| 1 | n/a | import unittest |
|---|
| 2 | n/a | import unittest.mock |
|---|
| 3 | n/a | import random |
|---|
| 4 | n/a | import time |
|---|
| 5 | n/a | import pickle |
|---|
| 6 | n/a | import warnings |
|---|
| 7 | n/a | from functools import partial |
|---|
| 8 | n/a | from math import log, exp, pi, fsum, sin, factorial |
|---|
| 9 | n/a | from test import support |
|---|
| 10 | n/a | from fractions import Fraction |
|---|
| 11 | n/a | |
|---|
| 12 | n/a | class TestBasicOps: |
|---|
| 13 | n/a | # Superclass with tests common to all generators. |
|---|
| 14 | n/a | # Subclasses must arrange for self.gen to retrieve the Random instance |
|---|
| 15 | n/a | # to be tested. |
|---|
| 16 | n/a | |
|---|
| 17 | n/a | def randomlist(self, n): |
|---|
| 18 | n/a | """Helper function to make a list of random numbers""" |
|---|
| 19 | n/a | return [self.gen.random() for i in range(n)] |
|---|
| 20 | n/a | |
|---|
| 21 | n/a | def test_autoseed(self): |
|---|
| 22 | n/a | self.gen.seed() |
|---|
| 23 | n/a | state1 = self.gen.getstate() |
|---|
| 24 | n/a | time.sleep(0.1) |
|---|
| 25 | n/a | self.gen.seed() # diffent seeds at different times |
|---|
| 26 | n/a | state2 = self.gen.getstate() |
|---|
| 27 | n/a | self.assertNotEqual(state1, state2) |
|---|
| 28 | n/a | |
|---|
| 29 | n/a | def test_saverestore(self): |
|---|
| 30 | n/a | N = 1000 |
|---|
| 31 | n/a | self.gen.seed() |
|---|
| 32 | n/a | state = self.gen.getstate() |
|---|
| 33 | n/a | randseq = self.randomlist(N) |
|---|
| 34 | n/a | self.gen.setstate(state) # should regenerate the same sequence |
|---|
| 35 | n/a | self.assertEqual(randseq, self.randomlist(N)) |
|---|
| 36 | n/a | |
|---|
| 37 | n/a | def test_seedargs(self): |
|---|
| 38 | n/a | # Seed value with a negative hash. |
|---|
| 39 | n/a | class MySeed(object): |
|---|
| 40 | n/a | def __hash__(self): |
|---|
| 41 | n/a | return -1729 |
|---|
| 42 | n/a | for arg in [None, 0, 0, 1, 1, -1, -1, 10**20, -(10**20), |
|---|
| 43 | n/a | 3.14, 1+2j, 'a', tuple('abc'), MySeed()]: |
|---|
| 44 | n/a | self.gen.seed(arg) |
|---|
| 45 | n/a | for arg in [list(range(3)), dict(one=1)]: |
|---|
| 46 | n/a | self.assertRaises(TypeError, self.gen.seed, arg) |
|---|
| 47 | n/a | self.assertRaises(TypeError, self.gen.seed, 1, 2, 3, 4) |
|---|
| 48 | n/a | self.assertRaises(TypeError, type(self.gen), []) |
|---|
| 49 | n/a | |
|---|
| 50 | n/a | @unittest.mock.patch('random._urandom') # os.urandom |
|---|
| 51 | n/a | def test_seed_when_randomness_source_not_found(self, urandom_mock): |
|---|
| 52 | n/a | # Random.seed() uses time.time() when an operating system specific |
|---|
| 53 | n/a | # randomness source is not found. To test this on machines were it |
|---|
| 54 | n/a | # exists, run the above test, test_seedargs(), again after mocking |
|---|
| 55 | n/a | # os.urandom() so that it raises the exception expected when the |
|---|
| 56 | n/a | # randomness source is not available. |
|---|
| 57 | n/a | urandom_mock.side_effect = NotImplementedError |
|---|
| 58 | n/a | self.test_seedargs() |
|---|
| 59 | n/a | |
|---|
| 60 | n/a | def test_shuffle(self): |
|---|
| 61 | n/a | shuffle = self.gen.shuffle |
|---|
| 62 | n/a | lst = [] |
|---|
| 63 | n/a | shuffle(lst) |
|---|
| 64 | n/a | self.assertEqual(lst, []) |
|---|
| 65 | n/a | lst = [37] |
|---|
| 66 | n/a | shuffle(lst) |
|---|
| 67 | n/a | self.assertEqual(lst, [37]) |
|---|
| 68 | n/a | seqs = [list(range(n)) for n in range(10)] |
|---|
| 69 | n/a | shuffled_seqs = [list(range(n)) for n in range(10)] |
|---|
| 70 | n/a | for shuffled_seq in shuffled_seqs: |
|---|
| 71 | n/a | shuffle(shuffled_seq) |
|---|
| 72 | n/a | for (seq, shuffled_seq) in zip(seqs, shuffled_seqs): |
|---|
| 73 | n/a | self.assertEqual(len(seq), len(shuffled_seq)) |
|---|
| 74 | n/a | self.assertEqual(set(seq), set(shuffled_seq)) |
|---|
| 75 | n/a | # The above tests all would pass if the shuffle was a |
|---|
| 76 | n/a | # no-op. The following non-deterministic test covers that. It |
|---|
| 77 | n/a | # asserts that the shuffled sequence of 1000 distinct elements |
|---|
| 78 | n/a | # must be different from the original one. Although there is |
|---|
| 79 | n/a | # mathematically a non-zero probability that this could |
|---|
| 80 | n/a | # actually happen in a genuinely random shuffle, it is |
|---|
| 81 | n/a | # completely negligible, given that the number of possible |
|---|
| 82 | n/a | # permutations of 1000 objects is 1000! (factorial of 1000), |
|---|
| 83 | n/a | # which is considerably larger than the number of atoms in the |
|---|
| 84 | n/a | # universe... |
|---|
| 85 | n/a | lst = list(range(1000)) |
|---|
| 86 | n/a | shuffled_lst = list(range(1000)) |
|---|
| 87 | n/a | shuffle(shuffled_lst) |
|---|
| 88 | n/a | self.assertTrue(lst != shuffled_lst) |
|---|
| 89 | n/a | shuffle(lst) |
|---|
| 90 | n/a | self.assertTrue(lst != shuffled_lst) |
|---|
| 91 | n/a | |
|---|
| 92 | n/a | def test_choice(self): |
|---|
| 93 | n/a | choice = self.gen.choice |
|---|
| 94 | n/a | with self.assertRaises(IndexError): |
|---|
| 95 | n/a | choice([]) |
|---|
| 96 | n/a | self.assertEqual(choice([50]), 50) |
|---|
| 97 | n/a | self.assertIn(choice([25, 75]), [25, 75]) |
|---|
| 98 | n/a | |
|---|
| 99 | n/a | def test_sample(self): |
|---|
| 100 | n/a | # For the entire allowable range of 0 <= k <= N, validate that |
|---|
| 101 | n/a | # the sample is of the correct length and contains only unique items |
|---|
| 102 | n/a | N = 100 |
|---|
| 103 | n/a | population = range(N) |
|---|
| 104 | n/a | for k in range(N+1): |
|---|
| 105 | n/a | s = self.gen.sample(population, k) |
|---|
| 106 | n/a | self.assertEqual(len(s), k) |
|---|
| 107 | n/a | uniq = set(s) |
|---|
| 108 | n/a | self.assertEqual(len(uniq), k) |
|---|
| 109 | n/a | self.assertTrue(uniq <= set(population)) |
|---|
| 110 | n/a | self.assertEqual(self.gen.sample([], 0), []) # test edge case N==k==0 |
|---|
| 111 | n/a | # Exception raised if size of sample exceeds that of population |
|---|
| 112 | n/a | self.assertRaises(ValueError, self.gen.sample, population, N+1) |
|---|
| 113 | n/a | self.assertRaises(ValueError, self.gen.sample, [], -1) |
|---|
| 114 | n/a | |
|---|
| 115 | n/a | def test_sample_distribution(self): |
|---|
| 116 | n/a | # For the entire allowable range of 0 <= k <= N, validate that |
|---|
| 117 | n/a | # sample generates all possible permutations |
|---|
| 118 | n/a | n = 5 |
|---|
| 119 | n/a | pop = range(n) |
|---|
| 120 | n/a | trials = 10000 # large num prevents false negatives without slowing normal case |
|---|
| 121 | n/a | for k in range(n): |
|---|
| 122 | n/a | expected = factorial(n) // factorial(n-k) |
|---|
| 123 | n/a | perms = {} |
|---|
| 124 | n/a | for i in range(trials): |
|---|
| 125 | n/a | perms[tuple(self.gen.sample(pop, k))] = None |
|---|
| 126 | n/a | if len(perms) == expected: |
|---|
| 127 | n/a | break |
|---|
| 128 | n/a | else: |
|---|
| 129 | n/a | self.fail() |
|---|
| 130 | n/a | |
|---|
| 131 | n/a | def test_sample_inputs(self): |
|---|
| 132 | n/a | # SF bug #801342 -- population can be any iterable defining __len__() |
|---|
| 133 | n/a | self.gen.sample(set(range(20)), 2) |
|---|
| 134 | n/a | self.gen.sample(range(20), 2) |
|---|
| 135 | n/a | self.gen.sample(range(20), 2) |
|---|
| 136 | n/a | self.gen.sample(str('abcdefghijklmnopqrst'), 2) |
|---|
| 137 | n/a | self.gen.sample(tuple('abcdefghijklmnopqrst'), 2) |
|---|
| 138 | n/a | |
|---|
| 139 | n/a | def test_sample_on_dicts(self): |
|---|
| 140 | n/a | self.assertRaises(TypeError, self.gen.sample, dict.fromkeys('abcdef'), 2) |
|---|
| 141 | n/a | |
|---|
| 142 | n/a | def test_choices(self): |
|---|
| 143 | n/a | choices = self.gen.choices |
|---|
| 144 | n/a | data = ['red', 'green', 'blue', 'yellow'] |
|---|
| 145 | n/a | str_data = 'abcd' |
|---|
| 146 | n/a | range_data = range(4) |
|---|
| 147 | n/a | set_data = set(range(4)) |
|---|
| 148 | n/a | |
|---|
| 149 | n/a | # basic functionality |
|---|
| 150 | n/a | for sample in [ |
|---|
| 151 | n/a | choices(data, k=5), |
|---|
| 152 | n/a | choices(data, range(4), k=5), |
|---|
| 153 | n/a | choices(k=5, population=data, weights=range(4)), |
|---|
| 154 | n/a | choices(k=5, population=data, cum_weights=range(4)), |
|---|
| 155 | n/a | ]: |
|---|
| 156 | n/a | self.assertEqual(len(sample), 5) |
|---|
| 157 | n/a | self.assertEqual(type(sample), list) |
|---|
| 158 | n/a | self.assertTrue(set(sample) <= set(data)) |
|---|
| 159 | n/a | |
|---|
| 160 | n/a | # test argument handling |
|---|
| 161 | n/a | with self.assertRaises(TypeError): # missing arguments |
|---|
| 162 | n/a | choices(2) |
|---|
| 163 | n/a | |
|---|
| 164 | n/a | self.assertEqual(choices(data, k=0), []) # k == 0 |
|---|
| 165 | n/a | self.assertEqual(choices(data, k=-1), []) # negative k behaves like ``[0] * -1`` |
|---|
| 166 | n/a | with self.assertRaises(TypeError): |
|---|
| 167 | n/a | choices(data, k=2.5) # k is a float |
|---|
| 168 | n/a | |
|---|
| 169 | n/a | self.assertTrue(set(choices(str_data, k=5)) <= set(str_data)) # population is a string sequence |
|---|
| 170 | n/a | self.assertTrue(set(choices(range_data, k=5)) <= set(range_data)) # population is a range |
|---|
| 171 | n/a | with self.assertRaises(TypeError): |
|---|
| 172 | n/a | choices(set_data, k=2) # population is not a sequence |
|---|
| 173 | n/a | |
|---|
| 174 | n/a | self.assertTrue(set(choices(data, None, k=5)) <= set(data)) # weights is None |
|---|
| 175 | n/a | self.assertTrue(set(choices(data, weights=None, k=5)) <= set(data)) |
|---|
| 176 | n/a | with self.assertRaises(ValueError): |
|---|
| 177 | n/a | choices(data, [1,2], k=5) # len(weights) != len(population) |
|---|
| 178 | n/a | with self.assertRaises(TypeError): |
|---|
| 179 | n/a | choices(data, 10, k=5) # non-iterable weights |
|---|
| 180 | n/a | with self.assertRaises(TypeError): |
|---|
| 181 | n/a | choices(data, [None]*4, k=5) # non-numeric weights |
|---|
| 182 | n/a | for weights in [ |
|---|
| 183 | n/a | [15, 10, 25, 30], # integer weights |
|---|
| 184 | n/a | [15.1, 10.2, 25.2, 30.3], # float weights |
|---|
| 185 | n/a | [Fraction(1, 3), Fraction(2, 6), Fraction(3, 6), Fraction(4, 6)], # fractional weights |
|---|
| 186 | n/a | [True, False, True, False] # booleans (include / exclude) |
|---|
| 187 | n/a | ]: |
|---|
| 188 | n/a | self.assertTrue(set(choices(data, weights, k=5)) <= set(data)) |
|---|
| 189 | n/a | |
|---|
| 190 | n/a | with self.assertRaises(ValueError): |
|---|
| 191 | n/a | choices(data, cum_weights=[1,2], k=5) # len(weights) != len(population) |
|---|
| 192 | n/a | with self.assertRaises(TypeError): |
|---|
| 193 | n/a | choices(data, cum_weights=10, k=5) # non-iterable cum_weights |
|---|
| 194 | n/a | with self.assertRaises(TypeError): |
|---|
| 195 | n/a | choices(data, cum_weights=[None]*4, k=5) # non-numeric cum_weights |
|---|
| 196 | n/a | with self.assertRaises(TypeError): |
|---|
| 197 | n/a | choices(data, range(4), cum_weights=range(4), k=5) # both weights and cum_weights |
|---|
| 198 | n/a | for weights in [ |
|---|
| 199 | n/a | [15, 10, 25, 30], # integer cum_weights |
|---|
| 200 | n/a | [15.1, 10.2, 25.2, 30.3], # float cum_weights |
|---|
| 201 | n/a | [Fraction(1, 3), Fraction(2, 6), Fraction(3, 6), Fraction(4, 6)], # fractional cum_weights |
|---|
| 202 | n/a | ]: |
|---|
| 203 | n/a | self.assertTrue(set(choices(data, cum_weights=weights, k=5)) <= set(data)) |
|---|
| 204 | n/a | |
|---|
| 205 | n/a | # Test weight focused on a single element of the population |
|---|
| 206 | n/a | self.assertEqual(choices('abcd', [1, 0, 0, 0]), ['a']) |
|---|
| 207 | n/a | self.assertEqual(choices('abcd', [0, 1, 0, 0]), ['b']) |
|---|
| 208 | n/a | self.assertEqual(choices('abcd', [0, 0, 1, 0]), ['c']) |
|---|
| 209 | n/a | self.assertEqual(choices('abcd', [0, 0, 0, 1]), ['d']) |
|---|
| 210 | n/a | |
|---|
| 211 | n/a | # Test consistency with random.choice() for empty population |
|---|
| 212 | n/a | with self.assertRaises(IndexError): |
|---|
| 213 | n/a | choices([], k=1) |
|---|
| 214 | n/a | with self.assertRaises(IndexError): |
|---|
| 215 | n/a | choices([], weights=[], k=1) |
|---|
| 216 | n/a | with self.assertRaises(IndexError): |
|---|
| 217 | n/a | choices([], cum_weights=[], k=5) |
|---|
| 218 | n/a | |
|---|
| 219 | n/a | def test_gauss(self): |
|---|
| 220 | n/a | # Ensure that the seed() method initializes all the hidden state. In |
|---|
| 221 | n/a | # particular, through 2.2.1 it failed to reset a piece of state used |
|---|
| 222 | n/a | # by (and only by) the .gauss() method. |
|---|
| 223 | n/a | |
|---|
| 224 | n/a | for seed in 1, 12, 123, 1234, 12345, 123456, 654321: |
|---|
| 225 | n/a | self.gen.seed(seed) |
|---|
| 226 | n/a | x1 = self.gen.random() |
|---|
| 227 | n/a | y1 = self.gen.gauss(0, 1) |
|---|
| 228 | n/a | |
|---|
| 229 | n/a | self.gen.seed(seed) |
|---|
| 230 | n/a | x2 = self.gen.random() |
|---|
| 231 | n/a | y2 = self.gen.gauss(0, 1) |
|---|
| 232 | n/a | |
|---|
| 233 | n/a | self.assertEqual(x1, x2) |
|---|
| 234 | n/a | self.assertEqual(y1, y2) |
|---|
| 235 | n/a | |
|---|
| 236 | n/a | def test_pickling(self): |
|---|
| 237 | n/a | for proto in range(pickle.HIGHEST_PROTOCOL + 1): |
|---|
| 238 | n/a | state = pickle.dumps(self.gen, proto) |
|---|
| 239 | n/a | origseq = [self.gen.random() for i in range(10)] |
|---|
| 240 | n/a | newgen = pickle.loads(state) |
|---|
| 241 | n/a | restoredseq = [newgen.random() for i in range(10)] |
|---|
| 242 | n/a | self.assertEqual(origseq, restoredseq) |
|---|
| 243 | n/a | |
|---|
| 244 | n/a | def test_bug_1727780(self): |
|---|
| 245 | n/a | # verify that version-2-pickles can be loaded |
|---|
| 246 | n/a | # fine, whether they are created on 32-bit or 64-bit |
|---|
| 247 | n/a | # platforms, and that version-3-pickles load fine. |
|---|
| 248 | n/a | files = [("randv2_32.pck", 780), |
|---|
| 249 | n/a | ("randv2_64.pck", 866), |
|---|
| 250 | n/a | ("randv3.pck", 343)] |
|---|
| 251 | n/a | for file, value in files: |
|---|
| 252 | n/a | f = open(support.findfile(file),"rb") |
|---|
| 253 | n/a | r = pickle.load(f) |
|---|
| 254 | n/a | f.close() |
|---|
| 255 | n/a | self.assertEqual(int(r.random()*1000), value) |
|---|
| 256 | n/a | |
|---|
| 257 | n/a | def test_bug_9025(self): |
|---|
| 258 | n/a | # Had problem with an uneven distribution in int(n*random()) |
|---|
| 259 | n/a | # Verify the fix by checking that distributions fall within expectations. |
|---|
| 260 | n/a | n = 100000 |
|---|
| 261 | n/a | randrange = self.gen.randrange |
|---|
| 262 | n/a | k = sum(randrange(6755399441055744) % 3 == 2 for i in range(n)) |
|---|
| 263 | n/a | self.assertTrue(0.30 < k/n < .37, (k/n)) |
|---|
| 264 | n/a | |
|---|
| 265 | n/a | try: |
|---|
| 266 | n/a | random.SystemRandom().random() |
|---|
| 267 | n/a | except NotImplementedError: |
|---|
| 268 | n/a | SystemRandom_available = False |
|---|
| 269 | n/a | else: |
|---|
| 270 | n/a | SystemRandom_available = True |
|---|
| 271 | n/a | |
|---|
| 272 | n/a | @unittest.skipUnless(SystemRandom_available, "random.SystemRandom not available") |
|---|
| 273 | n/a | class SystemRandom_TestBasicOps(TestBasicOps, unittest.TestCase): |
|---|
| 274 | n/a | gen = random.SystemRandom() |
|---|
| 275 | n/a | |
|---|
| 276 | n/a | def test_autoseed(self): |
|---|
| 277 | n/a | # Doesn't need to do anything except not fail |
|---|
| 278 | n/a | self.gen.seed() |
|---|
| 279 | n/a | |
|---|
| 280 | n/a | def test_saverestore(self): |
|---|
| 281 | n/a | self.assertRaises(NotImplementedError, self.gen.getstate) |
|---|
| 282 | n/a | self.assertRaises(NotImplementedError, self.gen.setstate, None) |
|---|
| 283 | n/a | |
|---|
| 284 | n/a | def test_seedargs(self): |
|---|
| 285 | n/a | # Doesn't need to do anything except not fail |
|---|
| 286 | n/a | self.gen.seed(100) |
|---|
| 287 | n/a | |
|---|
| 288 | n/a | def test_gauss(self): |
|---|
| 289 | n/a | self.gen.gauss_next = None |
|---|
| 290 | n/a | self.gen.seed(100) |
|---|
| 291 | n/a | self.assertEqual(self.gen.gauss_next, None) |
|---|
| 292 | n/a | |
|---|
| 293 | n/a | def test_pickling(self): |
|---|
| 294 | n/a | for proto in range(pickle.HIGHEST_PROTOCOL + 1): |
|---|
| 295 | n/a | self.assertRaises(NotImplementedError, pickle.dumps, self.gen, proto) |
|---|
| 296 | n/a | |
|---|
| 297 | n/a | def test_53_bits_per_float(self): |
|---|
| 298 | n/a | # This should pass whenever a C double has 53 bit precision. |
|---|
| 299 | n/a | span = 2 ** 53 |
|---|
| 300 | n/a | cum = 0 |
|---|
| 301 | n/a | for i in range(100): |
|---|
| 302 | n/a | cum |= int(self.gen.random() * span) |
|---|
| 303 | n/a | self.assertEqual(cum, span-1) |
|---|
| 304 | n/a | |
|---|
| 305 | n/a | def test_bigrand(self): |
|---|
| 306 | n/a | # The randrange routine should build-up the required number of bits |
|---|
| 307 | n/a | # in stages so that all bit positions are active. |
|---|
| 308 | n/a | span = 2 ** 500 |
|---|
| 309 | n/a | cum = 0 |
|---|
| 310 | n/a | for i in range(100): |
|---|
| 311 | n/a | r = self.gen.randrange(span) |
|---|
| 312 | n/a | self.assertTrue(0 <= r < span) |
|---|
| 313 | n/a | cum |= r |
|---|
| 314 | n/a | self.assertEqual(cum, span-1) |
|---|
| 315 | n/a | |
|---|
| 316 | n/a | def test_bigrand_ranges(self): |
|---|
| 317 | n/a | for i in [40,80, 160, 200, 211, 250, 375, 512, 550]: |
|---|
| 318 | n/a | start = self.gen.randrange(2 ** (i-2)) |
|---|
| 319 | n/a | stop = self.gen.randrange(2 ** i) |
|---|
| 320 | n/a | if stop <= start: |
|---|
| 321 | n/a | continue |
|---|
| 322 | n/a | self.assertTrue(start <= self.gen.randrange(start, stop) < stop) |
|---|
| 323 | n/a | |
|---|
| 324 | n/a | def test_rangelimits(self): |
|---|
| 325 | n/a | for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]: |
|---|
| 326 | n/a | self.assertEqual(set(range(start,stop)), |
|---|
| 327 | n/a | set([self.gen.randrange(start,stop) for i in range(100)])) |
|---|
| 328 | n/a | |
|---|
| 329 | n/a | def test_randrange_nonunit_step(self): |
|---|
| 330 | n/a | rint = self.gen.randrange(0, 10, 2) |
|---|
| 331 | n/a | self.assertIn(rint, (0, 2, 4, 6, 8)) |
|---|
| 332 | n/a | rint = self.gen.randrange(0, 2, 2) |
|---|
| 333 | n/a | self.assertEqual(rint, 0) |
|---|
| 334 | n/a | |
|---|
| 335 | n/a | def test_randrange_errors(self): |
|---|
| 336 | n/a | raises = partial(self.assertRaises, ValueError, self.gen.randrange) |
|---|
| 337 | n/a | # Empty range |
|---|
| 338 | n/a | raises(3, 3) |
|---|
| 339 | n/a | raises(-721) |
|---|
| 340 | n/a | raises(0, 100, -12) |
|---|
| 341 | n/a | # Non-integer start/stop |
|---|
| 342 | n/a | raises(3.14159) |
|---|
| 343 | n/a | raises(0, 2.71828) |
|---|
| 344 | n/a | # Zero and non-integer step |
|---|
| 345 | n/a | raises(0, 42, 0) |
|---|
| 346 | n/a | raises(0, 42, 3.14159) |
|---|
| 347 | n/a | |
|---|
| 348 | n/a | def test_genrandbits(self): |
|---|
| 349 | n/a | # Verify ranges |
|---|
| 350 | n/a | for k in range(1, 1000): |
|---|
| 351 | n/a | self.assertTrue(0 <= self.gen.getrandbits(k) < 2**k) |
|---|
| 352 | n/a | |
|---|
| 353 | n/a | # Verify all bits active |
|---|
| 354 | n/a | getbits = self.gen.getrandbits |
|---|
| 355 | n/a | for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]: |
|---|
| 356 | n/a | cum = 0 |
|---|
| 357 | n/a | for i in range(100): |
|---|
| 358 | n/a | cum |= getbits(span) |
|---|
| 359 | n/a | self.assertEqual(cum, 2**span-1) |
|---|
| 360 | n/a | |
|---|
| 361 | n/a | # Verify argument checking |
|---|
| 362 | n/a | self.assertRaises(TypeError, self.gen.getrandbits) |
|---|
| 363 | n/a | self.assertRaises(TypeError, self.gen.getrandbits, 1, 2) |
|---|
| 364 | n/a | self.assertRaises(ValueError, self.gen.getrandbits, 0) |
|---|
| 365 | n/a | self.assertRaises(ValueError, self.gen.getrandbits, -1) |
|---|
| 366 | n/a | self.assertRaises(TypeError, self.gen.getrandbits, 10.1) |
|---|
| 367 | n/a | |
|---|
| 368 | n/a | def test_randbelow_logic(self, _log=log, int=int): |
|---|
| 369 | n/a | # check bitcount transition points: 2**i and 2**(i+1)-1 |
|---|
| 370 | n/a | # show that: k = int(1.001 + _log(n, 2)) |
|---|
| 371 | n/a | # is equal to or one greater than the number of bits in n |
|---|
| 372 | n/a | for i in range(1, 1000): |
|---|
| 373 | n/a | n = 1 << i # check an exact power of two |
|---|
| 374 | n/a | numbits = i+1 |
|---|
| 375 | n/a | k = int(1.00001 + _log(n, 2)) |
|---|
| 376 | n/a | self.assertEqual(k, numbits) |
|---|
| 377 | n/a | self.assertEqual(n, 2**(k-1)) |
|---|
| 378 | n/a | |
|---|
| 379 | n/a | n += n - 1 # check 1 below the next power of two |
|---|
| 380 | n/a | k = int(1.00001 + _log(n, 2)) |
|---|
| 381 | n/a | self.assertIn(k, [numbits, numbits+1]) |
|---|
| 382 | n/a | self.assertTrue(2**k > n > 2**(k-2)) |
|---|
| 383 | n/a | |
|---|
| 384 | n/a | n -= n >> 15 # check a little farther below the next power of two |
|---|
| 385 | n/a | k = int(1.00001 + _log(n, 2)) |
|---|
| 386 | n/a | self.assertEqual(k, numbits) # note the stronger assertion |
|---|
| 387 | n/a | self.assertTrue(2**k > n > 2**(k-1)) # note the stronger assertion |
|---|
| 388 | n/a | |
|---|
| 389 | n/a | |
|---|
| 390 | n/a | class MersenneTwister_TestBasicOps(TestBasicOps, unittest.TestCase): |
|---|
| 391 | n/a | gen = random.Random() |
|---|
| 392 | n/a | |
|---|
| 393 | n/a | def test_guaranteed_stable(self): |
|---|
| 394 | n/a | # These sequences are guaranteed to stay the same across versions of python |
|---|
| 395 | n/a | self.gen.seed(3456147, version=1) |
|---|
| 396 | n/a | self.assertEqual([self.gen.random().hex() for i in range(4)], |
|---|
| 397 | n/a | ['0x1.ac362300d90d2p-1', '0x1.9d16f74365005p-1', |
|---|
| 398 | n/a | '0x1.1ebb4352e4c4dp-1', '0x1.1a7422abf9c11p-1']) |
|---|
| 399 | n/a | self.gen.seed("the quick brown fox", version=2) |
|---|
| 400 | n/a | self.assertEqual([self.gen.random().hex() for i in range(4)], |
|---|
| 401 | n/a | ['0x1.1239ddfb11b7cp-3', '0x1.b3cbb5c51b120p-4', |
|---|
| 402 | n/a | '0x1.8c4f55116b60fp-1', '0x1.63eb525174a27p-1']) |
|---|
| 403 | n/a | |
|---|
| 404 | n/a | def test_bug_27706(self): |
|---|
| 405 | n/a | # Verify that version 1 seeds are unaffected by hash randomization |
|---|
| 406 | n/a | |
|---|
| 407 | n/a | self.gen.seed('nofar', version=1) # hash('nofar') == 5990528763808513177 |
|---|
| 408 | n/a | self.assertEqual([self.gen.random().hex() for i in range(4)], |
|---|
| 409 | n/a | ['0x1.8645314505ad7p-1', '0x1.afb1f82e40a40p-5', |
|---|
| 410 | n/a | '0x1.2a59d2285e971p-1', '0x1.56977142a7880p-6']) |
|---|
| 411 | n/a | |
|---|
| 412 | n/a | self.gen.seed('rachel', version=1) # hash('rachel') == -9091735575445484789 |
|---|
| 413 | n/a | self.assertEqual([self.gen.random().hex() for i in range(4)], |
|---|
| 414 | n/a | ['0x1.0b294cc856fcdp-1', '0x1.2ad22d79e77b8p-3', |
|---|
| 415 | n/a | '0x1.3052b9c072678p-2', '0x1.578f332106574p-3']) |
|---|
| 416 | n/a | |
|---|
| 417 | n/a | self.gen.seed('', version=1) # hash('') == 0 |
|---|
| 418 | n/a | self.assertEqual([self.gen.random().hex() for i in range(4)], |
|---|
| 419 | n/a | ['0x1.b0580f98a7dbep-1', '0x1.84129978f9c1ap-1', |
|---|
| 420 | n/a | '0x1.aeaa51052e978p-2', '0x1.092178fb945a6p-2']) |
|---|
| 421 | n/a | |
|---|
| 422 | n/a | def test_setstate_first_arg(self): |
|---|
| 423 | n/a | self.assertRaises(ValueError, self.gen.setstate, (1, None, None)) |
|---|
| 424 | n/a | |
|---|
| 425 | n/a | def test_setstate_middle_arg(self): |
|---|
| 426 | n/a | # Wrong type, s/b tuple |
|---|
| 427 | n/a | self.assertRaises(TypeError, self.gen.setstate, (2, None, None)) |
|---|
| 428 | n/a | # Wrong length, s/b 625 |
|---|
| 429 | n/a | self.assertRaises(ValueError, self.gen.setstate, (2, (1,2,3), None)) |
|---|
| 430 | n/a | # Wrong type, s/b tuple of 625 ints |
|---|
| 431 | n/a | self.assertRaises(TypeError, self.gen.setstate, (2, ('a',)*625, None)) |
|---|
| 432 | n/a | # Last element s/b an int also |
|---|
| 433 | n/a | self.assertRaises(TypeError, self.gen.setstate, (2, (0,)*624+('a',), None)) |
|---|
| 434 | n/a | # Last element s/b between 0 and 624 |
|---|
| 435 | n/a | with self.assertRaises((ValueError, OverflowError)): |
|---|
| 436 | n/a | self.gen.setstate((2, (1,)*624+(625,), None)) |
|---|
| 437 | n/a | with self.assertRaises((ValueError, OverflowError)): |
|---|
| 438 | n/a | self.gen.setstate((2, (1,)*624+(-1,), None)) |
|---|
| 439 | n/a | |
|---|
| 440 | n/a | # Little trick to make "tuple(x % (2**32) for x in internalstate)" |
|---|
| 441 | n/a | # raise ValueError. I cannot think of a simple way to achieve this, so |
|---|
| 442 | n/a | # I am opting for using a generator as the middle argument of setstate |
|---|
| 443 | n/a | # which attempts to cast a NaN to integer. |
|---|
| 444 | n/a | state_values = self.gen.getstate()[1] |
|---|
| 445 | n/a | state_values = list(state_values) |
|---|
| 446 | n/a | state_values[-1] = float('nan') |
|---|
| 447 | n/a | state = (int(x) for x in state_values) |
|---|
| 448 | n/a | self.assertRaises(TypeError, self.gen.setstate, (2, state, None)) |
|---|
| 449 | n/a | |
|---|
| 450 | n/a | def test_referenceImplementation(self): |
|---|
| 451 | n/a | # Compare the python implementation with results from the original |
|---|
| 452 | n/a | # code. Create 2000 53-bit precision random floats. Compare only |
|---|
| 453 | n/a | # the last ten entries to show that the independent implementations |
|---|
| 454 | n/a | # are tracking. Here is the main() function needed to create the |
|---|
| 455 | n/a | # list of expected random numbers: |
|---|
| 456 | n/a | # void main(void){ |
|---|
| 457 | n/a | # int i; |
|---|
| 458 | n/a | # unsigned long init[4]={61731, 24903, 614, 42143}, length=4; |
|---|
| 459 | n/a | # init_by_array(init, length); |
|---|
| 460 | n/a | # for (i=0; i<2000; i++) { |
|---|
| 461 | n/a | # printf("%.15f ", genrand_res53()); |
|---|
| 462 | n/a | # if (i%5==4) printf("\n"); |
|---|
| 463 | n/a | # } |
|---|
| 464 | n/a | # } |
|---|
| 465 | n/a | expected = [0.45839803073713259, |
|---|
| 466 | n/a | 0.86057815201978782, |
|---|
| 467 | n/a | 0.92848331726782152, |
|---|
| 468 | n/a | 0.35932681119782461, |
|---|
| 469 | n/a | 0.081823493762449573, |
|---|
| 470 | n/a | 0.14332226470169329, |
|---|
| 471 | n/a | 0.084297823823520024, |
|---|
| 472 | n/a | 0.53814864671831453, |
|---|
| 473 | n/a | 0.089215024911993401, |
|---|
| 474 | n/a | 0.78486196105372907] |
|---|
| 475 | n/a | |
|---|
| 476 | n/a | self.gen.seed(61731 + (24903<<32) + (614<<64) + (42143<<96)) |
|---|
| 477 | n/a | actual = self.randomlist(2000)[-10:] |
|---|
| 478 | n/a | for a, e in zip(actual, expected): |
|---|
| 479 | n/a | self.assertAlmostEqual(a,e,places=14) |
|---|
| 480 | n/a | |
|---|
| 481 | n/a | def test_strong_reference_implementation(self): |
|---|
| 482 | n/a | # Like test_referenceImplementation, but checks for exact bit-level |
|---|
| 483 | n/a | # equality. This should pass on any box where C double contains |
|---|
| 484 | n/a | # at least 53 bits of precision (the underlying algorithm suffers |
|---|
| 485 | n/a | # no rounding errors -- all results are exact). |
|---|
| 486 | n/a | from math import ldexp |
|---|
| 487 | n/a | |
|---|
| 488 | n/a | expected = [0x0eab3258d2231f, |
|---|
| 489 | n/a | 0x1b89db315277a5, |
|---|
| 490 | n/a | 0x1db622a5518016, |
|---|
| 491 | n/a | 0x0b7f9af0d575bf, |
|---|
| 492 | n/a | 0x029e4c4db82240, |
|---|
| 493 | n/a | 0x04961892f5d673, |
|---|
| 494 | n/a | 0x02b291598e4589, |
|---|
| 495 | n/a | 0x11388382c15694, |
|---|
| 496 | n/a | 0x02dad977c9e1fe, |
|---|
| 497 | n/a | 0x191d96d4d334c6] |
|---|
| 498 | n/a | self.gen.seed(61731 + (24903<<32) + (614<<64) + (42143<<96)) |
|---|
| 499 | n/a | actual = self.randomlist(2000)[-10:] |
|---|
| 500 | n/a | for a, e in zip(actual, expected): |
|---|
| 501 | n/a | self.assertEqual(int(ldexp(a, 53)), e) |
|---|
| 502 | n/a | |
|---|
| 503 | n/a | def test_long_seed(self): |
|---|
| 504 | n/a | # This is most interesting to run in debug mode, just to make sure |
|---|
| 505 | n/a | # nothing blows up. Under the covers, a dynamically resized array |
|---|
| 506 | n/a | # is allocated, consuming space proportional to the number of bits |
|---|
| 507 | n/a | # in the seed. Unfortunately, that's a quadratic-time algorithm, |
|---|
| 508 | n/a | # so don't make this horribly big. |
|---|
| 509 | n/a | seed = (1 << (10000 * 8)) - 1 # about 10K bytes |
|---|
| 510 | n/a | self.gen.seed(seed) |
|---|
| 511 | n/a | |
|---|
| 512 | n/a | def test_53_bits_per_float(self): |
|---|
| 513 | n/a | # This should pass whenever a C double has 53 bit precision. |
|---|
| 514 | n/a | span = 2 ** 53 |
|---|
| 515 | n/a | cum = 0 |
|---|
| 516 | n/a | for i in range(100): |
|---|
| 517 | n/a | cum |= int(self.gen.random() * span) |
|---|
| 518 | n/a | self.assertEqual(cum, span-1) |
|---|
| 519 | n/a | |
|---|
| 520 | n/a | def test_bigrand(self): |
|---|
| 521 | n/a | # The randrange routine should build-up the required number of bits |
|---|
| 522 | n/a | # in stages so that all bit positions are active. |
|---|
| 523 | n/a | span = 2 ** 500 |
|---|
| 524 | n/a | cum = 0 |
|---|
| 525 | n/a | for i in range(100): |
|---|
| 526 | n/a | r = self.gen.randrange(span) |
|---|
| 527 | n/a | self.assertTrue(0 <= r < span) |
|---|
| 528 | n/a | cum |= r |
|---|
| 529 | n/a | self.assertEqual(cum, span-1) |
|---|
| 530 | n/a | |
|---|
| 531 | n/a | def test_bigrand_ranges(self): |
|---|
| 532 | n/a | for i in [40,80, 160, 200, 211, 250, 375, 512, 550]: |
|---|
| 533 | n/a | start = self.gen.randrange(2 ** (i-2)) |
|---|
| 534 | n/a | stop = self.gen.randrange(2 ** i) |
|---|
| 535 | n/a | if stop <= start: |
|---|
| 536 | n/a | continue |
|---|
| 537 | n/a | self.assertTrue(start <= self.gen.randrange(start, stop) < stop) |
|---|
| 538 | n/a | |
|---|
| 539 | n/a | def test_rangelimits(self): |
|---|
| 540 | n/a | for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]: |
|---|
| 541 | n/a | self.assertEqual(set(range(start,stop)), |
|---|
| 542 | n/a | set([self.gen.randrange(start,stop) for i in range(100)])) |
|---|
| 543 | n/a | |
|---|
| 544 | n/a | def test_genrandbits(self): |
|---|
| 545 | n/a | # Verify cross-platform repeatability |
|---|
| 546 | n/a | self.gen.seed(1234567) |
|---|
| 547 | n/a | self.assertEqual(self.gen.getrandbits(100), |
|---|
| 548 | n/a | 97904845777343510404718956115) |
|---|
| 549 | n/a | # Verify ranges |
|---|
| 550 | n/a | for k in range(1, 1000): |
|---|
| 551 | n/a | self.assertTrue(0 <= self.gen.getrandbits(k) < 2**k) |
|---|
| 552 | n/a | |
|---|
| 553 | n/a | # Verify all bits active |
|---|
| 554 | n/a | getbits = self.gen.getrandbits |
|---|
| 555 | n/a | for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]: |
|---|
| 556 | n/a | cum = 0 |
|---|
| 557 | n/a | for i in range(100): |
|---|
| 558 | n/a | cum |= getbits(span) |
|---|
| 559 | n/a | self.assertEqual(cum, 2**span-1) |
|---|
| 560 | n/a | |
|---|
| 561 | n/a | # Verify argument checking |
|---|
| 562 | n/a | self.assertRaises(TypeError, self.gen.getrandbits) |
|---|
| 563 | n/a | self.assertRaises(TypeError, self.gen.getrandbits, 'a') |
|---|
| 564 | n/a | self.assertRaises(TypeError, self.gen.getrandbits, 1, 2) |
|---|
| 565 | n/a | self.assertRaises(ValueError, self.gen.getrandbits, 0) |
|---|
| 566 | n/a | self.assertRaises(ValueError, self.gen.getrandbits, -1) |
|---|
| 567 | n/a | |
|---|
| 568 | n/a | def test_randbelow_logic(self, _log=log, int=int): |
|---|
| 569 | n/a | # check bitcount transition points: 2**i and 2**(i+1)-1 |
|---|
| 570 | n/a | # show that: k = int(1.001 + _log(n, 2)) |
|---|
| 571 | n/a | # is equal to or one greater than the number of bits in n |
|---|
| 572 | n/a | for i in range(1, 1000): |
|---|
| 573 | n/a | n = 1 << i # check an exact power of two |
|---|
| 574 | n/a | numbits = i+1 |
|---|
| 575 | n/a | k = int(1.00001 + _log(n, 2)) |
|---|
| 576 | n/a | self.assertEqual(k, numbits) |
|---|
| 577 | n/a | self.assertEqual(n, 2**(k-1)) |
|---|
| 578 | n/a | |
|---|
| 579 | n/a | n += n - 1 # check 1 below the next power of two |
|---|
| 580 | n/a | k = int(1.00001 + _log(n, 2)) |
|---|
| 581 | n/a | self.assertIn(k, [numbits, numbits+1]) |
|---|
| 582 | n/a | self.assertTrue(2**k > n > 2**(k-2)) |
|---|
| 583 | n/a | |
|---|
| 584 | n/a | n -= n >> 15 # check a little farther below the next power of two |
|---|
| 585 | n/a | k = int(1.00001 + _log(n, 2)) |
|---|
| 586 | n/a | self.assertEqual(k, numbits) # note the stronger assertion |
|---|
| 587 | n/a | self.assertTrue(2**k > n > 2**(k-1)) # note the stronger assertion |
|---|
| 588 | n/a | |
|---|
| 589 | n/a | @unittest.mock.patch('random.Random.random') |
|---|
| 590 | n/a | def test_randbelow_overridden_random(self, random_mock): |
|---|
| 591 | n/a | # Random._randbelow() can only use random() when the built-in one |
|---|
| 592 | n/a | # has been overridden but no new getrandbits() method was supplied. |
|---|
| 593 | n/a | random_mock.side_effect = random.SystemRandom().random |
|---|
| 594 | n/a | maxsize = 1<<random.BPF |
|---|
| 595 | n/a | with warnings.catch_warnings(): |
|---|
| 596 | n/a | warnings.simplefilter("ignore", UserWarning) |
|---|
| 597 | n/a | # Population range too large (n >= maxsize) |
|---|
| 598 | n/a | self.gen._randbelow(maxsize+1, maxsize = maxsize) |
|---|
| 599 | n/a | self.gen._randbelow(5640, maxsize = maxsize) |
|---|
| 600 | n/a | |
|---|
| 601 | n/a | # This might be going too far to test a single line, but because of our |
|---|
| 602 | n/a | # noble aim of achieving 100% test coverage we need to write a case in |
|---|
| 603 | n/a | # which the following line in Random._randbelow() gets executed: |
|---|
| 604 | n/a | # |
|---|
| 605 | n/a | # rem = maxsize % n |
|---|
| 606 | n/a | # limit = (maxsize - rem) / maxsize |
|---|
| 607 | n/a | # r = random() |
|---|
| 608 | n/a | # while r >= limit: |
|---|
| 609 | n/a | # r = random() # <== *This line* <==< |
|---|
| 610 | n/a | # |
|---|
| 611 | n/a | # Therefore, to guarantee that the while loop is executed at least |
|---|
| 612 | n/a | # once, we need to mock random() so that it returns a number greater |
|---|
| 613 | n/a | # than 'limit' the first time it gets called. |
|---|
| 614 | n/a | |
|---|
| 615 | n/a | n = 42 |
|---|
| 616 | n/a | epsilon = 0.01 |
|---|
| 617 | n/a | limit = (maxsize - (maxsize % n)) / maxsize |
|---|
| 618 | n/a | random_mock.side_effect = [limit + epsilon, limit - epsilon] |
|---|
| 619 | n/a | self.gen._randbelow(n, maxsize = maxsize) |
|---|
| 620 | n/a | |
|---|
| 621 | n/a | def test_randrange_bug_1590891(self): |
|---|
| 622 | n/a | start = 1000000000000 |
|---|
| 623 | n/a | stop = -100000000000000000000 |
|---|
| 624 | n/a | step = -200 |
|---|
| 625 | n/a | x = self.gen.randrange(start, stop, step) |
|---|
| 626 | n/a | self.assertTrue(stop < x <= start) |
|---|
| 627 | n/a | self.assertEqual((x+stop)%step, 0) |
|---|
| 628 | n/a | |
|---|
| 629 | n/a | def test_choices_algorithms(self): |
|---|
| 630 | n/a | # The various ways of specifying weights should produce the same results |
|---|
| 631 | n/a | choices = self.gen.choices |
|---|
| 632 | n/a | n = 104729 |
|---|
| 633 | n/a | |
|---|
| 634 | n/a | self.gen.seed(8675309) |
|---|
| 635 | n/a | a = self.gen.choices(range(n), k=10000) |
|---|
| 636 | n/a | |
|---|
| 637 | n/a | self.gen.seed(8675309) |
|---|
| 638 | n/a | b = self.gen.choices(range(n), [1]*n, k=10000) |
|---|
| 639 | n/a | self.assertEqual(a, b) |
|---|
| 640 | n/a | |
|---|
| 641 | n/a | self.gen.seed(8675309) |
|---|
| 642 | n/a | c = self.gen.choices(range(n), cum_weights=range(1, n+1), k=10000) |
|---|
| 643 | n/a | self.assertEqual(a, c) |
|---|
| 644 | n/a | |
|---|
| 645 | n/a | # Amerian Roulette |
|---|
| 646 | n/a | population = ['Red', 'Black', 'Green'] |
|---|
| 647 | n/a | weights = [18, 18, 2] |
|---|
| 648 | n/a | cum_weights = [18, 36, 38] |
|---|
| 649 | n/a | expanded_population = ['Red'] * 18 + ['Black'] * 18 + ['Green'] * 2 |
|---|
| 650 | n/a | |
|---|
| 651 | n/a | self.gen.seed(9035768) |
|---|
| 652 | n/a | a = self.gen.choices(expanded_population, k=10000) |
|---|
| 653 | n/a | |
|---|
| 654 | n/a | self.gen.seed(9035768) |
|---|
| 655 | n/a | b = self.gen.choices(population, weights, k=10000) |
|---|
| 656 | n/a | self.assertEqual(a, b) |
|---|
| 657 | n/a | |
|---|
| 658 | n/a | self.gen.seed(9035768) |
|---|
| 659 | n/a | c = self.gen.choices(population, cum_weights=cum_weights, k=10000) |
|---|
| 660 | n/a | self.assertEqual(a, c) |
|---|
| 661 | n/a | |
|---|
| 662 | n/a | def gamma(z, sqrt2pi=(2.0*pi)**0.5): |
|---|
| 663 | n/a | # Reflection to right half of complex plane |
|---|
| 664 | n/a | if z < 0.5: |
|---|
| 665 | n/a | return pi / sin(pi*z) / gamma(1.0-z) |
|---|
| 666 | n/a | # Lanczos approximation with g=7 |
|---|
| 667 | n/a | az = z + (7.0 - 0.5) |
|---|
| 668 | n/a | return az ** (z-0.5) / exp(az) * sqrt2pi * fsum([ |
|---|
| 669 | n/a | 0.9999999999995183, |
|---|
| 670 | n/a | 676.5203681218835 / z, |
|---|
| 671 | n/a | -1259.139216722289 / (z+1.0), |
|---|
| 672 | n/a | 771.3234287757674 / (z+2.0), |
|---|
| 673 | n/a | -176.6150291498386 / (z+3.0), |
|---|
| 674 | n/a | 12.50734324009056 / (z+4.0), |
|---|
| 675 | n/a | -0.1385710331296526 / (z+5.0), |
|---|
| 676 | n/a | 0.9934937113930748e-05 / (z+6.0), |
|---|
| 677 | n/a | 0.1659470187408462e-06 / (z+7.0), |
|---|
| 678 | n/a | ]) |
|---|
| 679 | n/a | |
|---|
| 680 | n/a | class TestDistributions(unittest.TestCase): |
|---|
| 681 | n/a | def test_zeroinputs(self): |
|---|
| 682 | n/a | # Verify that distributions can handle a series of zero inputs' |
|---|
| 683 | n/a | g = random.Random() |
|---|
| 684 | n/a | x = [g.random() for i in range(50)] + [0.0]*5 |
|---|
| 685 | n/a | g.random = x[:].pop; g.uniform(1,10) |
|---|
| 686 | n/a | g.random = x[:].pop; g.paretovariate(1.0) |
|---|
| 687 | n/a | g.random = x[:].pop; g.expovariate(1.0) |
|---|
| 688 | n/a | g.random = x[:].pop; g.weibullvariate(1.0, 1.0) |
|---|
| 689 | n/a | g.random = x[:].pop; g.vonmisesvariate(1.0, 1.0) |
|---|
| 690 | n/a | g.random = x[:].pop; g.normalvariate(0.0, 1.0) |
|---|
| 691 | n/a | g.random = x[:].pop; g.gauss(0.0, 1.0) |
|---|
| 692 | n/a | g.random = x[:].pop; g.lognormvariate(0.0, 1.0) |
|---|
| 693 | n/a | g.random = x[:].pop; g.vonmisesvariate(0.0, 1.0) |
|---|
| 694 | n/a | g.random = x[:].pop; g.gammavariate(0.01, 1.0) |
|---|
| 695 | n/a | g.random = x[:].pop; g.gammavariate(1.0, 1.0) |
|---|
| 696 | n/a | g.random = x[:].pop; g.gammavariate(200.0, 1.0) |
|---|
| 697 | n/a | g.random = x[:].pop; g.betavariate(3.0, 3.0) |
|---|
| 698 | n/a | g.random = x[:].pop; g.triangular(0.0, 1.0, 1.0/3.0) |
|---|
| 699 | n/a | |
|---|
| 700 | n/a | def test_avg_std(self): |
|---|
| 701 | n/a | # Use integration to test distribution average and standard deviation. |
|---|
| 702 | n/a | # Only works for distributions which do not consume variates in pairs |
|---|
| 703 | n/a | g = random.Random() |
|---|
| 704 | n/a | N = 5000 |
|---|
| 705 | n/a | x = [i/float(N) for i in range(1,N)] |
|---|
| 706 | n/a | for variate, args, mu, sigmasqrd in [ |
|---|
| 707 | n/a | (g.uniform, (1.0,10.0), (10.0+1.0)/2, (10.0-1.0)**2/12), |
|---|
| 708 | n/a | (g.triangular, (0.0, 1.0, 1.0/3.0), 4.0/9.0, 7.0/9.0/18.0), |
|---|
| 709 | n/a | (g.expovariate, (1.5,), 1/1.5, 1/1.5**2), |
|---|
| 710 | n/a | (g.vonmisesvariate, (1.23, 0), pi, pi**2/3), |
|---|
| 711 | n/a | (g.paretovariate, (5.0,), 5.0/(5.0-1), |
|---|
| 712 | n/a | 5.0/((5.0-1)**2*(5.0-2))), |
|---|
| 713 | n/a | (g.weibullvariate, (1.0, 3.0), gamma(1+1/3.0), |
|---|
| 714 | n/a | gamma(1+2/3.0)-gamma(1+1/3.0)**2) ]: |
|---|
| 715 | n/a | g.random = x[:].pop |
|---|
| 716 | n/a | y = [] |
|---|
| 717 | n/a | for i in range(len(x)): |
|---|
| 718 | n/a | try: |
|---|
| 719 | n/a | y.append(variate(*args)) |
|---|
| 720 | n/a | except IndexError: |
|---|
| 721 | n/a | pass |
|---|
| 722 | n/a | s1 = s2 = 0 |
|---|
| 723 | n/a | for e in y: |
|---|
| 724 | n/a | s1 += e |
|---|
| 725 | n/a | s2 += (e - mu) ** 2 |
|---|
| 726 | n/a | N = len(y) |
|---|
| 727 | n/a | self.assertAlmostEqual(s1/N, mu, places=2, |
|---|
| 728 | n/a | msg='%s%r' % (variate.__name__, args)) |
|---|
| 729 | n/a | self.assertAlmostEqual(s2/(N-1), sigmasqrd, places=2, |
|---|
| 730 | n/a | msg='%s%r' % (variate.__name__, args)) |
|---|
| 731 | n/a | |
|---|
| 732 | n/a | def test_constant(self): |
|---|
| 733 | n/a | g = random.Random() |
|---|
| 734 | n/a | N = 100 |
|---|
| 735 | n/a | for variate, args, expected in [ |
|---|
| 736 | n/a | (g.uniform, (10.0, 10.0), 10.0), |
|---|
| 737 | n/a | (g.triangular, (10.0, 10.0), 10.0), |
|---|
| 738 | n/a | (g.triangular, (10.0, 10.0, 10.0), 10.0), |
|---|
| 739 | n/a | (g.expovariate, (float('inf'),), 0.0), |
|---|
| 740 | n/a | (g.vonmisesvariate, (3.0, float('inf')), 3.0), |
|---|
| 741 | n/a | (g.gauss, (10.0, 0.0), 10.0), |
|---|
| 742 | n/a | (g.lognormvariate, (0.0, 0.0), 1.0), |
|---|
| 743 | n/a | (g.lognormvariate, (-float('inf'), 0.0), 0.0), |
|---|
| 744 | n/a | (g.normalvariate, (10.0, 0.0), 10.0), |
|---|
| 745 | n/a | (g.paretovariate, (float('inf'),), 1.0), |
|---|
| 746 | n/a | (g.weibullvariate, (10.0, float('inf')), 10.0), |
|---|
| 747 | n/a | (g.weibullvariate, (0.0, 10.0), 0.0), |
|---|
| 748 | n/a | ]: |
|---|
| 749 | n/a | for i in range(N): |
|---|
| 750 | n/a | self.assertEqual(variate(*args), expected) |
|---|
| 751 | n/a | |
|---|
| 752 | n/a | def test_von_mises_range(self): |
|---|
| 753 | n/a | # Issue 17149: von mises variates were not consistently in the |
|---|
| 754 | n/a | # range [0, 2*PI]. |
|---|
| 755 | n/a | g = random.Random() |
|---|
| 756 | n/a | N = 100 |
|---|
| 757 | n/a | for mu in 0.0, 0.1, 3.1, 6.2: |
|---|
| 758 | n/a | for kappa in 0.0, 2.3, 500.0: |
|---|
| 759 | n/a | for _ in range(N): |
|---|
| 760 | n/a | sample = g.vonmisesvariate(mu, kappa) |
|---|
| 761 | n/a | self.assertTrue( |
|---|
| 762 | n/a | 0 <= sample <= random.TWOPI, |
|---|
| 763 | n/a | msg=("vonmisesvariate({}, {}) produced a result {} out" |
|---|
| 764 | n/a | " of range [0, 2*pi]").format(mu, kappa, sample)) |
|---|
| 765 | n/a | |
|---|
| 766 | n/a | def test_von_mises_large_kappa(self): |
|---|
| 767 | n/a | # Issue #17141: vonmisesvariate() was hang for large kappas |
|---|
| 768 | n/a | random.vonmisesvariate(0, 1e15) |
|---|
| 769 | n/a | random.vonmisesvariate(0, 1e100) |
|---|
| 770 | n/a | |
|---|
| 771 | n/a | def test_gammavariate_errors(self): |
|---|
| 772 | n/a | # Both alpha and beta must be > 0.0 |
|---|
| 773 | n/a | self.assertRaises(ValueError, random.gammavariate, -1, 3) |
|---|
| 774 | n/a | self.assertRaises(ValueError, random.gammavariate, 0, 2) |
|---|
| 775 | n/a | self.assertRaises(ValueError, random.gammavariate, 2, 0) |
|---|
| 776 | n/a | self.assertRaises(ValueError, random.gammavariate, 1, -3) |
|---|
| 777 | n/a | |
|---|
| 778 | n/a | @unittest.mock.patch('random.Random.random') |
|---|
| 779 | n/a | def test_gammavariate_full_code_coverage(self, random_mock): |
|---|
| 780 | n/a | # There are three different possibilities in the current implementation |
|---|
| 781 | n/a | # of random.gammavariate(), depending on the value of 'alpha'. What we |
|---|
| 782 | n/a | # are going to do here is to fix the values returned by random() to |
|---|
| 783 | n/a | # generate test cases that provide 100% line coverage of the method. |
|---|
| 784 | n/a | |
|---|
| 785 | n/a | # #1: alpha > 1.0: we want the first random number to be outside the |
|---|
| 786 | n/a | # [1e-7, .9999999] range, so that the continue statement executes |
|---|
| 787 | n/a | # once. The values of u1 and u2 will be 0.5 and 0.3, respectively. |
|---|
| 788 | n/a | random_mock.side_effect = [1e-8, 0.5, 0.3] |
|---|
| 789 | n/a | returned_value = random.gammavariate(1.1, 2.3) |
|---|
| 790 | n/a | self.assertAlmostEqual(returned_value, 2.53) |
|---|
| 791 | n/a | |
|---|
| 792 | n/a | # #2: alpha == 1: first random number less than 1e-7 to that the body |
|---|
| 793 | n/a | # of the while loop executes once. Then random.random() returns 0.45, |
|---|
| 794 | n/a | # which causes while to stop looping and the algorithm to terminate. |
|---|
| 795 | n/a | random_mock.side_effect = [1e-8, 0.45] |
|---|
| 796 | n/a | returned_value = random.gammavariate(1.0, 3.14) |
|---|
| 797 | n/a | self.assertAlmostEqual(returned_value, 2.507314166123803) |
|---|
| 798 | n/a | |
|---|
| 799 | n/a | # #3: 0 < alpha < 1. This is the most complex region of code to cover, |
|---|
| 800 | n/a | # as there are multiple if-else statements. Let's take a look at the |
|---|
| 801 | n/a | # source code, and determine the values that we need accordingly: |
|---|
| 802 | n/a | # |
|---|
| 803 | n/a | # while 1: |
|---|
| 804 | n/a | # u = random() |
|---|
| 805 | n/a | # b = (_e + alpha)/_e |
|---|
| 806 | n/a | # p = b*u |
|---|
| 807 | n/a | # if p <= 1.0: # <=== (A) |
|---|
| 808 | n/a | # x = p ** (1.0/alpha) |
|---|
| 809 | n/a | # else: # <=== (B) |
|---|
| 810 | n/a | # x = -_log((b-p)/alpha) |
|---|
| 811 | n/a | # u1 = random() |
|---|
| 812 | n/a | # if p > 1.0: # <=== (C) |
|---|
| 813 | n/a | # if u1 <= x ** (alpha - 1.0): # <=== (D) |
|---|
| 814 | n/a | # break |
|---|
| 815 | n/a | # elif u1 <= _exp(-x): # <=== (E) |
|---|
| 816 | n/a | # break |
|---|
| 817 | n/a | # return x * beta |
|---|
| 818 | n/a | # |
|---|
| 819 | n/a | # First, we want (A) to be True. For that we need that: |
|---|
| 820 | n/a | # b*random() <= 1.0 |
|---|
| 821 | n/a | # r1 = random() <= 1.0 / b |
|---|
| 822 | n/a | # |
|---|
| 823 | n/a | # We now get to the second if-else branch, and here, since p <= 1.0, |
|---|
| 824 | n/a | # (C) is False and we take the elif branch, (E). For it to be True, |
|---|
| 825 | n/a | # so that the break is executed, we need that: |
|---|
| 826 | n/a | # r2 = random() <= _exp(-x) |
|---|
| 827 | n/a | # r2 <= _exp(-(p ** (1.0/alpha))) |
|---|
| 828 | n/a | # r2 <= _exp(-((b*r1) ** (1.0/alpha))) |
|---|
| 829 | n/a | |
|---|
| 830 | n/a | _e = random._e |
|---|
| 831 | n/a | _exp = random._exp |
|---|
| 832 | n/a | _log = random._log |
|---|
| 833 | n/a | alpha = 0.35 |
|---|
| 834 | n/a | beta = 1.45 |
|---|
| 835 | n/a | b = (_e + alpha)/_e |
|---|
| 836 | n/a | epsilon = 0.01 |
|---|
| 837 | n/a | |
|---|
| 838 | n/a | r1 = 0.8859296441566 # 1.0 / b |
|---|
| 839 | n/a | r2 = 0.3678794411714 # _exp(-((b*r1) ** (1.0/alpha))) |
|---|
| 840 | n/a | |
|---|
| 841 | n/a | # These four "random" values result in the following trace: |
|---|
| 842 | n/a | # (A) True, (E) False --> [next iteration of while] |
|---|
| 843 | n/a | # (A) True, (E) True --> [while loop breaks] |
|---|
| 844 | n/a | random_mock.side_effect = [r1, r2 + epsilon, r1, r2] |
|---|
| 845 | n/a | returned_value = random.gammavariate(alpha, beta) |
|---|
| 846 | n/a | self.assertAlmostEqual(returned_value, 1.4499999999997544) |
|---|
| 847 | n/a | |
|---|
| 848 | n/a | # Let's now make (A) be False. If this is the case, when we get to the |
|---|
| 849 | n/a | # second if-else 'p' is greater than 1, so (C) evaluates to True. We |
|---|
| 850 | n/a | # now encounter a second if statement, (D), which in order to execute |
|---|
| 851 | n/a | # must satisfy the following condition: |
|---|
| 852 | n/a | # r2 <= x ** (alpha - 1.0) |
|---|
| 853 | n/a | # r2 <= (-_log((b-p)/alpha)) ** (alpha - 1.0) |
|---|
| 854 | n/a | # r2 <= (-_log((b-(b*r1))/alpha)) ** (alpha - 1.0) |
|---|
| 855 | n/a | r1 = 0.8959296441566 # (1.0 / b) + epsilon -- so that (A) is False |
|---|
| 856 | n/a | r2 = 0.9445400408898141 |
|---|
| 857 | n/a | |
|---|
| 858 | n/a | # And these four values result in the following trace: |
|---|
| 859 | n/a | # (B) and (C) True, (D) False --> [next iteration of while] |
|---|
| 860 | n/a | # (B) and (C) True, (D) True [while loop breaks] |
|---|
| 861 | n/a | random_mock.side_effect = [r1, r2 + epsilon, r1, r2] |
|---|
| 862 | n/a | returned_value = random.gammavariate(alpha, beta) |
|---|
| 863 | n/a | self.assertAlmostEqual(returned_value, 1.5830349561760781) |
|---|
| 864 | n/a | |
|---|
| 865 | n/a | @unittest.mock.patch('random.Random.gammavariate') |
|---|
| 866 | n/a | def test_betavariate_return_zero(self, gammavariate_mock): |
|---|
| 867 | n/a | # betavariate() returns zero when the Gamma distribution |
|---|
| 868 | n/a | # that it uses internally returns this same value. |
|---|
| 869 | n/a | gammavariate_mock.return_value = 0.0 |
|---|
| 870 | n/a | self.assertEqual(0.0, random.betavariate(2.71828, 3.14159)) |
|---|
| 871 | n/a | |
|---|
| 872 | n/a | class TestModule(unittest.TestCase): |
|---|
| 873 | n/a | def testMagicConstants(self): |
|---|
| 874 | n/a | self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141) |
|---|
| 875 | n/a | self.assertAlmostEqual(random.TWOPI, 6.28318530718) |
|---|
| 876 | n/a | self.assertAlmostEqual(random.LOG4, 1.38629436111989) |
|---|
| 877 | n/a | self.assertAlmostEqual(random.SG_MAGICCONST, 2.50407739677627) |
|---|
| 878 | n/a | |
|---|
| 879 | n/a | def test__all__(self): |
|---|
| 880 | n/a | # tests validity but not completeness of the __all__ list |
|---|
| 881 | n/a | self.assertTrue(set(random.__all__) <= set(dir(random))) |
|---|
| 882 | n/a | |
|---|
| 883 | n/a | def test_random_subclass_with_kwargs(self): |
|---|
| 884 | n/a | # SF bug #1486663 -- this used to erroneously raise a TypeError |
|---|
| 885 | n/a | class Subclass(random.Random): |
|---|
| 886 | n/a | def __init__(self, newarg=None): |
|---|
| 887 | n/a | random.Random.__init__(self) |
|---|
| 888 | n/a | Subclass(newarg=1) |
|---|
| 889 | n/a | |
|---|
| 890 | n/a | |
|---|
| 891 | n/a | if __name__ == "__main__": |
|---|
| 892 | n/a | unittest.main() |
|---|