | n/a | for a in (x, -x): |
|---|
| 413 | n/a | result = approx_equal(a, a+1, tol=0, rel=0) |
|---|
| 414 | n/a | self.assertFalse(result, 'inequality failure for x=%r' % a) |
|---|
| 415 | n/a | |
|---|
| 416 | n/a | def test_exactly_unequal_ints(self): |
|---|
| 417 | n/a | # Test unequal int values are unequal with zero error tolerance. |
|---|
| 418 | n/a | for n in [951, 572305, 478, 917, 17240]: |
|---|
| 419 | n/a | self.do_exactly_unequal_test(n) |
|---|
| 420 | n/a | |
|---|
| 421 | n/a | def test_exactly_unequal_floats(self): |
|---|
| 422 | n/a | # Test unequal float values are unequal with zero error tolerance. |
|---|
| 423 | n/a | for x in [9.51, 5723.05, 47.8, 9.17, 17.24]: |
|---|
| 424 | n/a | self.do_exactly_unequal_test(x) |
|---|
| 425 | n/a | |
|---|
| 426 | n/a | def test_exactly_unequal_fractions(self): |
|---|
| 427 | n/a | # Test that unequal Fractions are unequal with zero error tolerance. |
|---|
| 428 | n/a | F = Fraction |
|---|
| 429 | n/a | for f in [F(1, 5), F(7, 9), F(12, 11), F(101, 99023)]: |
|---|
| 430 | n/a | self.do_exactly_unequal_test(f) |
|---|
| 431 | n/a | |
|---|
| 432 | n/a | def test_exactly_unequal_decimals(self): |
|---|
| 433 | n/a | # Test that unequal Decimals are unequal with zero error tolerance. |
|---|
| 434 | n/a | for d in map(Decimal, "3.1415 298.12 3.47 18.996 0.00245".split()): |
|---|
| 435 | n/a | self.do_exactly_unequal_test(d) |
|---|
| 436 | n/a | |
|---|
| 437 | n/a | |
|---|
| 438 | n/a | class ApproxEqualInexactTest(unittest.TestCase): |
|---|
| 439 | n/a | # Inexact test cases for approx_error. |
|---|
| 440 | n/a | # Test cases when comparing two values that are not exactly equal. |
|---|
| 441 | n/a | |
|---|
| 442 | n/a | # === Absolute error tests === |
|---|
| 443 | n/a | |
|---|
| 444 | n/a | def do_approx_equal_abs_test(self, x, delta): |
|---|
| 445 | n/a | template = "Test failure for x={!r}, y={!r}" |
|---|
| 446 | n/a | for y in (x + delta, x - delta): |
|---|
| 447 | n/a | msg = template.format(x, y) |
|---|
| 448 | n/a | self.assertTrue(approx_equal(x, y, tol=2*delta, rel=0), msg) |
|---|
| 449 | n/a | self.assertFalse(approx_equal(x, y, tol=delta/2, rel=0), msg) |
|---|
| 450 | n/a | |
|---|
| 451 | n/a | def test_approx_equal_absolute_ints(self): |
|---|
| 452 | n/a | # Test approximate equality of ints with an absolute error. |
|---|
| 453 | n/a | for n in [-10737, -1975, -7, -2, 0, 1, 9, 37, 423, 9874, 23789110]: |
|---|
| 454 | n/a | self.do_approx_equal_abs_test(n, 10) |
|---|
| 455 | n/a | self.do_approx_equal_abs_test(n, 2) |
|---|
| 456 | n/a | |
|---|
| 457 | n/a | def test_approx_equal_absolute_floats(self): |
|---|
| 458 | n/a | # Test approximate equality of floats with an absolute error. |
|---|
| 459 | n/a | for x in [-284.126, -97.1, -3.4, -2.15, 0.5, 1.0, 7.8, 4.23, 3817.4]: |
|---|
| 460 | n/a | self.do_approx_equal_abs_test(x, 1.5) |
|---|
| 461 | n/a | self.do_approx_equal_abs_test(x, 0.01) |
|---|
| 462 | n/a | self.do_approx_equal_abs_test(x, 0.0001) |
|---|
| 463 | n/a | |
|---|
| 464 | n/a | def test_approx_equal_absolute_fractions(self): |
|---|
| 465 | n/a | # Test approximate equality of Fractions with an absolute error. |
|---|
| 466 | n/a | delta = Fraction(1, 29) |
|---|
| 467 | n/a | numerators = [-84, -15, -2, -1, 0, 1, 5, 17, 23, 34, 71] |
|---|
| 468 | n/a | for f in (Fraction(n, 29) for n in numerators): |
|---|
| 469 | n/a | self.do_approx_equal_abs_test(f, delta) |
|---|
| 470 | n/a | self.do_approx_equal_abs_test(f, float(delta)) |
|---|
| 471 | n/a | |
|---|
| 472 | n/a | def test_approx_equal_absolute_decimals(self): |
|---|
| 473 | n/a | # Test approximate equality of Decimals with an absolute error. |
|---|
| 474 | n/a | delta = Decimal("0.01") |
|---|
| 475 | n/a | for d in map(Decimal, "1.0 3.5 36.08 61.79 7912.3648".split()): |
|---|
| 476 | n/a | self.do_approx_equal_abs_test(d, delta) |
|---|
| 477 | n/a | self.do_approx_equal_abs_test(-d, delta) |
|---|
| 478 | n/a | |
|---|
| 479 | n/a | def test_cross_zero(self): |
|---|
| 480 | n/a | # Test for the case of the two values having opposite signs. |
|---|
| 481 | n/a | self.assertTrue(approx_equal(1e-5, -1e-5, tol=1e-4, rel=0)) |
|---|
| 482 | n/a | |
|---|
| 483 | n/a | # === Relative error tests === |
|---|
| 484 | n/a | |
|---|
| 485 | n/a | def do_approx_equal_rel_test(self, x, delta): |
|---|
| 486 | n/a | template = "Test failure for x={!r}, y={!r}" |
|---|
| 487 | n/a | for y in (x*(1+delta), x*(1-delta)): |
|---|
| 488 | n/a | msg = template.format(x, y) |
|---|
| 489 | n/a | self.assertTrue(approx_equal(x, y, tol=0, rel=2*delta), msg) |
|---|
| 490 | n/a | self.assertFalse(approx_equal(x, y, tol=0, rel=delta/2), msg) |
|---|
| 491 | n/a | |
|---|
| 492 | n/a | def test_approx_equal_relative_ints(self): |
|---|
| 493 | n/a | # Test approximate equality of ints with a relative error. |
|---|
| 494 | n/a | self.assertTrue(approx_equal(64, 47, tol=0, rel=0.36)) |
|---|
| 495 | n/a | self.assertTrue(approx_equal(64, 47, tol=0, rel=0.37)) |
|---|
| 496 | n/a | # --- |
|---|
| 497 | n/a | self.assertTrue(approx_equal(449, 512, tol=0, rel=0.125)) |
|---|
| 498 | n/a | self.assertTrue(approx_equal(448, 512, tol=0, rel=0.125)) |
|---|
| 499 | n/a | self.assertFalse(approx_equal(447, 512, tol=0, rel=0.125)) |
|---|
| 500 | n/a | |
|---|
| 501 | n/a | def test_approx_equal_relative_floats(self): |
|---|
| 502 | n/a | # Test approximate equality of floats with a relative error. |
|---|
| 503 | n/a | for x in [-178.34, -0.1, 0.1, 1.0, 36.97, 2847.136, 9145.074]: |
|---|
| 504 | n/a | self.do_approx_equal_rel_test(x, 0.02) |
|---|
| 505 | n/a | self.do_approx_equal_rel_test(x, 0.0001) |
|---|
| 506 | n/a | |
|---|
| 507 | n/a | def test_approx_equal_relative_fractions(self): |
|---|
| 508 | n/a | # Test approximate equality of Fractions with a relative error. |
|---|
| 509 | n/a | F = Fraction |
|---|
| 510 | n/a | delta = Fraction(3, 8) |
|---|
| 511 | n/a | for f in [F(3, 84), F(17, 30), F(49, 50), F(92, 85)]: |
|---|
| 512 | n/a | for d in (delta, float(delta)): |
|---|
| 513 | n/a | self.do_approx_equal_rel_test(f, d) |
|---|
| 514 | n/a | self.do_approx_equal_rel_test(-f, d) |
|---|
| 515 | n/a | |
|---|
| 516 | n/a | def test_approx_equal_relative_decimals(self): |
|---|
| 517 | n/a | # Test approximate equality of Decimals with a relative error. |
|---|
| 518 | n/a | for d in map(Decimal, "0.02 1.0 5.7 13.67 94.138 91027.9321".split()): |
|---|
| 519 | n/a | self.do_approx_equal_rel_test(d, Decimal("0.001")) |
|---|
| 520 | n/a | self.do_approx_equal_rel_test(-d, Decimal("0.05")) |
|---|
| 521 | n/a | |
|---|
| 522 | n/a | # === Both absolute and relative error tests === |
|---|
| 523 | n/a | |
|---|
| 524 | n/a | # There are four cases to consider: |
|---|
| 525 | n/a | # 1) actual error <= both absolute and relative error |
|---|
| 526 | n/a | # 2) actual error <= absolute error but > relative error |
|---|
| 527 | n/a | # 3) actual error <= relative error but > absolute error |
|---|
| 528 | n/a | # 4) actual error > both absolute and relative error |
|---|
| 529 | n/a | |
|---|
| 530 | n/a | def do_check_both(self, a, b, tol, rel, tol_flag, rel_flag): |
|---|
| 531 | n/a | check = self.assertTrue if tol_flag else self.assertFalse |
|---|
| 532 | n/a | check(approx_equal(a, b, tol=tol, rel=0)) |
|---|
| 533 | n/a | check = self.assertTrue if rel_flag else self.assertFalse |
|---|
| 534 | n/a | check(approx_equal(a, b, tol=0, rel=rel)) |
|---|
| 535 | n/a | check = self.assertTrue if (tol_flag or rel_flag) else self.assertFalse |
|---|
| 536 | n/a | check(approx_equal(a, b, tol=tol, rel=rel)) |
|---|
| 537 | n/a | |
|---|
| 538 | n/a | def test_approx_equal_both1(self): |
|---|
| 539 | n/a | # Test actual error <= both absolute and relative error. |
|---|
| 540 | n/a | self.do_check_both(7.955, 7.952, 0.004, 3.8e-4, True, True) |
|---|
| 541 | n/a | self.do_check_both(-7.387, -7.386, 0.002, 0.0002, True, True) |
|---|
| 542 | n/a | |
|---|
| 543 | n/a | def test_approx_equal_both2(self): |
|---|
| 544 | n/a | # Test actual error <= absolute error but > relative error. |
|---|
| 545 | n/a | self.do_check_both(7.955, 7.952, 0.004, 3.7e-4, True, False) |
|---|
| 546 | n/a | |
|---|
| 547 | n/a | def test_approx_equal_both3(self): |
|---|
| 548 | n/a | # Test actual error <= relative error but > absolute error. |
|---|
| 549 | n/a | self.do_check_both(7.955, 7.952, 0.001, 3.8e-4, False, True) |
|---|
| 550 | n/a | |
|---|
| 551 | n/a | def test_approx_equal_both4(self): |
|---|
| 552 | n/a | # Test actual error > both absolute and relative error. |
|---|
| 553 | n/a | self.do_check_both(2.78, 2.75, 0.01, 0.001, False, False) |
|---|
| 554 | n/a | self.do_check_both(971.44, 971.47, 0.02, 3e-5, False, False) |
|---|
| 555 | n/a | |
|---|
| 556 | n/a | |
|---|
| 557 | n/a | class ApproxEqualSpecialsTest(unittest.TestCase): |
|---|
| 558 | n/a | # Test approx_equal with NANs and INFs and zeroes. |
|---|
| 559 | n/a | |
|---|
| 560 | n/a | def test_inf(self): |
|---|
| 561 | n/a | for type_ in (float, Decimal): |
|---|
| 562 | n/a | inf = type_('inf') |
|---|
| 563 | n/a | self.assertTrue(approx_equal(inf, inf)) |
|---|
| 564 | n/a | self.assertTrue(approx_equal(inf, inf, 0, 0)) |
|---|
| 565 | n/a | self.assertTrue(approx_equal(inf, inf, 1, 0.01)) |
|---|
| 566 | n/a | self.assertTrue(approx_equal(-inf, -inf)) |
|---|
| 567 | n/a | self.assertFalse(approx_equal(inf, -inf)) |
|---|
| 568 | n/a | self.assertFalse(approx_equal(inf, 1000)) |
|---|
| 569 | n/a | |
|---|
| 570 | n/a | def test_nan(self): |
|---|
| 571 | n/a | for type_ in (float, Decimal): |
|---|
| 572 | n/a | nan = type_('nan') |
|---|
| 573 | n/a | for other in (nan, type_('inf'), 1000): |
|---|
| 574 | n/a | self.assertFalse(approx_equal(nan, other)) |
|---|
| 575 | n/a | |
|---|
| 576 | n/a | def test_float_zeroes(self): |
|---|
| 577 | n/a | nzero = math.copysign(0.0, -1) |
|---|
| 578 | n/a | self.assertTrue(approx_equal(nzero, 0.0, tol=0.1, rel=0.1)) |
|---|
| 579 | n/a | |
|---|
| 580 | n/a | def test_decimal_zeroes(self): |
|---|
| 581 | n/a | nzero = Decimal("-0.0") |
|---|
| 582 | n/a | self.assertTrue(approx_equal(nzero, Decimal(0), tol=0.1, rel=0.1)) |
|---|
| 583 | n/a | |
|---|
| 584 | n/a | |
|---|
| 585 | n/a | class TestApproxEqualErrors(unittest.TestCase): |
|---|
| 586 | n/a | # Test error conditions of approx_equal. |
|---|
| 587 | n/a | |
|---|
| 588 | n/a | def test_bad_tol(self): |
|---|
| 589 | n/a | # Test negative tol raises. |
|---|
| 590 | n/a | self.assertRaises(ValueError, approx_equal, 100, 100, -1, 0.1) |
|---|
| 591 | n/a | |
|---|
| 592 | n/a | def test_bad_rel(self): |
|---|
| 593 | n/a | # Test negative rel raises. |
|---|
| 594 | n/a | self.assertRaises(ValueError, approx_equal, 100, 100, 1, -0.1) |
|---|
| 595 | n/a | |
|---|
| 596 | n/a | |
|---|
| 597 | n/a | # --- Tests for NumericTestCase --- |
|---|
| 598 | n/a | |
|---|
| 599 | n/a | # The formatting routine that generates the error messages is complex enough |
|---|
| 600 | n/a | # that it too needs testing. |
|---|
| 601 | n/a | |
|---|
| 602 | n/a | class TestNumericTestCase(unittest.TestCase): |
|---|
| 603 | n/a | # The exact wording of NumericTestCase error messages is *not* guaranteed, |
|---|
| 604 | n/a | # but we need to give them some sort of test to ensure that they are |
|---|
| 605 | n/a | # generated correctly. As a compromise, we look for specific substrings |
|---|
| 606 | n/a | # that are expected to be found even if the overall error message changes. |
|---|
| 607 | n/a | |
|---|
| 608 | n/a | def do_test(self, args): |
|---|
| 609 | n/a | actual_msg = NumericTestCase._make_std_err_msg(*args) |
|---|
| 610 | n/a | expected = self.generate_substrings(*args) |
|---|
| 611 | n/a | for substring in expected: |
|---|
| 612 | n/a | self.assertIn(substring, actual_msg) |
|---|
| 613 | n/a | |
|---|
| 614 | n/a | def test_numerictestcase_is_testcase(self): |
|---|
| 615 | n/a | # Ensure that NumericTestCase actually is a TestCase. |
|---|
| 616 | n/a | self.assertTrue(issubclass(NumericTestCase, unittest.TestCase)) |
|---|
| 617 | n/a | |
|---|
| 618 | n/a | def test_error_msg_numeric(self): |
|---|
| 619 | n/a | # Test the error message generated for numeric comparisons. |
|---|
| 620 | n/a | args = (2.5, 4.0, 0.5, 0.25, None) |
|---|
| 621 | n/a | self.do_test(args) |
|---|
| 622 | n/a | |
|---|
| 623 | n/a | def test_error_msg_sequence(self): |
|---|
| 624 | n/a | # Test the error message generated for sequence comparisons. |
|---|
| 625 | n/a | args = (3.75, 8.25, 1.25, 0.5, 7) |
|---|
| 626 | n/a | self.do_test(args) |
|---|
| 627 | n/a | |
|---|
| 628 | n/a | def generate_substrings(self, first, second, tol, rel, idx): |
|---|
| 629 | n/a | """Return substrings we expect to see in error messages.""" |
|---|
| 630 | n/a | abs_err, rel_err = _calc_errors(first, second) |
|---|
| 631 | n/a | substrings = [ |
|---|
| 632 | n/a | 'tol=%r' % tol, |
|---|
| 633 | n/a | 'rel=%r' % rel, |
|---|
| 634 | n/a | 'absolute error = %r' % abs_err, |
|---|
| 635 | n/a | 'relative error = %r' % rel_err, |
|---|
| 636 | n/a | ] |
|---|
| 637 | n/a | if idx is not None: |
|---|
| 638 | n/a | substrings.append('differ at index %d' % idx) |
|---|
| 639 | n/a | return substrings |
|---|
| 640 | n/a | |
|---|
| 641 | n/a | |
|---|
| 642 | n/a | # ======================================= |
|---|
| 643 | n/a | # === Tests for the statistics module === |
|---|
| 644 | n/a | # ======================================= |
|---|
| 645 | n/a | |
|---|
| 646 | n/a | |
|---|
| 647 | n/a | class GlobalsTest(unittest.TestCase): |
|---|
| 648 | n/a | module = statistics |
|---|
| 649 | n/a | expected_metadata = ["__doc__", "__all__"] |
|---|
| 650 | n/a | |
|---|
| 651 | n/a | def test_meta(self): |
|---|
| 652 | n/a | # Test for the existence of metadata. |
|---|
| 653 | n/a | for meta in self.expected_metadata: |
|---|
| 654 | n/a | self.assertTrue(hasattr(self.module, meta), |
|---|
| 655 | n/a | "%s not present" % meta) |
|---|
| 656 | n/a | |
|---|
| 657 | n/a | def test_check_all(self): |
|---|
| 658 | n/a | # Check everything in __all__ exists and is public. |
|---|
| 659 | n/a | module = self.module |
|---|
| 660 | n/a | for name in module.__all__: |
|---|
| 661 | n/a | # No private names in __all__: |
|---|
| 662 | n/a | self.assertFalse(name.startswith("_"), |
|---|
| 663 | n/a | 'private name "%s" in __all__' % name) |
|---|
| 664 | n/a | # And anything in __all__ must exist: |
|---|
| 665 | n/a | self.assertTrue(hasattr(module, name), |
|---|
| 666 | n/a | 'missing name "%s" in __all__' % name) |
|---|
| 667 | n/a | |
|---|
| 668 | n/a | |
|---|
| 669 | n/a | class DocTests(unittest.TestCase): |
|---|
| 670 | n/a | @unittest.skipIf(sys.flags.optimize >= 2, |
|---|
| 671 | n/a | "Docstrings are omitted with -OO and above") |
|---|
| 672 | n/a | def test_doc_tests(self): |
|---|
| 673 | n/a | failed, tried = doctest.testmod(statistics, optionflags=doctest.ELLIPSIS) |
|---|
| 674 | n/a | self.assertGreater(tried, 0) |
|---|
| 675 | n/a | self.assertEqual(failed, 0) |
|---|
| 676 | n/a | |
|---|
| 677 | n/a | class StatisticsErrorTest(unittest.TestCase): |
|---|
| 678 | n/a | def test_has_exception(self): |
|---|
| 679 | n/a | errmsg = ( |
|---|
| 680 | n/a | "Expected StatisticsError to be a ValueError, but got a" |
|---|
| 681 | n/a | " subclass of %r instead." |
|---|
| 682 | n/a | ) |
|---|
| 683 | n/a | self.assertTrue(hasattr(statistics, 'StatisticsError')) |
|---|
| 684 | n/a | self.assertTrue( |
|---|
| 685 | n/a | issubclass(statistics.StatisticsError, ValueError), |
|---|
| 686 | n/a | errmsg % statistics.StatisticsError.__base__ |
|---|
| 687 | n/a | ) |
|---|
| 688 | n/a | |
|---|
| 689 | n/a | |
|---|
| 690 | n/a | # === Tests for private utility functions === |
|---|
| 691 | n/a | |
|---|
| 692 | n/a | class ExactRatioTest(unittest.TestCase): |
|---|
| 693 | n/a | # Test _exact_ratio utility. |
|---|
| 694 | n/a | |
|---|
| 695 | n/a | def test_int(self): |
|---|
| 696 | n/a | for i in (-20, -3, 0, 5, 99, 10**20): |
|---|
| 697 | n/a | self.assertEqual(statistics._exact_ratio(i), (i, 1)) |
|---|
| 698 | n/a | |
|---|
| 699 | n/a | def test_fraction(self): |
|---|
| 700 | n/a | numerators = (-5, 1, 12, 38) |
|---|
| 701 | n/a | for n in numerators: |
|---|
| 702 | n/a | f = Fraction(n, 37) |
|---|
| 703 | n/a | self.assertEqual(statistics._exact_ratio(f), (n, 37)) |
|---|
| 704 | n/a | |
|---|
| 705 | n/a | def test_float(self): |
|---|
| 706 | n/a | self.assertEqual(statistics._exact_ratio(0.125), (1, 8)) |
|---|
| 707 | n/a | self.assertEqual(statistics._exact_ratio(1.125), (9, 8)) |
|---|
| 708 | n/a | data = [random.uniform(-100, 100) for _ in range(100)] |
|---|
| 709 | n/a | for x in data: |
|---|
| 710 | n/a | num, den = statistics._exact_ratio(x) |
|---|
| 711 | n/a | self.assertEqual(x, num/den) |
|---|
| 712 | n/a | |
|---|
| 713 | n/a | def test_decimal(self): |
|---|
| 714 | n/a | D = Decimal |
|---|
| 715 | n/a | _exact_ratio = statistics._exact_ratio |
|---|
| 716 | n/a | self.assertEqual(_exact_ratio(D("0.125")), (1, 8)) |
|---|
| 717 | n/a | self.assertEqual(_exact_ratio(D("12.345")), (2469, 200)) |
|---|
| 718 | n/a | self.assertEqual(_exact_ratio(D("-1.98")), (-99, 50)) |
|---|
| 719 | n/a | |
|---|
| 720 | n/a | def test_inf(self): |
|---|
| 721 | n/a | INF = float("INF") |
|---|
| 722 | n/a | class MyFloat(float): |
|---|
| 723 | n/a | pass |
|---|
| 724 | n/a | class MyDecimal(Decimal): |
|---|
| 725 | n/a | pass |
|---|
| 726 | n/a | for inf in (INF, -INF): |
|---|
| 727 | n/a | for type_ in (float, MyFloat, Decimal, MyDecimal): |
|---|
| 728 | n/a | x = type_(inf) |
|---|
| 729 | n/a | ratio = statistics._exact_ratio(x) |
|---|
| 730 | n/a | self.assertEqual(ratio, (x, None)) |
|---|
| 731 | n/a | self.assertEqual(type(ratio[0]), type_) |
|---|
| 732 | n/a | self.assertTrue(math.isinf(ratio[0])) |
|---|
| 733 | n/a | |
|---|
| 734 | n/a | def test_float_nan(self): |
|---|
| 735 | n/a | NAN = float("NAN") |
|---|
| 736 | n/a | class MyFloat(float): |
|---|
| 737 | n/a | pass |
|---|
| 738 | n/a | for nan in (NAN, MyFloat(NAN)): |
|---|
| 739 | n/a | ratio = statistics._exact_ratio(nan) |
|---|
| 740 | n/a | self.assertTrue(math.isnan(ratio[0])) |
|---|
| 741 | n/a | self.assertIs(ratio[1], None) |
|---|
| 742 | n/a | self.assertEqual(type(ratio[0]), type(nan)) |
|---|
| 743 | n/a | |
|---|
| 744 | n/a | def test_decimal_nan(self): |
|---|
| 745 | n/a | NAN = Decimal("NAN") |
|---|
| 746 | n/a | sNAN = Decimal("sNAN") |
|---|
| 747 | n/a | class MyDecimal(Decimal): |
|---|
| 748 | n/a | pass |
|---|
| 749 | n/a | for nan in (NAN, MyDecimal(NAN), sNAN, MyDecimal(sNAN)): |
|---|
| 750 | n/a | ratio = statistics._exact_ratio(nan) |
|---|
| 751 | n/a | self.assertTrue(_nan_equal(ratio[0], nan)) |
|---|
| 752 | n/a | self.assertIs(ratio[1], None) |
|---|
| 753 | n/a | self.assertEqual(type(ratio[0]), type(nan)) |
|---|
| 754 | n/a | |
|---|
| 755 | n/a | |
|---|
| 756 | n/a | class DecimalToRatioTest(unittest.TestCase): |
|---|
| 757 | n/a | # Test _exact_ratio private function. |
|---|
| 758 | n/a | |
|---|
| 759 | n/a | def test_infinity(self): |
|---|
| 760 | n/a | # Test that INFs are handled correctly. |
|---|
| 761 | n/a | inf = Decimal('INF') |
|---|
| 762 | n/a | self.assertEqual(statistics._exact_ratio(inf), (inf, None)) |
|---|
| 763 | n/a | self.assertEqual(statistics._exact_ratio(-inf), (-inf, None)) |
|---|
| 764 | n/a | |
|---|
| 765 | n/a | def test_nan(self): |
|---|
| 766 | n/a | # Test that NANs are handled correctly. |
|---|
| 767 | n/a | for nan in (Decimal('NAN'), Decimal('sNAN')): |
|---|
| 768 | n/a | num, den = statistics._exact_ratio(nan) |
|---|
| 769 | n/a | # Because NANs always compare non-equal, we cannot use assertEqual. |
|---|
| 770 | n/a | # Nor can we use an identity test, as we don't guarantee anything |
|---|
| 771 | n/a | # about the object identity. |
|---|
| 772 | n/a | self.assertTrue(_nan_equal(num, nan)) |
|---|
| 773 | n/a | self.assertIs(den, None) |
|---|
| 774 | n/a | |
|---|
| 775 | n/a | def test_sign(self): |
|---|
| 776 | n/a | # Test sign is calculated correctly. |
|---|
| 777 | n/a | numbers = [Decimal("9.8765e12"), Decimal("9.8765e-12")] |
|---|
| 778 | n/a | for d in numbers: |
|---|
| 779 | n/a | # First test positive decimals. |
|---|
| 780 | n/a | assert d > 0 |
|---|
| 781 | n/a | num, den = statistics._exact_ratio(d) |
|---|
| 782 | n/a | self.assertGreaterEqual(num, 0) |
|---|
| 783 | n/a | self.assertGreater(den, 0) |
|---|
| 784 | n/a | # Then test negative decimals. |
|---|
| 785 | n/a | num, den = statistics._exact_ratio(-d) |
|---|
| 786 | n/a | self.assertLessEqual(num, 0) |
|---|
| 787 | n/a | self.assertGreater(den, 0) |
|---|
| 788 | n/a | |
|---|
| 789 | n/a | def test_negative_exponent(self): |
|---|
| 790 | n/a | # Test result when the exponent is negative. |
|---|
| 791 | n/a | t = statistics._exact_ratio(Decimal("0.1234")) |
|---|
| 792 | n/a | self.assertEqual(t, (617, 5000)) |
|---|
| 793 | n/a | |
|---|
| 794 | n/a | def test_positive_exponent(self): |
|---|
| 795 | n/a | # Test results when the exponent is positive. |
|---|
| 796 | n/a | t = statistics._exact_ratio(Decimal("1.234e7")) |
|---|
| 797 | n/a | self.assertEqual(t, (12340000, 1)) |
|---|
| 798 | n/a | |
|---|
| 799 | n/a | def test_regression_20536(self): |
|---|
| 800 | n/a | # Regression test for issue 20536. |
|---|
| 801 | n/a | # See http://bugs.python.org/issue20536 |
|---|
| 802 | n/a | t = statistics._exact_ratio(Decimal("1e2")) |
|---|
| 803 | n/a | self.assertEqual(t, (100, 1)) |
|---|
| 804 | n/a | t = statistics._exact_ratio(Decimal("1.47e5")) |
|---|
| 805 | n/a | self.assertEqual(t, (147000, 1)) |
|---|
| 806 | n/a | |
|---|
| 807 | n/a | |
|---|
| 808 | n/a | class IsFiniteTest(unittest.TestCase): |
|---|
| 809 | n/a | # Test _isfinite private function. |
|---|
| 810 | n/a | |
|---|
| 811 | n/a | def test_finite(self): |
|---|
| 812 | n/a | # Test that finite numbers are recognised as finite. |
|---|
| 813 | n/a | for x in (5, Fraction(1, 3), 2.5, Decimal("5.5")): |
|---|
| 814 | n/a | self.assertTrue(statistics._isfinite(x)) |
|---|
| 815 | n/a | |
|---|
| 816 | n/a | def test_infinity(self): |
|---|
| 817 | n/a | # Test that INFs are not recognised as finite. |
|---|
| 818 | n/a | for x in (float("inf"), Decimal("inf")): |
|---|
| 819 | n/a | self.assertFalse(statistics._isfinite(x)) |
|---|
| 820 | n/a | |
|---|
| 821 | n/a | def test_nan(self): |
|---|
| 822 | n/a | # Test that NANs are not recognised as finite. |
|---|
| 823 | n/a | for x in (float("nan"), Decimal("NAN"), Decimal("sNAN")): |
|---|
| 824 | n/a | self.assertFalse(statistics._isfinite(x)) |
|---|
| 825 | n/a | |
|---|
| 826 | n/a | |
|---|
| 827 | n/a | class CoerceTest(unittest.TestCase): |
|---|
| 828 | n/a | # Test that private function _coerce correctly deals with types. |
|---|
| 829 | n/a | |
|---|
| 830 | n/a | # The coercion rules are currently an implementation detail, although at |
|---|
| 831 | n/a | # some point that should change. The tests and comments here define the |
|---|
| 832 | n/a | # correct implementation. |
|---|
| 833 | n/a | |
|---|
| 834 | n/a | # Pre-conditions of _coerce: |
|---|
| 835 | n/a | # |
|---|
| 836 | n/a | # - The first time _sum calls _coerce, the |
|---|
| 837 | n/a | # - coerce(T, S) will never be called with bool as the first argument; |
|---|
| 838 | n/a | # this is a pre-condition, guarded with an assertion. |
|---|
| 839 | n/a | |
|---|
| 840 | n/a | # |
|---|
| 841 | n/a | # - coerce(T, T) will always return T; we assume T is a valid numeric |
|---|
| 842 | n/a | # type. Violate this assumption at your own risk. |
|---|
| 843 | n/a | # |
|---|
| 844 | n/a | # - Apart from as above, bool is treated as if it were actually int. |
|---|
| 845 | n/a | # |
|---|
| 846 | n/a | # - coerce(int, X) and coerce(X, int) return X. |
|---|
| 847 | n/a | # - |
|---|
| 848 | n/a | def test_bool(self): |
|---|
| 849 | n/a | # bool is somewhat special, due to the pre-condition that it is |
|---|
| 850 | n/a | # never given as the first argument to _coerce, and that it cannot |
|---|
| 851 | n/a | # be subclassed. So we test it specially. |
|---|
| 852 | n/a | for T in (int, float, Fraction, Decimal): |
|---|
| 853 | n/a | self.assertIs(statistics._coerce(T, bool), T) |
|---|
| 854 | n/a | class MyClass(T): pass |
|---|
| 855 | n/a | self.assertIs(statistics._coerce(MyClass, bool), MyClass) |
|---|
| 856 | n/a | |
|---|
| 857 | n/a | def assertCoerceTo(self, A, B): |
|---|
| 858 | n/a | """Assert that type A coerces to B.""" |
|---|
| 859 | n/a | self.assertIs(statistics._coerce(A, B), B) |
|---|
| 860 | n/a | self.assertIs(statistics._coerce(B, A), B) |
|---|
| 861 | n/a | |
|---|
| 862 | n/a | def check_coerce_to(self, A, B): |
|---|
| 863 | n/a | """Checks that type A coerces to B, including subclasses.""" |
|---|
| 864 | n/a | # Assert that type A is coerced to B. |
|---|
| 865 | n/a | self.assertCoerceTo(A, B) |
|---|
| 866 | n/a | # Subclasses of A are also coerced to B. |
|---|
| 867 | n/a | class SubclassOfA(A): pass |
|---|
| 868 | n/a | self.assertCoerceTo(SubclassOfA, B) |
|---|
| 869 | n/a | # A, and subclasses of A, are coerced to subclasses of B. |
|---|
| 870 | n/a | class SubclassOfB(B): pass |
|---|
| 871 | n/a | self.assertCoerceTo(A, SubclassOfB) |
|---|
| 872 | n/a | self.assertCoerceTo(SubclassOfA, SubclassOfB) |
|---|
| 873 | n/a | |
|---|
| 874 | n/a | def assertCoerceRaises(self, A, B): |
|---|
| 875 | n/a | """Assert that coercing A to B, or vice versa, raises TypeError.""" |
|---|
| 876 | n/a | self.assertRaises(TypeError, statistics._coerce, (A, B)) |
|---|
| 877 | n/a | self.assertRaises(TypeError, statistics._coerce, (B, A)) |
|---|
| 878 | n/a | |
|---|
| 879 | n/a | def check_type_coercions(self, T): |
|---|
| 880 | n/a | """Check that type T coerces correctly with subclasses of itself.""" |
|---|
| 881 | n/a | assert T is not bool |
|---|
| 882 | n/a | # Coercing a type with itself returns the same type. |
|---|
| 883 | n/a | self.assertIs(statistics._coerce(T, T), T) |
|---|
| 884 | n/a | # Coercing a type with a subclass of itself returns the subclass. |
|---|
| 885 | n/a | class U(T): pass |
|---|
| 886 | n/a | class V(T): pass |
|---|
| 887 | n/a | class W(U): pass |
|---|
| 888 | n/a | for typ in (U, V, W): |
|---|
| 889 | n/a | self.assertCoerceTo(T, typ) |
|---|
| 890 | n/a | self.assertCoerceTo(U, W) |
|---|
| 891 | n/a | # Coercing two subclasses that aren't parent/child is an error. |
|---|
| 892 | n/a | self.assertCoerceRaises(U, V) |
|---|
| 893 | n/a | self.assertCoerceRaises(V, W) |
|---|
| 894 | n/a | |
|---|
| 895 | n/a | def test_int(self): |
|---|
| 896 | n/a | # Check that int coerces correctly. |
|---|
| 897 | n/a | self.check_type_coercions(int) |
|---|
| 898 | n/a | for typ in (float, Fraction, Decimal): |
|---|
| 899 | n/a | self.check_coerce_to(int, typ) |
|---|
| 900 | n/a | |
|---|
| 901 | n/a | def test_fraction(self): |
|---|
| 902 | n/a | # Check that Fraction coerces correctly. |
|---|
| 903 | n/a | self.check_type_coercions(Fraction) |
|---|
| 904 | n/a | self.check_coerce_to(Fraction, float) |
|---|
| 905 | n/a | |
|---|
| 906 | n/a | def test_decimal(self): |
|---|
| 907 | n/a | # Check that Decimal coerces correctly. |
|---|
| 908 | n/a | self.check_type_coercions(Decimal) |
|---|
| 909 | n/a | |
|---|
| 910 | n/a | def test_float(self): |
|---|
| 911 | n/a | # Check that float coerces correctly. |
|---|
| 912 | n/a | self.check_type_coercions(float) |
|---|
| 913 | n/a | |
|---|
| 914 | n/a | def test_non_numeric_types(self): |
|---|
| 915 | n/a | for bad_type in (str, list, type(None), tuple, dict): |
|---|
| 916 | n/a | for good_type in (int, float, Fraction, Decimal): |
|---|
| 917 | n/a | self.assertCoerceRaises(good_type, bad_type) |
|---|
| 918 | n/a | |
|---|
| 919 | n/a | def test_incompatible_types(self): |
|---|
| 920 | n/a | # Test that incompatible types raise. |
|---|
| 921 | n/a | for T in (float, Fraction): |
|---|
| 922 | n/a | class MySubclass(T): pass |
|---|
| 923 | n/a | self.assertCoerceRaises(T, Decimal) |
|---|
| 924 | n/a | self.assertCoerceRaises(MySubclass, Decimal) |
|---|
| 925 | n/a | |
|---|
| 926 | n/a | |
|---|
| 927 | n/a | class ConvertTest(unittest.TestCase): |
|---|
| 928 | n/a | # Test private _convert function. |
|---|
| 929 | n/a | |
|---|
| 930 | n/a | def check_exact_equal(self, x, y): |
|---|
| 931 | n/a | """Check that x equals y, and has the same type as well.""" |
|---|
| 932 | n/a | self.assertEqual(x, y) |
|---|
| 933 | n/a | self.assertIs(type(x), type(y)) |
|---|
| 934 | n/a | |
|---|
| 935 | n/a | def test_int(self): |
|---|
| 936 | n/a | # Test conversions to int. |
|---|
| 937 | n/a | x = statistics._convert(Fraction(71), int) |
|---|
| 938 | n/a | self.check_exact_equal(x, 71) |
|---|
| 939 | n/a | class MyInt(int): pass |
|---|
| 940 | n/a | x = statistics._convert(Fraction(17), MyInt) |
|---|
| 941 | n/a | self.check_exact_equal(x, MyInt(17)) |
|---|
| 942 | n/a | |
|---|
| 943 | n/a | def test_fraction(self): |
|---|
| 944 | n/a | # Test conversions to Fraction. |
|---|
| 945 | n/a | x = statistics._convert(Fraction(95, 99), Fraction) |
|---|
| 946 | n/a | self.check_exact_equal(x, Fraction(95, 99)) |
|---|
| 947 | n/a | class MyFraction(Fraction): |
|---|
| 948 | n/a | def __truediv__(self, other): |
|---|
| 949 | n/a | return self.__class__(super().__truediv__(other)) |
|---|
| 950 | n/a | x = statistics._convert(Fraction(71, 13), MyFraction) |
|---|
| 951 | n/a | self.check_exact_equal(x, MyFraction(71, 13)) |
|---|
| 952 | n/a | |
|---|
| 953 | n/a | def test_float(self): |
|---|
| 954 | n/a | # Test conversions to float. |
|---|
| 955 | n/a | x = statistics._convert(Fraction(-1, 2), float) |
|---|
| 956 | n/a | self.check_exact_equal(x, -0.5) |
|---|
| 957 | n/a | class MyFloat(float): |
|---|
| 958 | n/a | def __truediv__(self, other): |
|---|
| 959 | n/a | return self.__class__(super().__truediv__(other)) |
|---|
| 960 | n/a | x = statistics._convert(Fraction(9, 8), MyFloat) |
|---|
| 961 | n/a | self.check_exact_equal(x, MyFloat(1.125)) |
|---|
| 962 | n/a | |
|---|
| 963 | n/a | def test_decimal(self): |
|---|
| 964 | n/a | # Test conversions to Decimal. |
|---|
| 965 | n/a | x = statistics._convert(Fraction(1, 40), Decimal) |
|---|
| 966 | n/a | self.check_exact_equal(x, Decimal("0.025")) |
|---|
| 967 | n/a | class MyDecimal(Decimal): |
|---|
| 968 | n/a | def __truediv__(self, other): |
|---|
| 969 | n/a | return self.__class__(super().__truediv__(other)) |
|---|
| 970 | n/a | x = statistics._convert(Fraction(-15, 16), MyDecimal) |
|---|
| 971 | n/a | self.check_exact_equal(x, MyDecimal("-0.9375")) |
|---|
| 972 | n/a | |
|---|
| 973 | n/a | def test_inf(self): |
|---|
| 974 | n/a | for INF in (float('inf'), Decimal('inf')): |
|---|
| 975 | n/a | for inf in (INF, -INF): |
|---|
| 976 | n/a | x = statistics._convert(inf, type(inf)) |
|---|
| 977 | n/a | self.check_exact_equal(x, inf) |
|---|
| 978 | n/a | |
|---|
| 979 | n/a | def test_nan(self): |
|---|
| 980 | n/a | for nan in (float('nan'), Decimal('NAN'), Decimal('sNAN')): |
|---|
| 981 | n/a | x = statistics._convert(nan, type(nan)) |
|---|
| 982 | n/a | self.assertTrue(_nan_equal(x, nan)) |
|---|
| 983 | n/a | |
|---|
| 984 | n/a | |
|---|
| 985 | n/a | class FailNegTest(unittest.TestCase): |
|---|
| 986 | n/a | """Test _fail_neg private function.""" |
|---|
| 987 | n/a | |
|---|
| 988 | n/a | def test_pass_through(self): |
|---|
| 989 | n/a | # Test that values are passed through unchanged. |
|---|
| 990 | n/a | values = [1, 2.0, Fraction(3), Decimal(4)] |
|---|
| 991 | n/a | new = list(statistics._fail_neg(values)) |
|---|
| 992 | n/a | self.assertEqual(values, new) |
|---|
| 993 | n/a | |
|---|
| 994 | n/a | def test_negatives_raise(self): |
|---|
| 995 | n/a | # Test that negatives raise an exception. |
|---|
| 996 | n/a | for x in [1, 2.0, Fraction(3), Decimal(4)]: |
|---|
| 997 | n/a | seq = [-x] |
|---|
| 998 | n/a | it = statistics._fail_neg(seq) |
|---|
| 999 | n/a | self.assertRaises(statistics.StatisticsError, next, it) |
|---|
| 1000 | n/a | |
|---|
| 1001 | n/a | def test_error_msg(self): |
|---|
| 1002 | n/a | # Test that a given error message is used. |
|---|
| 1003 | n/a | msg = "badness #%d" % random.randint(10000, 99999) |
|---|
| 1004 | n/a | try: |
|---|
| 1005 | n/a | next(statistics._fail_neg([-1], msg)) |
|---|
| 1006 | n/a | except statistics.StatisticsError as e: |
|---|
| 1007 | n/a | errmsg = e.args[0] |
|---|
| 1008 | n/a | else: |
|---|
| 1009 | n/a | self.fail("expected exception, but it didn't happen") |
|---|
| 1010 | n/a | self.assertEqual(errmsg, msg) |
|---|
| 1011 | n/a | |
|---|
| 1012 | n/a | |
|---|
| 1013 | n/a | # === Tests for public functions === |
|---|
| 1014 | n/a | |
|---|
| 1015 | n/a | class UnivariateCommonMixin: |
|---|
| 1016 | n/a | # Common tests for most univariate functions that take a data argument. |
|---|
| 1017 | n/a | |
|---|
| 1018 | n/a | def test_no_args(self): |
|---|
| 1019 | n/a | # Fail if given no arguments. |
|---|
| 1020 | n/a | self.assertRaises(TypeError, self.func) |
|---|
| 1021 | n/a | |
|---|
| 1022 | n/a | def test_empty_data(self): |
|---|
| 1023 | n/a | # Fail when the data argument (first argument) is empty. |
|---|
| 1024 | n/a | for empty in ([], (), iter([])): |
|---|
| 1025 | n/a | self.assertRaises(statistics.StatisticsError, self.func, empty) |
|---|
| 1026 | n/a | |
|---|
| 1027 | n/a | def prepare_data(self): |
|---|
| 1028 | n/a | """Return int data for various tests.""" |
|---|
| 1029 | n/a | data = list(range(10)) |
|---|
| 1030 | n/a | while data == sorted(data): |
|---|
| 1031 | n/a | random.shuffle(data) |
|---|
| 1032 | n/a | return data |
|---|
| 1033 | n/a | |
|---|
| 1034 | n/a | def test_no_inplace_modifications(self): |
|---|
| 1035 | n/a | # Test that the function does not modify its input data. |
|---|
| 1036 | n/a | data = self.prepare_data() |
|---|
| 1037 | n/a | assert len(data) != 1 # Necessary to avoid infinite loop. |
|---|
| 1038 | n/a | assert data != sorted(data) |
|---|
| 1039 | n/a | saved = data[:] |
|---|
| 1040 | n/a | assert data is not saved |
|---|
| 1041 | n/a | _ = self.func(data) |
|---|
| 1042 | n/a | self.assertListEqual(data, saved, "data has been modified") |
|---|
| 1043 | n/a | |
|---|
| 1044 | n/a | def test_order_doesnt_matter(self): |
|---|
| 1045 | n/a | # Test that the order of data points doesn't change the result. |
|---|
| 1046 | n/a | |
|---|
| 1047 | n/a | # CAUTION: due to floating point rounding errors, the result actually |
|---|
| 1048 | n/a | # may depend on the order. Consider this test representing an ideal. |
|---|
| 1049 | n/a | # To avoid this test failing, only test with exact values such as ints |
|---|
| 1050 | n/a | # or Fractions. |
|---|
| 1051 | n/a | data = [1, 2, 3, 3, 3, 4, 5, 6]*100 |
|---|
| 1052 | n/a | expected = self.func(data) |
|---|
| 1053 | n/a | random.shuffle(data) |
|---|
| 1054 | n/a | actual = self.func(data) |
|---|
| 1055 | n/a | self.assertEqual(expected, actual) |
|---|
| 1056 | n/a | |
|---|
| 1057 | n/a | def test_type_of_data_collection(self): |
|---|
| 1058 | n/a | # Test that the type of iterable data doesn't effect the result. |
|---|
| 1059 | n/a | class MyList(list): |
|---|
| 1060 | n/a | pass |
|---|
| 1061 | n/a | class MyTuple(tuple): |
|---|
| 1062 | n/a | pass |
|---|
| 1063 | n/a | def generator(data): |
|---|
| 1064 | n/a | return (obj for obj in data) |
|---|
| 1065 | n/a | data = self.prepare_data() |
|---|
| 1066 | n/a | expected = self.func(data) |
|---|
| 1067 | n/a | for kind in (list, tuple, iter, MyList, MyTuple, generator): |
|---|
| 1068 | n/a | result = self.func(kind(data)) |
|---|
| 1069 | n/a | self.assertEqual(result, expected) |
|---|
| 1070 | n/a | |
|---|
| 1071 | n/a | def test_range_data(self): |
|---|
| 1072 | n/a | # Test that functions work with range objects. |
|---|
| 1073 | n/a | data = range(20, 50, 3) |
|---|
| 1074 | n/a | expected = self.func(list(data)) |
|---|
| 1075 | n/a | self.assertEqual(self.func(data), expected) |
|---|
| 1076 | n/a | |
|---|
| 1077 | n/a | def test_bad_arg_types(self): |
|---|
| 1078 | n/a | # Test that function raises when given data of the wrong type. |
|---|
| 1079 | n/a | |
|---|
| 1080 | n/a | # Don't roll the following into a loop like this: |
|---|
| 1081 | n/a | # for bad in list_of_bad: |
|---|
| 1082 | n/a | # self.check_for_type_error(bad) |
|---|
| 1083 | n/a | # |
|---|
| 1084 | n/a | # Since assertRaises doesn't show the arguments that caused the test |
|---|
| 1085 | n/a | # failure, it is very difficult to debug these test failures when the |
|---|
| 1086 | n/a | # following are in a loop. |
|---|
| 1087 | n/a | self.check_for_type_error(None) |
|---|
| 1088 | n/a | self.check_for_type_error(23) |
|---|
| 1089 | n/a | self.check_for_type_error(42.0) |
|---|
| 1090 | n/a | self.check_for_type_error(object()) |
|---|
| 1091 | n/a | |
|---|
| 1092 | n/a | def check_for_type_error(self, *args): |
|---|
| 1093 | n/a | self.assertRaises(TypeError, self.func, *args) |
|---|
| 1094 | n/a | |
|---|
| 1095 | n/a | def test_type_of_data_element(self): |
|---|
| 1096 | n/a | # Check the type of data elements doesn't affect the numeric result. |
|---|
| 1097 | n/a | # This is a weaker test than UnivariateTypeMixin.testTypesConserved, |
|---|
| 1098 | n/a | # because it checks the numeric result by equality, but not by type. |
|---|
| 1099 | n/a | class MyFloat(float): |
|---|
| 1100 | n/a | def __truediv__(self, other): |
|---|
| 1101 | n/a | return type(self)(super().__truediv__(other)) |
|---|
| 1102 | n/a | def __add__(self, other): |
|---|
| 1103 | n/a | return type(self)(super().__add__(other)) |
|---|
| 1104 | n/a | __radd__ = __add__ |
|---|
| 1105 | n/a | |
|---|
| 1106 | n/a | raw = self.prepare_data() |
|---|
| 1107 | n/a | expected = self.func(raw) |
|---|
| 1108 | n/a | for kind in (float, MyFloat, Decimal, Fraction): |
|---|
| 1109 | n/a | data = [kind(x) for x in raw] |
|---|
| 1110 | n/a | result = type(expected)(self.func(data)) |
|---|
| 1111 | n/a | self.assertEqual(result, expected) |
|---|
| 1112 | n/a | |
|---|
| 1113 | n/a | |
|---|
| 1114 | n/a | class UnivariateTypeMixin: |
|---|
| 1115 | n/a | """Mixin class for type-conserving functions. |
|---|
| 1116 | n/a | |
|---|
| 1117 | n/a | This mixin class holds test(s) for functions which conserve the type of |
|---|
| 1118 | n/a | individual data points. E.g. the mean of a list of Fractions should itself |
|---|
| 1119 | n/a | be a Fraction. |
|---|
| 1120 | n/a | |
|---|
| 1121 | n/a | Not all tests to do with types need go in this class. Only those that |
|---|
| 1122 | n/a | rely on the function returning the same type as its input data. |
|---|
| 1123 | n/a | """ |
|---|
| 1124 | n/a | def prepare_types_for_conservation_test(self): |
|---|
| 1125 | n/a | """Return the types which are expected to be conserved.""" |
|---|
| 1126 | n/a | class MyFloat(float): |
|---|
| 1127 | n/a | def __truediv__(self, other): |
|---|
| 1128 | n/a | return type(self)(super().__truediv__(other)) |
|---|
| 1129 | n/a | def __rtruediv__(self, other): |
|---|
| 1130 | n/a | return type(self)(super().__rtruediv__(other)) |
|---|
| 1131 | n/a | def __sub__(self, other): |
|---|
| 1132 | n/a | return type(self)(super().__sub__(other)) |
|---|
| 1133 | n/a | def __rsub__(self, other): |
|---|
| 1134 | n/a | return type(self)(super().__rsub__(other)) |
|---|
| 1135 | n/a | def __pow__(self, other): |
|---|
| 1136 | n/a | return type(self)(super().__pow__(other)) |
|---|
| 1137 | n/a | def __add__(self, other): |
|---|
| 1138 | n/a | return type(self)(super().__add__(other)) |
|---|
| 1139 | n/a | __radd__ = __add__ |
|---|
| 1140 | n/a | return (float, Decimal, Fraction, MyFloat) |
|---|
| 1141 | n/a | |
|---|
| 1142 | n/a | def test_types_conserved(self): |
|---|
| 1143 | n/a | # Test that functions keeps the same type as their data points. |
|---|
| 1144 | n/a | # (Excludes mixed data types.) This only tests the type of the return |
|---|
| 1145 | n/a | # result, not the value. |
|---|
| 1146 | n/a | data = self.prepare_data() |
|---|
| 1147 | n/a | for kind in self.prepare_types_for_conservation_test(): |
|---|
| 1148 | n/a | d = [kind(x) for x in data] |
|---|
| 1149 | n/a | result = self.func(d) |
|---|
| 1150 | n/a | self.assertIs(type(result), kind) |
|---|
| 1151 | n/a | |
|---|
| 1152 | n/a | |
|---|
| 1153 | n/a | class TestSumCommon(UnivariateCommonMixin, UnivariateTypeMixin): |
|---|
| 1154 | n/a | # Common test cases for statistics._sum() function. |
|---|
| 1155 | n/a | |
|---|
| 1156 | n/a | # This test suite looks only at the numeric value returned by _sum, |
|---|
| 1157 | n/a | # after conversion to the appropriate type. |
|---|
| 1158 | n/a | def setUp(self): |
|---|
| 1159 | n/a | def simplified_sum(*args): |
|---|
| 1160 | n/a | T, value, n = statistics._sum(*args) |
|---|
| 1161 | n/a | return statistics._coerce(value, T) |
|---|
| 1162 | n/a | self.func = simplified_sum |
|---|
| 1163 | n/a | |
|---|
| 1164 | n/a | |
|---|
| 1165 | n/a | class TestSum(NumericTestCase): |
|---|
| 1166 | n/a | # Test cases for statistics._sum() function. |
|---|
| 1167 | n/a | |
|---|
| 1168 | n/a | # These tests look at the entire three value tuple returned by _sum. |
|---|
| 1169 | n/a | |
|---|
| 1170 | n/a | def setUp(self): |
|---|
| 1171 | n/a | self.func = statistics._sum |
|---|
| 1172 | n/a | |
|---|
| 1173 | n/a | def test_empty_data(self): |
|---|
| 1174 | n/a | # Override test for empty data. |
|---|
| 1175 | n/a | for data in ([], (), iter([])): |
|---|
| 1176 | n/a | self.assertEqual(self.func(data), (int, Fraction(0), 0)) |
|---|
| 1177 | n/a | self.assertEqual(self.func(data, 23), (int, Fraction(23), 0)) |
|---|
| 1178 | n/a | self.assertEqual(self.func(data, 2.3), (float, Fraction(2.3), 0)) |
|---|
| 1179 | n/a | |
|---|
| 1180 | n/a | def test_ints(self): |
|---|
| 1181 | n/a | self.assertEqual(self.func([1, 5, 3, -4, -8, 20, 42, 1]), |
|---|
| 1182 | n/a | (int, Fraction(60), 8)) |
|---|
| 1183 | n/a | self.assertEqual(self.func([4, 2, 3, -8, 7], 1000), |
|---|
| 1184 | n/a | (int, Fraction(1008), 5)) |
|---|
| 1185 | n/a | |
|---|
| 1186 | n/a | def test_floats(self): |
|---|
| 1187 | n/a | self.assertEqual(self.func([0.25]*20), |
|---|
| 1188 | n/a | (float, Fraction(5.0), 20)) |
|---|
| 1189 | n/a | self.assertEqual(self.func([0.125, 0.25, 0.5, 0.75], 1.5), |
|---|
| 1190 | n/a | (float, Fraction(3.125), 4)) |
|---|
| 1191 | n/a | |
|---|
| 1192 | n/a | def test_fractions(self): |
|---|
| 1193 | n/a | self.assertEqual(self.func([Fraction(1, 1000)]*500), |
|---|
| 1194 | n/a | (Fraction, Fraction(1, 2), 500)) |
|---|
| 1195 | n/a | |
|---|
| 1196 | n/a | def test_decimals(self): |
|---|
| 1197 | n/a | D = Decimal |
|---|
| 1198 | n/a | data = [D("0.001"), D("5.246"), D("1.702"), D("-0.025"), |
|---|
| 1199 | n/a | D("3.974"), D("2.328"), D("4.617"), D("2.843"), |
|---|
| 1200 | n/a | ] |
|---|
| 1201 | n/a | self.assertEqual(self.func(data), |
|---|
| 1202 | n/a | (Decimal, Decimal("20.686"), 8)) |
|---|
| 1203 | n/a | |
|---|
| 1204 | n/a | def test_compare_with_math_fsum(self): |
|---|
| 1205 | n/a | # Compare with the math.fsum function. |
|---|
| 1206 | n/a | # Ideally we ought to get the exact same result, but sometimes |
|---|
| 1207 | n/a | # we differ by a very slight amount :-( |
|---|
| 1208 | n/a | data = [random.uniform(-100, 1000) for _ in range(1000)] |
|---|
| 1209 | n/a | self.assertApproxEqual(float(self.func(data)[1]), math.fsum(data), rel=2e-16) |
|---|
| 1210 | n/a | |
|---|
| 1211 | n/a | def test_start_argument(self): |
|---|
| 1212 | n/a | # Test that the optional start argument works correctly. |
|---|
| 1213 | n/a | data = [random.uniform(1, 1000) for _ in range(100)] |
|---|
| 1214 | n/a | t = self.func(data)[1] |
|---|
| 1215 | n/a | self.assertEqual(t+42, self.func(data, 42)[1]) |
|---|
| 1216 | n/a | self.assertEqual(t-23, self.func(data, -23)[1]) |
|---|
| 1217 | n/a | self.assertEqual(t+Fraction(1e20), self.func(data, 1e20)[1]) |
|---|
| 1218 | n/a | |
|---|
| 1219 | n/a | def test_strings_fail(self): |
|---|
| 1220 | n/a | # Sum of strings should fail. |
|---|
| 1221 | n/a | self.assertRaises(TypeError, self.func, [1, 2, 3], '999') |
|---|
| 1222 | n/a | self.assertRaises(TypeError, self.func, [1, 2, 3, '999']) |
|---|
| 1223 | n/a | |
|---|
| 1224 | n/a | def test_bytes_fail(self): |
|---|
| 1225 | n/a | # Sum of bytes should fail. |
|---|
| 1226 | n/a | self.assertRaises(TypeError, self.func, [1, 2, 3], b'999') |
|---|
| 1227 | n/a | self.assertRaises(TypeError, self.func, [1, 2, 3, b'999']) |
|---|
| 1228 | n/a | |
|---|
| 1229 | n/a | def test_mixed_sum(self): |
|---|
| 1230 | n/a | # Mixed input types are not (currently) allowed. |
|---|
| 1231 | n/a | # Check that mixed data types fail. |
|---|
| 1232 | n/a | self.assertRaises(TypeError, self.func, [1, 2.0, Decimal(1)]) |
|---|
| 1233 | n/a | # And so does mixed start argument. |
|---|
| 1234 | n/a | self.assertRaises(TypeError, self.func, [1, 2.0], Decimal(1)) |
|---|
| 1235 | n/a | |
|---|
| 1236 | n/a | |
|---|
| 1237 | n/a | class SumTortureTest(NumericTestCase): |
|---|
| 1238 | n/a | def test_torture(self): |
|---|
| 1239 | n/a | # Tim Peters' torture test for sum, and variants of same. |
|---|
| 1240 | n/a | self.assertEqual(statistics._sum([1, 1e100, 1, -1e100]*10000), |
|---|
| 1241 | n/a | (float, Fraction(20000.0), 40000)) |
|---|
| 1242 | n/a | self.assertEqual(statistics._sum([1e100, 1, 1, -1e100]*10000), |
|---|
| 1243 | n/a | (float, Fraction(20000.0), 40000)) |
|---|
| 1244 | n/a | T, num, count = statistics._sum([1e-100, 1, 1e-100, -1]*10000) |
|---|
| 1245 | n/a | self.assertIs(T, float) |
|---|
| 1246 | n/a | self.assertEqual(count, 40000) |
|---|
| 1247 | n/a | self.assertApproxEqual(float(num), 2.0e-96, rel=5e-16) |
|---|
| 1248 | n/a | |
|---|
| 1249 | n/a | |
|---|
| 1250 | n/a | class SumSpecialValues(NumericTestCase): |
|---|
| 1251 | n/a | # Test that sum works correctly with IEEE-754 special values. |
|---|
| 1252 | n/a | |
|---|
| 1253 | n/a | def test_nan(self): |
|---|
| 1254 | n/a | for type_ in (float, Decimal): |
|---|
| 1255 | n/a | nan = type_('nan') |
|---|
| 1256 | n/a | result = statistics._sum([1, nan, 2])[1] |
|---|
| 1257 | n/a | self.assertIs(type(result), type_) |
|---|
| 1258 | n/a | self.assertTrue(math.isnan(result)) |
|---|
| 1259 | n/a | |
|---|
| 1260 | n/a | def check_infinity(self, x, inf): |
|---|
| 1261 | n/a | """Check x is an infinity of the same type and sign as inf.""" |
|---|
| 1262 | n/a | self.assertTrue(math.isinf(x)) |
|---|
| 1263 | n/a | self.assertIs(type(x), type(inf)) |
|---|
| 1264 | n/a | self.assertEqual(x > 0, inf > 0) |
|---|
| 1265 | n/a | assert x == inf |
|---|
| 1266 | n/a | |
|---|
| 1267 | n/a | def do_test_inf(self, inf): |
|---|
| 1268 | n/a | # Adding a single infinity gives infinity. |
|---|
| 1269 | n/a | result = statistics._sum([1, 2, inf, 3])[1] |
|---|
| 1270 | n/a | self.check_infinity(result, inf) |
|---|
| 1271 | n/a | # Adding two infinities of the same sign also gives infinity. |
|---|
| 1272 | n/a | result = statistics._sum([1, 2, inf, 3, inf, 4])[1] |
|---|
| 1273 | n/a | self.check_infinity(result, inf) |
|---|
| 1274 | n/a | |
|---|
| 1275 | n/a | def test_float_inf(self): |
|---|
| 1276 | n/a | inf = float('inf') |
|---|
| 1277 | n/a | for sign in (+1, -1): |
|---|
| 1278 | n/a | self.do_test_inf(sign*inf) |
|---|
| 1279 | n/a | |
|---|
| 1280 | n/a | def test_decimal_inf(self): |
|---|
| 1281 | n/a | inf = Decimal('inf') |
|---|
| 1282 | n/a | for sign in (+1, -1): |
|---|
| 1283 | n/a | self.do_test_inf(sign*inf) |
|---|
| 1284 | n/a | |
|---|
| 1285 | n/a | def test_float_mismatched_infs(self): |
|---|
| 1286 | n/a | # Test that adding two infinities of opposite sign gives a NAN. |
|---|
| 1287 | n/a | inf = float('inf') |
|---|
| 1288 | n/a | result = statistics._sum([1, 2, inf, 3, -inf, 4])[1] |
|---|
| 1289 | n/a | self.assertTrue(math.isnan(result)) |
|---|
| 1290 | n/a | |
|---|
| 1291 | n/a | def test_decimal_extendedcontext_mismatched_infs_to_nan(self): |
|---|
| 1292 | n/a | # Test adding Decimal INFs with opposite sign returns NAN. |
|---|
| 1293 | n/a | inf = Decimal('inf') |
|---|
| 1294 | n/a | data = [1, 2, inf, 3, -inf, 4] |
|---|
| 1295 | n/a | with decimal.localcontext(decimal.ExtendedContext): |
|---|
| 1296 | n/a | self.assertTrue(math.isnan(statistics._sum(data)[1])) |
|---|
| 1297 | n/a | |
|---|
| 1298 | n/a | def test_decimal_basiccontext_mismatched_infs_to_nan(self): |
|---|
| 1299 | n/a | # Test adding Decimal INFs with opposite sign raises InvalidOperation. |
|---|
| 1300 | n/a | inf = Decimal('inf') |
|---|
| 1301 | n/a | data = [1, 2, inf, 3, -inf, 4] |
|---|
| 1302 | n/a | with decimal.localcontext(decimal.BasicContext): |
|---|
| 1303 | n/a | self.assertRaises(decimal.InvalidOperation, statistics._sum, data) |
|---|
| 1304 | n/a | |
|---|
| 1305 | n/a | def test_decimal_snan_raises(self): |
|---|
| 1306 | n/a | # Adding sNAN should raise InvalidOperation. |
|---|
| 1307 | n/a | sNAN = Decimal('sNAN') |
|---|
| 1308 | n/a | data = [1, sNAN, 2] |
|---|
| 1309 | n/a | self.assertRaises(decimal.InvalidOperation, statistics._sum, data) |
|---|
| 1310 | n/a | |
|---|
| 1311 | n/a | |
|---|
| 1312 | n/a | # === Tests for averages === |
|---|
| 1313 | n/a | |
|---|
| 1314 | n/a | class AverageMixin(UnivariateCommonMixin): |
|---|
| 1315 | n/a | # Mixin class holding common tests for averages. |
|---|
| 1316 | n/a | |
|---|
| 1317 | n/a | def test_single_value(self): |
|---|
| 1318 | n/a | # Average of a single value is the value itself. |
|---|
| 1319 | n/a | for x in (23, 42.5, 1.3e15, Fraction(15, 19), Decimal('0.28')): |
|---|
| 1320 | n/a | self.assertEqual(self.func([x]), x) |
|---|
| 1321 | n/a | |
|---|
| 1322 | n/a | def prepare_values_for_repeated_single_test(self): |
|---|
| 1323 | n/a | return (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.9712')) |
|---|
| 1324 | n/a | |
|---|
| 1325 | n/a | def test_repeated_single_value(self): |
|---|
| 1326 | n/a | # The average of a single repeated value is the value itself. |
|---|
| 1327 | n/a | for x in self.prepare_values_for_repeated_single_test(): |
|---|
| 1328 | n/a | for count in (2, 5, 10, 20): |
|---|
| 1329 | n/a | with self.subTest(x=x, count=count): |
|---|
| 1330 | n/a | data = [x]*count |
|---|
| 1331 | n/a | self.assertEqual(self.func(data), x) |
|---|
| 1332 | n/a | |
|---|
| 1333 | n/a | |
|---|
| 1334 | n/a | class TestMean(NumericTestCase, AverageMixin, UnivariateTypeMixin): |
|---|
| 1335 | n/a | def setUp(self): |
|---|
| 1336 | n/a | self.func = statistics.mean |
|---|
| 1337 | n/a | |
|---|
| 1338 | n/a | def test_torture_pep(self): |
|---|
| 1339 | n/a | # "Torture Test" from PEP-450. |
|---|
| 1340 | n/a | self.assertEqual(self.func([1e100, 1, 3, -1e100]), 1) |
|---|
| 1341 | n/a | |
|---|
| 1342 | n/a | def test_ints(self): |
|---|
| 1343 | n/a | # Test mean with ints. |
|---|
| 1344 | n/a | data = [0, 1, 2, 3, 3, 3, 4, 5, 5, 6, 7, 7, 7, 7, 8, 9] |
|---|
| 1345 | n/a | random.shuffle(data) |
|---|
| 1346 | n/a | self.assertEqual(self.func(data), 4.8125) |
|---|
| 1347 | n/a | |
|---|
| 1348 | n/a | def test_floats(self): |
|---|
| 1349 | n/a | # Test mean with floats. |
|---|
| 1350 | n/a | data = [17.25, 19.75, 20.0, 21.5, 21.75, 23.25, 25.125, 27.5] |
|---|
| 1351 | n/a | random.shuffle(data) |
|---|
| 1352 | n/a | self.assertEqual(self.func(data), 22.015625) |
|---|
| 1353 | n/a | |
|---|
| 1354 | n/a | def test_decimals(self): |
|---|
| 1355 | n/a | # Test mean with Decimals. |
|---|
| 1356 | n/a | D = Decimal |
|---|
| 1357 | n/a | data = [D("1.634"), D("2.517"), D("3.912"), D("4.072"), D("5.813")] |
|---|
| 1358 | n/a | random.shuffle(data) |
|---|
| 1359 | n/a | self.assertEqual(self.func(data), D("3.5896")) |
|---|
| 1360 | n/a | |
|---|
| 1361 | n/a | def test_fractions(self): |
|---|
| 1362 | n/a | # Test mean with Fractions. |
|---|
| 1363 | n/a | F = Fraction |
|---|
| 1364 | n/a | data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)] |
|---|
| 1365 | n/a | random.shuffle(data) |
|---|
| 1366 | n/a | self.assertEqual(self.func(data), F(1479, 1960)) |
|---|
| 1367 | n/a | |
|---|
| 1368 | n/a | def test_inf(self): |
|---|
| 1369 | n/a | # Test mean with infinities. |
|---|
| 1370 | n/a | raw = [1, 3, 5, 7, 9] # Use only ints, to avoid TypeError later. |
|---|
| 1371 | n/a | for kind in (float, Decimal): |
|---|
| 1372 | n/a | for sign in (1, -1): |
|---|
| 1373 | n/a | inf = kind("inf")*sign |
|---|
| 1374 | n/a | data = raw + [inf] |
|---|
| 1375 | n/a | result = self.func(data) |
|---|
| 1376 | n/a | self.assertTrue(math.isinf(result)) |
|---|
| 1377 | n/a | self.assertEqual(result, inf) |
|---|
| 1378 | n/a | |
|---|
| 1379 | n/a | def test_mismatched_infs(self): |
|---|
| 1380 | n/a | # Test mean with infinities of opposite sign. |
|---|
| 1381 | n/a | data = [2, 4, 6, float('inf'), 1, 3, 5, float('-inf')] |
|---|
| 1382 | n/a | result = self.func(data) |
|---|
| 1383 | n/a | self.assertTrue(math.isnan(result)) |
|---|
| 1384 | n/a | |
|---|
| 1385 | n/a | def test_nan(self): |
|---|
| 1386 | n/a | # Test mean with NANs. |
|---|
| 1387 | n/a | raw = [1, 3, 5, 7, 9] # Use only ints, to avoid TypeError later. |
|---|
| 1388 | n/a | for kind in (float, Decimal): |
|---|
| 1389 | n/a | inf = kind("nan") |
|---|
| 1390 | n/a | data = raw + [inf] |
|---|
| 1391 | n/a | result = self.func(data) |
|---|
| 1392 | n/a | self.assertTrue(math.isnan(result)) |
|---|
| 1393 | n/a | |
|---|
| 1394 | n/a | def test_big_data(self): |
|---|
| 1395 | n/a | # Test adding a large constant to every data point. |
|---|
| 1396 | n/a | c = 1e9 |
|---|
| 1397 | n/a | data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4] |
|---|
| 1398 | n/a | expected = self.func(data) + c |
|---|
| 1399 | n/a | assert expected != c |
|---|
| 1400 | n/a | result = self.func([x+c for x in data]) |
|---|
| 1401 | n/a | self.assertEqual(result, expected) |
|---|
| 1402 | n/a | |
|---|
| 1403 | n/a | def test_doubled_data(self): |
|---|
| 1404 | n/a | # Mean of [a,b,c...z] should be same as for [a,a,b,b,c,c...z,z]. |
|---|
| 1405 | n/a | data = [random.uniform(-3, 5) for _ in range(1000)] |
|---|
| 1406 | n/a | expected = self.func(data) |
|---|
| 1407 | n/a | actual = self.func(data*2) |
|---|
| 1408 | n/a | self.assertApproxEqual(actual, expected) |
|---|
| 1409 | n/a | |
|---|
| 1410 | n/a | def test_regression_20561(self): |
|---|
| 1411 | n/a | # Regression test for issue 20561. |
|---|
| 1412 | n/a | # See http://bugs.python.org/issue20561 |
|---|
| 1413 | n/a | d = Decimal('1e4') |
|---|
| 1414 | n/a | self.assertEqual(statistics.mean([d]), d) |
|---|
| 1415 | n/a | |
|---|
| 1416 | n/a | def test_regression_25177(self): |
|---|
| 1417 | n/a | # Regression test for issue 25177. |
|---|
| 1418 | n/a | # Ensure very big and very small floats don't overflow. |
|---|
| 1419 | n/a | # See http://bugs.python.org/issue25177. |
|---|
| 1420 | n/a | self.assertEqual(statistics.mean( |
|---|
| 1421 | n/a | [8.988465674311579e+307, 8.98846567431158e+307]), |
|---|
| 1422 | n/a | 8.98846567431158e+307) |
|---|
| 1423 | n/a | big = 8.98846567431158e+307 |
|---|
| 1424 | n/a | tiny = 5e-324 |
|---|
| 1425 | n/a | for n in (2, 3, 5, 200): |
|---|
| 1426 | n/a | self.assertEqual(statistics.mean([big]*n), big) |
|---|
| 1427 | n/a | self.assertEqual(statistics.mean([tiny]*n), tiny) |
|---|
| 1428 | n/a | |
|---|
| 1429 | n/a | |
|---|
| 1430 | n/a | class TestHarmonicMean(NumericTestCase, AverageMixin, UnivariateTypeMixin): |
|---|
| 1431 | n/a | def setUp(self): |
|---|
| 1432 | n/a | self.func = statistics.harmonic_mean |
|---|
| 1433 | n/a | |
|---|
| 1434 | n/a | def prepare_data(self): |
|---|
| 1435 | n/a | # Override mixin method. |
|---|
| 1436 | n/a | values = super().prepare_data() |
|---|
| 1437 | n/a | values.remove(0) |
|---|
| 1438 | n/a | return values |
|---|
| 1439 | n/a | |
|---|
| 1440 | n/a | def prepare_values_for_repeated_single_test(self): |
|---|
| 1441 | n/a | # Override mixin method. |
|---|
| 1442 | n/a | return (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.125')) |
|---|
| 1443 | n/a | |
|---|
| 1444 | n/a | def test_zero(self): |
|---|
| 1445 | n/a | # Test that harmonic mean returns zero when given zero. |
|---|
| 1446 | n/a | values = [1, 0, 2] |
|---|
| 1447 | n/a | self.assertEqual(self.func(values), 0) |
|---|
| 1448 | n/a | |
|---|
| 1449 | n/a | def test_negative_error(self): |
|---|
| 1450 | n/a | # Test that harmonic mean raises when given a negative value. |
|---|
| 1451 | n/a | exc = statistics.StatisticsError |
|---|
| 1452 | n/a | for values in ([-1], [1, -2, 3]): |
|---|
| 1453 | n/a | with self.subTest(values=values): |
|---|
| 1454 | n/a | self.assertRaises(exc, self.func, values) |
|---|
| 1455 | n/a | |
|---|
| 1456 | n/a | def test_ints(self): |
|---|
| 1457 | n/a | # Test harmonic mean with ints. |
|---|
| 1458 | n/a | data = [2, 4, 4, 8, 16, 16] |
|---|
| 1459 | n/a | random.shuffle(data) |
|---|
| 1460 | n/a | self.assertEqual(self.func(data), 6*4/5) |
|---|
| 1461 | n/a | |
|---|
| 1462 | n/a | def test_floats_exact(self): |
|---|
| 1463 | n/a | # Test harmonic mean with some carefully chosen floats. |
|---|
| 1464 | n/a | data = [1/8, 1/4, 1/4, 1/2, 1/2] |
|---|
| 1465 | n/a | random.shuffle(data) |
|---|
| 1466 | n/a | self.assertEqual(self.func(data), 1/4) |
|---|
| 1467 | n/a | self.assertEqual(self.func([0.25, 0.5, 1.0, 1.0]), 0.5) |
|---|
| 1468 | n/a | |
|---|
| 1469 | n/a | def test_singleton_lists(self): |
|---|
| 1470 | n/a | # Test that harmonic mean([x]) returns (approximately) x. |
|---|
| 1471 | n/a | for x in range(1, 101): |
|---|
| 1472 | n/a | self.assertEqual(self.func([x]), x) |
|---|
| 1473 | n/a | |
|---|
| 1474 | n/a | def test_decimals_exact(self): |
|---|
| 1475 | n/a | # Test harmonic mean with some carefully chosen Decimals. |
|---|
| 1476 | n/a | D = Decimal |
|---|
| 1477 | n/a | self.assertEqual(self.func([D(15), D(30), D(60), D(60)]), D(30)) |
|---|
| 1478 | n/a | data = [D("0.05"), D("0.10"), D("0.20"), D("0.20")] |
|---|
| 1479 | n/a | random.shuffle(data) |
|---|
| 1480 | n/a | self.assertEqual(self.func(data), D("0.10")) |
|---|
| 1481 | n/a | data = [D("1.68"), D("0.32"), D("5.94"), D("2.75")] |
|---|
| 1482 | n/a | random.shuffle(data) |
|---|
| 1483 | n/a | self.assertEqual(self.func(data), D(66528)/70723) |
|---|
| 1484 | n/a | |
|---|
| 1485 | n/a | def test_fractions(self): |
|---|
| 1486 | n/a | # Test harmonic mean with Fractions. |
|---|
| 1487 | n/a | F = Fraction |
|---|
| 1488 | n/a | data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)] |
|---|
| 1489 | n/a | random.shuffle(data) |
|---|
| 1490 | n/a | self.assertEqual(self.func(data), F(7*420, 4029)) |
|---|
| 1491 | n/a | |
|---|
| 1492 | n/a | def test_inf(self): |
|---|
| 1493 | n/a | # Test harmonic mean with infinity. |
|---|
| 1494 | n/a | values = [2.0, float('inf'), 1.0] |
|---|
| 1495 | n/a | self.assertEqual(self.func(values), 2.0) |
|---|
| 1496 | n/a | |
|---|
| 1497 | n/a | def test_nan(self): |
|---|
| 1498 | n/a | # Test harmonic mean with NANs. |
|---|
| 1499 | n/a | values = [2.0, float('nan'), 1.0] |
|---|
| 1500 | n/a | self.assertTrue(math.isnan(self.func(values))) |
|---|
| 1501 | n/a | |
|---|
| 1502 | n/a | def test_multiply_data_points(self): |
|---|
| 1503 | n/a | # Test multiplying every data point by a constant. |
|---|
| 1504 | n/a | c = 111 |
|---|
| 1505 | n/a | data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4] |
|---|
| 1506 | n/a | expected = self.func(data)*c |
|---|
| 1507 | n/a | result = self.func([x*c for x in data]) |
|---|
| 1508 | n/a | self.assertEqual(result, expected) |
|---|
| 1509 | n/a | |
|---|
| 1510 | n/a | def test_doubled_data(self): |
|---|
| 1511 | n/a | # Harmonic mean of [a,b...z] should be same as for [a,a,b,b...z,z]. |
|---|
| 1512 | n/a | data = [random.uniform(1, 5) for _ in range(1000)] |
|---|
| 1513 | n/a | expected = self.func(data) |
|---|
| 1514 | n/a | actual = self.func(data*2) |
|---|
| 1515 | n/a | self.assertApproxEqual(actual, expected) |
|---|
| 1516 | n/a | |
|---|
| 1517 | n/a | |
|---|
| 1518 | n/a | class TestMedian(NumericTestCase, AverageMixin): |
|---|
| 1519 | n/a | # Common tests for median and all median.* functions. |
|---|
| 1520 | n/a | def setUp(self): |
|---|
| 1521 | n/a | self.func = statistics.median |
|---|
| 1522 | n/a | |
|---|
| 1523 | n/a | def prepare_data(self): |
|---|
| 1524 | n/a | """Overload method from UnivariateCommonMixin.""" |
|---|
| 1525 | n/a | data = super().prepare_data() |
|---|
| 1526 | n/a | if len(data)%2 != 1: |
|---|
| 1527 | n/a | data.append(2) |
|---|
| 1528 | n/a | return data |
|---|
| 1529 | n/a | |
|---|
| 1530 | n/a | def test_even_ints(self): |
|---|
| 1531 | n/a | # Test median with an even number of int data points. |
|---|
| 1532 | n/a | data = [1, 2, 3, 4, 5, 6] |
|---|
| 1533 | n/a | assert len(data)%2 == 0 |
|---|
| 1534 | n/a | self.assertEqual(self.func(data), 3.5) |
|---|
| 1535 | n/a | |
|---|
| 1536 | n/a | def test_odd_ints(self): |
|---|
| 1537 | n/a | # Test median with an odd number of int data points. |
|---|
| 1538 | n/a | data = [1, 2, 3, 4, 5, 6, 9] |
|---|
| 1539 | n/a | assert len(data)%2 == 1 |
|---|
| 1540 | n/a | self.assertEqual(self.func(data), 4) |
|---|
| 1541 | n/a | |
|---|
| 1542 | n/a | def test_odd_fractions(self): |
|---|
| 1543 | n/a | # Test median works with an odd number of Fractions. |
|---|
| 1544 | n/a | F = Fraction |
|---|
| 1545 | n/a | data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7)] |
|---|
| 1546 | n/a | assert len(data)%2 == 1 |
|---|
| 1547 | n/a | random.shuffle(data) |
|---|
| 1548 | n/a | self.assertEqual(self.func(data), F(3, 7)) |
|---|
| 1549 | n/a | |
|---|
| 1550 | n/a | def test_even_fractions(self): |
|---|
| 1551 | n/a | # Test median works with an even number of Fractions. |
|---|
| 1552 | n/a | F = Fraction |
|---|
| 1553 | n/a | data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)] |
|---|
| 1554 | n/a | assert len(data)%2 == 0 |
|---|
| 1555 | n/a | random.shuffle(data) |
|---|
| 1556 | n/a | self.assertEqual(self.func(data), F(1, 2)) |
|---|
| 1557 | n/a | |
|---|
| 1558 | n/a | def test_odd_decimals(self): |
|---|
| 1559 | n/a | # Test median works with an odd number of Decimals. |
|---|
| 1560 | n/a | D = Decimal |
|---|
| 1561 | n/a | data = [D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')] |
|---|
| 1562 | n/a | assert len(data)%2 == 1 |
|---|
| 1563 | n/a | random.shuffle(data) |
|---|
| 1564 | n/a | self.assertEqual(self.func(data), D('4.2')) |
|---|
| 1565 | n/a | |
|---|
| 1566 | n/a | def test_even_decimals(self): |
|---|
| 1567 | n/a | # Test median works with an even number of Decimals. |
|---|
| 1568 | n/a | D = Decimal |
|---|
| 1569 | n/a | data = [D('1.2'), D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')] |
|---|
| 1570 | n/a | assert len(data)%2 == 0 |
|---|
| 1571 | n/a | random.shuffle(data) |
|---|
| 1572 | n/a | self.assertEqual(self.func(data), D('3.65')) |
|---|
| 1573 | n/a | |
|---|
| 1574 | n/a | |
|---|
| 1575 | n/a | class TestMedianDataType(NumericTestCase, UnivariateTypeMixin): |
|---|
| 1576 | n/a | # Test conservation of data element type for median. |
|---|
| 1577 | n/a | def setUp(self): |
|---|
| 1578 | n/a | self.func = statistics.median |
|---|
| 1579 | n/a | |
|---|
| 1580 | n/a | def prepare_data(self): |
|---|
| 1581 | n/a | data = list(range(15)) |
|---|
| 1582 | n/a | assert len(data)%2 == 1 |
|---|
| 1583 | n/a | while data == sorted(data): |
|---|
| 1584 | n/a | random.shuffle(data) |
|---|
| 1585 | n/a | return data |
|---|
| 1586 | n/a | |
|---|
| 1587 | n/a | |
|---|
| 1588 | n/a | class TestMedianLow(TestMedian, UnivariateTypeMixin): |
|---|
| 1589 | n/a | def setUp(self): |
|---|
| 1590 | n/a | self.func = statistics.median_low |
|---|
| 1591 | n/a | |
|---|
| 1592 | n/a | def test_even_ints(self): |
|---|
| 1593 | n/a | # Test median_low with an even number of ints. |
|---|
| 1594 | n/a | data = [1, 2, 3, 4, 5, 6] |
|---|
| 1595 | n/a | assert len(data)%2 == 0 |
|---|
| 1596 | n/a | self.assertEqual(self.func(data), 3) |
|---|
| 1597 | n/a | |
|---|
| 1598 | n/a | def test_even_fractions(self): |
|---|
| 1599 | n/a | # Test median_low works with an even number of Fractions. |
|---|
| 1600 | n/a | F = Fraction |
|---|
| 1601 | n/a | data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)] |
|---|
| 1602 | n/a | assert len(data)%2 == 0 |
|---|
| 1603 | n/a | random.shuffle(data) |
|---|
| 1604 | n/a | self.assertEqual(self.func(data), F(3, 7)) |
|---|
| 1605 | n/a | |
|---|
| 1606 | n/a | def test_even_decimals(self): |
|---|
| 1607 | n/a | # Test median_low works with an even number of Decimals. |
|---|
| 1608 | n/a | D = Decimal |
|---|
| 1609 | n/a | data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')] |
|---|
| 1610 | n/a | assert len(data)%2 == 0 |
|---|
| 1611 | n/a | random.shuffle(data) |
|---|
| 1612 | n/a | self.assertEqual(self.func(data), D('3.3')) |
|---|
| 1613 | n/a | |
|---|
| 1614 | n/a | |
|---|
| 1615 | n/a | class TestMedianHigh(TestMedian, UnivariateTypeMixin): |
|---|
| 1616 | n/a | def setUp(self): |
|---|
| 1617 | n/a | self.func = statistics.median_high |
|---|
| 1618 | n/a | |
|---|
| 1619 | n/a | def test_even_ints(self): |
|---|
| 1620 | n/a | # Test median_high with an even number of ints. |
|---|
| 1621 | n/a | data = [1, 2, 3, 4, 5, 6] |
|---|
| 1622 | n/a | assert len(data)%2 == 0 |
|---|
| 1623 | n/a | self.assertEqual(self.func(data), 4) |
|---|
| 1624 | n/a | |
|---|
| 1625 | n/a | def test_even_fractions(self): |
|---|
| 1626 | n/a | # Test median_high works with an even number of Fractions. |
|---|
| 1627 | n/a | F = Fraction |
|---|
| 1628 | n/a | data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)] |
|---|
| 1629 | n/a | assert len(data)%2 == 0 |
|---|
| 1630 | n/a | random.shuffle(data) |
|---|
| 1631 | n/a | self.assertEqual(self.func(data), F(4, 7)) |
|---|
| 1632 | n/a | |
|---|
| 1633 | n/a | def test_even_decimals(self): |
|---|
| 1634 | n/a | # Test median_high works with an even number of Decimals. |
|---|
| 1635 | n/a | D = Decimal |
|---|
| 1636 | n/a | data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')] |
|---|
| 1637 | n/a | assert len(data)%2 == 0 |
|---|
| 1638 | n/a | random.shuffle(data) |
|---|
| 1639 | n/a | self.assertEqual(self.func(data), D('4.4')) |
|---|
| 1640 | n/a | |
|---|
| 1641 | n/a | |
|---|
| 1642 | n/a | class TestMedianGrouped(TestMedian): |
|---|
| 1643 | n/a | # Test median_grouped. |
|---|
| 1644 | n/a | # Doesn't conserve data element types, so don't use TestMedianType. |
|---|
| 1645 | n/a | def setUp(self): |
|---|
| 1646 | n/a | self.func = statistics.median_grouped |
|---|
| 1647 | n/a | |
|---|
| 1648 | n/a | def test_odd_number_repeated(self): |
|---|
| 1649 | n/a | # Test median.grouped with repeated median values. |
|---|
| 1650 | n/a | data = [12, 13, 14, 14, 14, 15, 15] |
|---|
| 1651 | n/a | assert len(data)%2 == 1 |
|---|
| 1652 | n/a | self.assertEqual(self.func(data), 14) |
|---|
| 1653 | n/a | #--- |
|---|
| 1654 | n/a | data = [12, 13, 14, 14, 14, 14, 15] |
|---|
| 1655 | n/a | assert len(data)%2 == 1 |
|---|
| 1656 | n/a | self.assertEqual(self.func(data), 13.875) |
|---|
| 1657 | n/a | #--- |
|---|
| 1658 | n/a | data = [5, 10, 10, 15, 20, 20, 20, 20, 25, 25, 30] |
|---|
| 1659 | n/a | assert len(data)%2 == 1 |
|---|
| 1660 | n/a | self.assertEqual(self.func(data, 5), 19.375) |
|---|
| 1661 | n/a | #--- |
|---|
| 1662 | n/a | data = [16, 18, 18, 18, 18, 20, 20, 20, 22, 22, 22, 24, 24, 26, 28] |
|---|
| 1663 | n/a | assert len(data)%2 == 1 |
|---|
| 1664 | n/a | self.assertApproxEqual(self.func(data, 2), 20.66666667, tol=1e-8) |
|---|
| 1665 | n/a | |
|---|
| 1666 | n/a | def test_even_number_repeated(self): |
|---|
| 1667 | n/a | # Test median.grouped with repeated median values. |
|---|
| 1668 | n/a | data = [5, 10, 10, 15, 20, 20, 20, 25, 25, 30] |
|---|
| 1669 | n/a | assert len(data)%2 == 0 |
|---|
| 1670 | n/a | self.assertApproxEqual(self.func(data, 5), 19.16666667, tol=1e-8) |
|---|
| 1671 | n/a | #--- |
|---|
| 1672 | n/a | data = [2, 3, 4, 4, 4, 5] |
|---|
| 1673 | n/a | assert len(data)%2 == 0 |
|---|
| 1674 | n/a | self.assertApproxEqual(self.func(data), 3.83333333, tol=1e-8) |
|---|
| 1675 | n/a | #--- |
|---|
| 1676 | n/a | data = [2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6] |
|---|
| 1677 | n/a | assert len(data)%2 == 0 |
|---|
| 1678 | n/a | self.assertEqual(self.func(data), 4.5) |
|---|
| 1679 | n/a | #--- |
|---|
| 1680 | n/a | data = [3, 4, 4, 4, 5, 5, 5, 5, 6, 6] |
|---|
| 1681 | n/a | assert len(data)%2 == 0 |
|---|
| 1682 | n/a | self.assertEqual(self.func(data), 4.75) |
|---|
| 1683 | n/a | |
|---|
| 1684 | n/a | def test_repeated_single_value(self): |
|---|
| 1685 | n/a | # Override method from AverageMixin. |
|---|
| 1686 | n/a | # Yet again, failure of median_grouped to conserve the data type |
|---|
| 1687 | n/a | # causes me headaches :-( |
|---|
| 1688 | n/a | for x in (5.3, 68, 4.3e17, Fraction(29, 101), Decimal('32.9714')): |
|---|
| 1689 | n/a | for count in (2, 5, 10, 20): |
|---|
| 1690 | n/a | data = [x]*count |
|---|
| 1691 | n/a | self.assertEqual(self.func(data), float(x)) |
|---|
| 1692 | n/a | |
|---|
| 1693 | n/a | def test_odd_fractions(self): |
|---|
| 1694 | n/a | # Test median_grouped works with an odd number of Fractions. |
|---|
| 1695 | n/a | F = Fraction |
|---|
| 1696 | n/a | data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4)] |
|---|
| 1697 | n/a | assert len(data)%2 == 1 |
|---|
| 1698 | n/a | random.shuffle(data) |
|---|
| 1699 | n/a | self.assertEqual(self.func(data), 3.0) |
|---|
| 1700 | n/a | |
|---|
| 1701 | n/a | def test_even_fractions(self): |
|---|
| 1702 | n/a | # Test median_grouped works with an even number of Fractions. |
|---|
| 1703 | n/a | F = Fraction |
|---|
| 1704 | n/a | data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4), F(17, 4)] |
|---|
| 1705 | n/a | assert len(data)%2 == 0 |
|---|
| 1706 | n/a | random.shuffle(data) |
|---|
| 1707 | n/a | self.assertEqual(self.func(data), 3.25) |
|---|
| 1708 | n/a | |
|---|
| 1709 | n/a | def test_odd_decimals(self): |
|---|
| 1710 | n/a | # Test median_grouped works with an odd number of Decimals. |
|---|
| 1711 | n/a | D = Decimal |
|---|
| 1712 | n/a | data = [D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')] |
|---|
| 1713 | n/a | assert len(data)%2 == 1 |
|---|
| 1714 | n/a | random.shuffle(data) |
|---|
| 1715 | n/a | self.assertEqual(self.func(data), 6.75) |
|---|
| 1716 | n/a | |
|---|
| 1717 | n/a | def test_even_decimals(self): |
|---|
| 1718 | n/a | # Test median_grouped works with an even number of Decimals. |
|---|
| 1719 | n/a | D = Decimal |
|---|
| 1720 | n/a | data = [D('5.5'), D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')] |
|---|
| 1721 | n/a | assert len(data)%2 == 0 |
|---|
| 1722 | n/a | random.shuffle(data) |
|---|
| 1723 | n/a | self.assertEqual(self.func(data), 6.5) |
|---|
| 1724 | n/a | #--- |
|---|
| 1725 | n/a | data = [D('5.5'), D('5.5'), D('6.5'), D('7.5'), D('7.5'), D('8.5')] |
|---|
| 1726 | n/a | assert len(data)%2 == 0 |
|---|
| 1727 | n/a | random.shuffle(data) |
|---|
| 1728 | n/a | self.assertEqual(self.func(data), 7.0) |
|---|
| 1729 | n/a | |
|---|
| 1730 | n/a | def test_interval(self): |
|---|
| 1731 | n/a | # Test median_grouped with interval argument. |
|---|
| 1732 | n/a | data = [2.25, 2.5, 2.5, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75] |
|---|
| 1733 | n/a | self.assertEqual(self.func(data, 0.25), 2.875) |
|---|
| 1734 | n/a | data = [2.25, 2.5, 2.5, 2.75, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75] |
|---|
| 1735 | n/a | self.assertApproxEqual(self.func(data, 0.25), 2.83333333, tol=1e-8) |
|---|
| 1736 | n/a | data = [220, 220, 240, 260, 260, 260, 260, 280, 280, 300, 320, 340] |
|---|
| 1737 | n/a | self.assertEqual(self.func(data, 20), 265.0) |
|---|
| 1738 | n/a | |
|---|
| 1739 | n/a | def test_data_type_error(self): |
|---|
| 1740 | n/a | # Test median_grouped with str, bytes data types for data and interval |
|---|
| 1741 | n/a | data = ["", "", ""] |
|---|
| 1742 | n/a | self.assertRaises(TypeError, self.func, data) |
|---|
| 1743 | n/a | #--- |
|---|
| 1744 | n/a | data = [b"", b"", b""] |
|---|
| 1745 | n/a | self.assertRaises(TypeError, self.func, data) |
|---|
| 1746 | n/a | #--- |
|---|
| 1747 | n/a | data = [1, 2, 3] |
|---|
| 1748 | n/a | interval = "" |
|---|
| 1749 | n/a | self.assertRaises(TypeError, self.func, data, interval) |
|---|
| 1750 | n/a | #--- |
|---|
| 1751 | n/a | data = [1, 2, 3] |
|---|
| 1752 | n/a | interval = b"" |
|---|
| 1753 | n/a | self.assertRaises(TypeError, self.func, data, interval) |
|---|
| 1754 | n/a | |
|---|
| 1755 | n/a | |
|---|
| 1756 | n/a | class TestMode(NumericTestCase, AverageMixin, UnivariateTypeMixin): |
|---|
| 1757 | n/a | # Test cases for the discrete version of mode. |
|---|
| 1758 | n/a | def setUp(self): |
|---|
| 1759 | n/a | self.func = statistics.mode |
|---|
| 1760 | n/a | |
|---|
| 1761 | n/a | def prepare_data(self): |
|---|
| 1762 | n/a | """Overload method from UnivariateCommonMixin.""" |
|---|
| 1763 | n/a | # Make sure test data has exactly one mode. |
|---|
| 1764 | n/a | return [1, 1, 1, 1, 3, 4, 7, 9, 0, 8, 2] |
|---|
| 1765 | n/a | |
|---|
| 1766 | n/a | def test_range_data(self): |
|---|
| 1767 | n/a | # Override test from UnivariateCommonMixin. |
|---|
| 1768 | n/a | data = range(20, 50, 3) |
|---|
| 1769 | n/a | self.assertRaises(statistics.StatisticsError, self.func, data) |
|---|
| 1770 | n/a | |
|---|
| 1771 | n/a | def test_nominal_data(self): |
|---|
| 1772 | n/a | # Test mode with nominal data. |
|---|
| 1773 | n/a | data = 'abcbdb' |
|---|
| 1774 | n/a | self.assertEqual(self.func(data), 'b') |
|---|
| 1775 | n/a | data = 'fe fi fo fum fi fi'.split() |
|---|
| 1776 | n/a | self.assertEqual(self.func(data), 'fi') |
|---|
| 1777 | n/a | |
|---|
| 1778 | n/a | def test_discrete_data(self): |
|---|
| 1779 | n/a | # Test mode with discrete numeric data. |
|---|
| 1780 | n/a | data = list(range(10)) |
|---|
| 1781 | n/a | for i in range(10): |
|---|
| 1782 | n/a | d = data + [i] |
|---|
| 1783 | n/a | random.shuffle(d) |
|---|
| 1784 | n/a | self.assertEqual(self.func(d), i) |
|---|
| 1785 | n/a | |
|---|
| 1786 | n/a | def test_bimodal_data(self): |
|---|
| 1787 | n/a | # Test mode with bimodal data. |
|---|
| 1788 | n/a | data = [1, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6, 6, 6, 7, 8, 9, 9] |
|---|
| 1789 | n/a | assert data.count(2) == data.count(6) == 4 |
|---|
| 1790 | n/a | # Check for an exception. |
|---|
| 1791 | n/a | self.assertRaises(statistics.StatisticsError, self.func, data) |
|---|
| 1792 | n/a | |
|---|
| 1793 | n/a | def test_unique_data_failure(self): |
|---|
| 1794 | n/a | # Test mode exception when data points are all unique. |
|---|
| 1795 | n/a | data = list(range(10)) |
|---|
| 1796 | n/a | self.assertRaises(statistics.StatisticsError, self.func, data) |
|---|
| 1797 | n/a | |
|---|
| 1798 | n/a | def test_none_data(self): |
|---|
| 1799 | n/a | # Test that mode raises TypeError if given None as data. |
|---|
| 1800 | n/a | |
|---|
| 1801 | n/a | # This test is necessary because the implementation of mode uses |
|---|
| 1802 | n/a | # collections.Counter, which accepts None and returns an empty dict. |
|---|
| 1803 | n/a | self.assertRaises(TypeError, self.func, None) |
|---|
| 1804 | n/a | |
|---|
| 1805 | n/a | def test_counter_data(self): |
|---|
| 1806 | n/a | # Test that a Counter is treated like any other iterable. |
|---|
| 1807 | n/a | data = collections.Counter([1, 1, 1, 2]) |
|---|
| 1808 | n/a | # Since the keys of the counter are treated as data points, not the |
|---|
| 1809 | n/a | # counts, this should raise. |
|---|
| 1810 | n/a | self.assertRaises(statistics.StatisticsError, self.func, data) |
|---|
| 1811 | n/a | |
|---|
| 1812 | n/a | |
|---|
| 1813 | n/a | |
|---|
| 1814 | n/a | # === Tests for variances and standard deviations === |
|---|
| 1815 | n/a | |
|---|
| 1816 | n/a | class VarianceStdevMixin(UnivariateCommonMixin): |
|---|
| 1817 | n/a | # Mixin class holding common tests for variance and std dev. |
|---|
| 1818 | n/a | |
|---|
| 1819 | n/a | # Subclasses should inherit from this before NumericTestClass, in order |
|---|
| 1820 | n/a | # to see the rel attribute below. See testShiftData for an explanation. |
|---|
| 1821 | n/a | |
|---|
| 1822 | n/a | rel = 1e-12 |
|---|
| 1823 | n/a | |
|---|
| 1824 | n/a | def test_single_value(self): |
|---|
| 1825 | n/a | # Deviation of a single value is zero. |
|---|
| 1826 | n/a | for x in (11, 19.8, 4.6e14, Fraction(21, 34), Decimal('8.392')): |
|---|
| 1827 | n/a | self.assertEqual(self.func([x]), 0) |
|---|
| 1828 | n/a | |
|---|
| 1829 | n/a | def test_repeated_single_value(self): |
|---|
| 1830 | n/a | # The deviation of a single repeated value is zero. |
|---|
| 1831 | n/a | for x in (7.2, 49, 8.1e15, Fraction(3, 7), Decimal('62.4802')): |
|---|
| 1832 | n/a | for count in (2, 3, 5, 15): |
|---|
| 1833 | n/a | data = [x]*count |
|---|
| 1834 | n/a | self.assertEqual(self.func(data), 0) |
|---|
| 1835 | n/a | |
|---|
| 1836 | n/a | def test_domain_error_regression(self): |
|---|
| 1837 | n/a | # Regression test for a domain error exception. |
|---|
| 1838 | n/a | # (Thanks to Geremy Condra.) |
|---|
| 1839 | n/a | data = [0.123456789012345]*10000 |
|---|
| 1840 | n/a | # All the items are identical, so variance should be exactly zero. |
|---|
| 1841 | n/a | # We allow some small round-off error, but not much. |
|---|
| 1842 | n/a | result = self.func(data) |
|---|
| 1843 | n/a | self.assertApproxEqual(result, 0.0, tol=5e-17) |
|---|
| 1844 | n/a | self.assertGreaterEqual(result, 0) # A negative result must fail. |
|---|
| 1845 | n/a | |
|---|
| 1846 | n/a | def test_shift_data(self): |
|---|
| 1847 | n/a | # Test that shifting the data by a constant amount does not affect |
|---|
| 1848 | n/a | # the variance or stdev. Or at least not much. |
|---|
| 1849 | n/a | |
|---|
| 1850 | n/a | # Due to rounding, this test should be considered an ideal. We allow |
|---|
| 1851 | n/a | # some tolerance away from "no change at all" by setting tol and/or rel |
|---|
| 1852 | n/a | # attributes. Subclasses may set tighter or looser error tolerances. |
|---|
| 1853 | n/a | raw = [1.03, 1.27, 1.94, 2.04, 2.58, 3.14, 4.75, 4.98, 5.42, 6.78] |
|---|
| 1854 | n/a | expected = self.func(raw) |
|---|
| 1855 | n/a | # Don't set shift too high, the bigger it is, the more rounding error. |
|---|
| 1856 | n/a | shift = 1e5 |
|---|
| 1857 | n/a | data = [x + shift for x in raw] |
|---|
| 1858 | n/a | self.assertApproxEqual(self.func(data), expected) |
|---|
| 1859 | n/a | |
|---|
| 1860 | n/a | def test_shift_data_exact(self): |
|---|
| 1861 | n/a | # Like test_shift_data, but result is always exact. |
|---|
| 1862 | n/a | raw = [1, 3, 3, 4, 5, 7, 9, 10, 11, 16] |
|---|
| 1863 | n/a | assert all(x==int(x) for x in raw) |
|---|
| 1864 | n/a | expected = self.func(raw) |
|---|
| 1865 | n/a | shift = 10**9 |
|---|
| 1866 | n/a | data = [x + shift for x in raw] |
|---|
| 1867 | n/a | self.assertEqual(self.func(data), expected) |
|---|
| 1868 | n/a | |
|---|
| 1869 | n/a | def test_iter_list_same(self): |
|---|
| 1870 | n/a | # Test that iter data and list data give the same result. |
|---|
| 1871 | n/a | |
|---|
| 1872 | n/a | # This is an explicit test that iterators and lists are treated the |
|---|
| 1873 | n/a | # same; justification for this test over and above the similar test |
|---|
| 1874 | n/a | # in UnivariateCommonMixin is that an earlier design had variance and |
|---|
| 1875 | n/a | # friends swap between one- and two-pass algorithms, which would |
|---|
| 1876 | n/a | # sometimes give different results. |
|---|
| 1877 | n/a | data = [random.uniform(-3, 8) for _ in range(1000)] |
|---|
| 1878 | n/a | expected = self.func(data) |
|---|
| 1879 | n/a | self.assertEqual(self.func(iter(data)), expected) |
|---|
| 1880 | n/a | |
|---|
| 1881 | n/a | |
|---|
| 1882 | n/a | class TestPVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin): |
|---|
| 1883 | n/a | # Tests for population variance. |
|---|
| 1884 | n/a | def setUp(self): |
|---|
| 1885 | n/a | self.func = statistics.pvariance |
|---|
| 1886 | n/a | |
|---|
| 1887 | n/a | def test_exact_uniform(self): |
|---|
| 1888 | n/a | # Test the variance against an exact result for uniform data. |
|---|
| 1889 | n/a | data = list(range(10000)) |
|---|
| 1890 | n/a | random.shuffle(data) |
|---|
| 1891 | n/a | expected = (10000**2 - 1)/12 # Exact value. |
|---|
| 1892 | n/a | self.assertEqual(self.func(data), expected) |
|---|
| 1893 | n/a | |
|---|
| 1894 | n/a | def test_ints(self): |
|---|
| 1895 | n/a | # Test population variance with int data. |
|---|
| 1896 | n/a | data = [4, 7, 13, 16] |
|---|
| 1897 | n/a | exact = 22.5 |
|---|
| 1898 | n/a | self.assertEqual(self.func(data), exact) |
|---|
| 1899 | n/a | |
|---|
| 1900 | n/a | def test_fractions(self): |
|---|
| 1901 | n/a | # Test population variance with Fraction data. |
|---|
| 1902 | n/a | F = Fraction |
|---|
| 1903 | n/a | data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)] |
|---|
| 1904 | n/a | exact = F(3, 8) |
|---|
| 1905 | n/a | result = self.func(data) |
|---|
| 1906 | n/a | self.assertEqual(result, exact) |
|---|
| 1907 | n/a | self.assertIsInstance(result, Fraction) |
|---|
| 1908 | n/a | |
|---|
| 1909 | n/a | def test_decimals(self): |
|---|
| 1910 | n/a | # Test population variance with Decimal data. |
|---|
| 1911 | n/a | D = Decimal |
|---|
| 1912 | n/a | data = [D("12.1"), D("12.2"), D("12.5"), D("12.9")] |
|---|
| 1913 | n/a | exact = D('0.096875') |
|---|
| 1914 | n/a | result = self.func(data) |
|---|
| 1915 | n/a | self.assertEqual(result, exact) |
|---|
| 1916 | n/a | self.assertIsInstance(result, Decimal) |
|---|
| 1917 | n/a | |
|---|
| 1918 | n/a | |
|---|
| 1919 | n/a | class TestVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin): |
|---|
| 1920 | n/a | # Tests for sample variance. |
|---|
| 1921 | n/a | def setUp(self): |
|---|
| 1922 | n/a | self.func = statistics.variance |
|---|
| 1923 | n/a | |
|---|
| 1924 | n/a | def test_single_value(self): |
|---|
| 1925 | n/a | # Override method from VarianceStdevMixin. |
|---|
| 1926 | n/a | for x in (35, 24.7, 8.2e15, Fraction(19, 30), Decimal('4.2084')): |
|---|
| 1927 | n/a | self.assertRaises(statistics.StatisticsError, self.func, [x]) |
|---|
| 1928 | n/a | |
|---|
| 1929 | n/a | def test_ints(self): |
|---|
| 1930 | n/a | # Test sample variance with int data. |
|---|
| 1931 | n/a | data = [4, 7, 13, 16] |
|---|
| 1932 | n/a | exact = 30 |
|---|
| 1933 | n/a | self.assertEqual(self.func(data), exact) |
|---|
| 1934 | n/a | |
|---|
| 1935 | n/a | def test_fractions(self): |
|---|
| 1936 | n/a | # Test sample variance with Fraction data. |
|---|
| 1937 | n/a | F = Fraction |
|---|
| 1938 | n/a | data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)] |
|---|
| 1939 | n/a | exact = F(1, 2) |
|---|
| 1940 | n/a | result = self.func(data) |
|---|
| 1941 | n/a | self.assertEqual(result, exact) |
|---|
| 1942 | n/a | self.assertIsInstance(result, Fraction) |
|---|
| 1943 | n/a | |
|---|
| 1944 | n/a | def test_decimals(self): |
|---|
| 1945 | n/a | # Test sample variance with Decimal data. |
|---|
| 1946 | n/a | D = Decimal |
|---|
| 1947 | n/a | data = [D(2), D(2), D(7), D(9)] |
|---|
| 1948 | n/a | exact = 4*D('9.5')/D(3) |
|---|
| 1949 | n/a | result = self.func(data) |
|---|
| 1950 | n/a | self.assertEqual(result, exact) |
|---|
| 1951 | n/a | self.assertIsInstance(result, Decimal) |
|---|
| 1952 | n/a | |
|---|
| 1953 | n/a | |
|---|
| 1954 | n/a | class TestPStdev(VarianceStdevMixin, NumericTestCase): |
|---|
| 1955 | n/a | # Tests for population standard deviation. |
|---|
| 1956 | n/a | def setUp(self): |
|---|
| 1957 | n/a | self.func = statistics.pstdev |
|---|
| 1958 | n/a | |
|---|
| 1959 | n/a | def test_compare_to_variance(self): |
|---|
| 1960 | n/a | # Test that stdev is, in fact, the square root of variance. |
|---|
| 1961 | n/a | data = [random.uniform(-17, 24) for _ in range(1000)] |
|---|
| 1962 | n/a | expected = math.sqrt(statistics.pvariance(data)) |
|---|
| 1963 | n/a | self.assertEqual(self.func(data), expected) |
|---|
| 1964 | n/a | |
|---|
| 1965 | n/a | |
|---|
| 1966 | n/a | class TestStdev(VarianceStdevMixin, NumericTestCase): |
|---|
| 1967 | n/a | # Tests for sample standard deviation. |
|---|
| 1968 | n/a | def setUp(self): |
|---|
| 1969 | n/a | self.func = statistics.stdev |
|---|
| 1970 | n/a | |
|---|
| 1971 | n/a | def test_single_value(self): |
|---|
| 1972 | n/a | # Override method from VarianceStdevMixin. |
|---|
| 1973 | n/a | for x in (81, 203.74, 3.9e14, Fraction(5, 21), Decimal('35.719')): |
|---|
| 1974 | n/a | self.assertRaises(statistics.StatisticsError, self.func, [x]) |
|---|
| 1975 | n/a | |
|---|
| 1976 | n/a | def test_compare_to_variance(self): |
|---|
| 1977 | n/a | # Test that stdev is, in fact, the square root of variance. |
|---|
| 1978 | n/a | data = [random.uniform(-2, 9) for _ in range(1000)] |
|---|
| 1979 | n/a | expected = math.sqrt(statistics.variance(data)) |
|---|
| 1980 | n/a | self.assertEqual(self.func(data), expected) |
|---|
| 1981 | n/a | |
|---|
| 1982 | n/a | |
|---|
| 1983 | n/a | # === Run tests === |
|---|
| 1984 | n/a | |
|---|
| 1985 | n/a | def load_tests(loader, tests, ignore): |
|---|
| 1986 | n/a | """Used for doctest/unittest integration.""" |
|---|
| 1987 | n/a | tests.addTests(doctest.DocTestSuite()) |
|---|
| 1988 | n/a | return tests |
|---|
| 1989 | n/a | |
|---|
| 1990 | n/a | |
|---|
| 1991 | n/a | if __name__ == "__main__": |
|---|
| 1992 | n/a | unittest.main() |
|---|