1 | n/a | # Originally contributed by Sjoerd Mullender. |
---|
2 | n/a | # Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>. |
---|
3 | n/a | |
---|
4 | n/a | """Fraction, infinite-precision, real numbers.""" |
---|
5 | n/a | |
---|
6 | n/a | from decimal import Decimal |
---|
7 | n/a | import math |
---|
8 | n/a | import numbers |
---|
9 | n/a | import operator |
---|
10 | n/a | import re |
---|
11 | n/a | import sys |
---|
12 | n/a | |
---|
13 | n/a | __all__ = ['Fraction', 'gcd'] |
---|
14 | n/a | |
---|
15 | n/a | |
---|
16 | n/a | |
---|
17 | n/a | def gcd(a, b): |
---|
18 | n/a | """Calculate the Greatest Common Divisor of a and b. |
---|
19 | n/a | |
---|
20 | n/a | Unless b==0, the result will have the same sign as b (so that when |
---|
21 | n/a | b is divided by it, the result comes out positive). |
---|
22 | n/a | """ |
---|
23 | n/a | import warnings |
---|
24 | n/a | warnings.warn('fractions.gcd() is deprecated. Use math.gcd() instead.', |
---|
25 | n/a | DeprecationWarning, 2) |
---|
26 | n/a | if type(a) is int is type(b): |
---|
27 | n/a | if (b or a) < 0: |
---|
28 | n/a | return -math.gcd(a, b) |
---|
29 | n/a | return math.gcd(a, b) |
---|
30 | n/a | return _gcd(a, b) |
---|
31 | n/a | |
---|
32 | n/a | def _gcd(a, b): |
---|
33 | n/a | # Supports non-integers for backward compatibility. |
---|
34 | n/a | while b: |
---|
35 | n/a | a, b = b, a%b |
---|
36 | n/a | return a |
---|
37 | n/a | |
---|
38 | n/a | # Constants related to the hash implementation; hash(x) is based |
---|
39 | n/a | # on the reduction of x modulo the prime _PyHASH_MODULUS. |
---|
40 | n/a | _PyHASH_MODULUS = sys.hash_info.modulus |
---|
41 | n/a | # Value to be used for rationals that reduce to infinity modulo |
---|
42 | n/a | # _PyHASH_MODULUS. |
---|
43 | n/a | _PyHASH_INF = sys.hash_info.inf |
---|
44 | n/a | |
---|
45 | n/a | _RATIONAL_FORMAT = re.compile(r""" |
---|
46 | n/a | \A\s* # optional whitespace at the start, then |
---|
47 | n/a | (?P<sign>[-+]?) # an optional sign, then |
---|
48 | n/a | (?=\d|\.\d) # lookahead for digit or .digit |
---|
49 | n/a | (?P<num>\d*) # numerator (possibly empty) |
---|
50 | n/a | (?: # followed by |
---|
51 | n/a | (?:/(?P<denom>\d+))? # an optional denominator |
---|
52 | n/a | | # or |
---|
53 | n/a | (?:\.(?P<decimal>\d*))? # an optional fractional part |
---|
54 | n/a | (?:E(?P<exp>[-+]?\d+))? # and optional exponent |
---|
55 | n/a | ) |
---|
56 | n/a | \s*\Z # and optional whitespace to finish |
---|
57 | n/a | """, re.VERBOSE | re.IGNORECASE) |
---|
58 | n/a | |
---|
59 | n/a | |
---|
60 | n/a | class Fraction(numbers.Rational): |
---|
61 | n/a | """This class implements rational numbers. |
---|
62 | n/a | |
---|
63 | n/a | In the two-argument form of the constructor, Fraction(8, 6) will |
---|
64 | n/a | produce a rational number equivalent to 4/3. Both arguments must |
---|
65 | n/a | be Rational. The numerator defaults to 0 and the denominator |
---|
66 | n/a | defaults to 1 so that Fraction(3) == 3 and Fraction() == 0. |
---|
67 | n/a | |
---|
68 | n/a | Fractions can also be constructed from: |
---|
69 | n/a | |
---|
70 | n/a | - numeric strings similar to those accepted by the |
---|
71 | n/a | float constructor (for example, '-2.3' or '1e10') |
---|
72 | n/a | |
---|
73 | n/a | - strings of the form '123/456' |
---|
74 | n/a | |
---|
75 | n/a | - float and Decimal instances |
---|
76 | n/a | |
---|
77 | n/a | - other Rational instances (including integers) |
---|
78 | n/a | |
---|
79 | n/a | """ |
---|
80 | n/a | |
---|
81 | n/a | __slots__ = ('_numerator', '_denominator') |
---|
82 | n/a | |
---|
83 | n/a | # We're immutable, so use __new__ not __init__ |
---|
84 | n/a | def __new__(cls, numerator=0, denominator=None, *, _normalize=True): |
---|
85 | n/a | """Constructs a Rational. |
---|
86 | n/a | |
---|
87 | n/a | Takes a string like '3/2' or '1.5', another Rational instance, a |
---|
88 | n/a | numerator/denominator pair, or a float. |
---|
89 | n/a | |
---|
90 | n/a | Examples |
---|
91 | n/a | -------- |
---|
92 | n/a | |
---|
93 | n/a | >>> Fraction(10, -8) |
---|
94 | n/a | Fraction(-5, 4) |
---|
95 | n/a | >>> Fraction(Fraction(1, 7), 5) |
---|
96 | n/a | Fraction(1, 35) |
---|
97 | n/a | >>> Fraction(Fraction(1, 7), Fraction(2, 3)) |
---|
98 | n/a | Fraction(3, 14) |
---|
99 | n/a | >>> Fraction('314') |
---|
100 | n/a | Fraction(314, 1) |
---|
101 | n/a | >>> Fraction('-35/4') |
---|
102 | n/a | Fraction(-35, 4) |
---|
103 | n/a | >>> Fraction('3.1415') # conversion from numeric string |
---|
104 | n/a | Fraction(6283, 2000) |
---|
105 | n/a | >>> Fraction('-47e-2') # string may include a decimal exponent |
---|
106 | n/a | Fraction(-47, 100) |
---|
107 | n/a | >>> Fraction(1.47) # direct construction from float (exact conversion) |
---|
108 | n/a | Fraction(6620291452234629, 4503599627370496) |
---|
109 | n/a | >>> Fraction(2.25) |
---|
110 | n/a | Fraction(9, 4) |
---|
111 | n/a | >>> Fraction(Decimal('1.47')) |
---|
112 | n/a | Fraction(147, 100) |
---|
113 | n/a | |
---|
114 | n/a | """ |
---|
115 | n/a | self = super(Fraction, cls).__new__(cls) |
---|
116 | n/a | |
---|
117 | n/a | if denominator is None: |
---|
118 | n/a | if type(numerator) is int: |
---|
119 | n/a | self._numerator = numerator |
---|
120 | n/a | self._denominator = 1 |
---|
121 | n/a | return self |
---|
122 | n/a | |
---|
123 | n/a | elif isinstance(numerator, numbers.Rational): |
---|
124 | n/a | self._numerator = numerator.numerator |
---|
125 | n/a | self._denominator = numerator.denominator |
---|
126 | n/a | return self |
---|
127 | n/a | |
---|
128 | n/a | elif isinstance(numerator, (float, Decimal)): |
---|
129 | n/a | # Exact conversion |
---|
130 | n/a | self._numerator, self._denominator = numerator.as_integer_ratio() |
---|
131 | n/a | return self |
---|
132 | n/a | |
---|
133 | n/a | elif isinstance(numerator, str): |
---|
134 | n/a | # Handle construction from strings. |
---|
135 | n/a | m = _RATIONAL_FORMAT.match(numerator) |
---|
136 | n/a | if m is None: |
---|
137 | n/a | raise ValueError('Invalid literal for Fraction: %r' % |
---|
138 | n/a | numerator) |
---|
139 | n/a | numerator = int(m.group('num') or '0') |
---|
140 | n/a | denom = m.group('denom') |
---|
141 | n/a | if denom: |
---|
142 | n/a | denominator = int(denom) |
---|
143 | n/a | else: |
---|
144 | n/a | denominator = 1 |
---|
145 | n/a | decimal = m.group('decimal') |
---|
146 | n/a | if decimal: |
---|
147 | n/a | scale = 10**len(decimal) |
---|
148 | n/a | numerator = numerator * scale + int(decimal) |
---|
149 | n/a | denominator *= scale |
---|
150 | n/a | exp = m.group('exp') |
---|
151 | n/a | if exp: |
---|
152 | n/a | exp = int(exp) |
---|
153 | n/a | if exp >= 0: |
---|
154 | n/a | numerator *= 10**exp |
---|
155 | n/a | else: |
---|
156 | n/a | denominator *= 10**-exp |
---|
157 | n/a | if m.group('sign') == '-': |
---|
158 | n/a | numerator = -numerator |
---|
159 | n/a | |
---|
160 | n/a | else: |
---|
161 | n/a | raise TypeError("argument should be a string " |
---|
162 | n/a | "or a Rational instance") |
---|
163 | n/a | |
---|
164 | n/a | elif type(numerator) is int is type(denominator): |
---|
165 | n/a | pass # *very* normal case |
---|
166 | n/a | |
---|
167 | n/a | elif (isinstance(numerator, numbers.Rational) and |
---|
168 | n/a | isinstance(denominator, numbers.Rational)): |
---|
169 | n/a | numerator, denominator = ( |
---|
170 | n/a | numerator.numerator * denominator.denominator, |
---|
171 | n/a | denominator.numerator * numerator.denominator |
---|
172 | n/a | ) |
---|
173 | n/a | else: |
---|
174 | n/a | raise TypeError("both arguments should be " |
---|
175 | n/a | "Rational instances") |
---|
176 | n/a | |
---|
177 | n/a | if denominator == 0: |
---|
178 | n/a | raise ZeroDivisionError('Fraction(%s, 0)' % numerator) |
---|
179 | n/a | if _normalize: |
---|
180 | n/a | if type(numerator) is int is type(denominator): |
---|
181 | n/a | # *very* normal case |
---|
182 | n/a | g = math.gcd(numerator, denominator) |
---|
183 | n/a | if denominator < 0: |
---|
184 | n/a | g = -g |
---|
185 | n/a | else: |
---|
186 | n/a | g = _gcd(numerator, denominator) |
---|
187 | n/a | numerator //= g |
---|
188 | n/a | denominator //= g |
---|
189 | n/a | self._numerator = numerator |
---|
190 | n/a | self._denominator = denominator |
---|
191 | n/a | return self |
---|
192 | n/a | |
---|
193 | n/a | @classmethod |
---|
194 | n/a | def from_float(cls, f): |
---|
195 | n/a | """Converts a finite float to a rational number, exactly. |
---|
196 | n/a | |
---|
197 | n/a | Beware that Fraction.from_float(0.3) != Fraction(3, 10). |
---|
198 | n/a | |
---|
199 | n/a | """ |
---|
200 | n/a | if isinstance(f, numbers.Integral): |
---|
201 | n/a | return cls(f) |
---|
202 | n/a | elif not isinstance(f, float): |
---|
203 | n/a | raise TypeError("%s.from_float() only takes floats, not %r (%s)" % |
---|
204 | n/a | (cls.__name__, f, type(f).__name__)) |
---|
205 | n/a | return cls(*f.as_integer_ratio()) |
---|
206 | n/a | |
---|
207 | n/a | @classmethod |
---|
208 | n/a | def from_decimal(cls, dec): |
---|
209 | n/a | """Converts a finite Decimal instance to a rational number, exactly.""" |
---|
210 | n/a | from decimal import Decimal |
---|
211 | n/a | if isinstance(dec, numbers.Integral): |
---|
212 | n/a | dec = Decimal(int(dec)) |
---|
213 | n/a | elif not isinstance(dec, Decimal): |
---|
214 | n/a | raise TypeError( |
---|
215 | n/a | "%s.from_decimal() only takes Decimals, not %r (%s)" % |
---|
216 | n/a | (cls.__name__, dec, type(dec).__name__)) |
---|
217 | n/a | return cls(*dec.as_integer_ratio()) |
---|
218 | n/a | |
---|
219 | n/a | def limit_denominator(self, max_denominator=1000000): |
---|
220 | n/a | """Closest Fraction to self with denominator at most max_denominator. |
---|
221 | n/a | |
---|
222 | n/a | >>> Fraction('3.141592653589793').limit_denominator(10) |
---|
223 | n/a | Fraction(22, 7) |
---|
224 | n/a | >>> Fraction('3.141592653589793').limit_denominator(100) |
---|
225 | n/a | Fraction(311, 99) |
---|
226 | n/a | >>> Fraction(4321, 8765).limit_denominator(10000) |
---|
227 | n/a | Fraction(4321, 8765) |
---|
228 | n/a | |
---|
229 | n/a | """ |
---|
230 | n/a | # Algorithm notes: For any real number x, define a *best upper |
---|
231 | n/a | # approximation* to x to be a rational number p/q such that: |
---|
232 | n/a | # |
---|
233 | n/a | # (1) p/q >= x, and |
---|
234 | n/a | # (2) if p/q > r/s >= x then s > q, for any rational r/s. |
---|
235 | n/a | # |
---|
236 | n/a | # Define *best lower approximation* similarly. Then it can be |
---|
237 | n/a | # proved that a rational number is a best upper or lower |
---|
238 | n/a | # approximation to x if, and only if, it is a convergent or |
---|
239 | n/a | # semiconvergent of the (unique shortest) continued fraction |
---|
240 | n/a | # associated to x. |
---|
241 | n/a | # |
---|
242 | n/a | # To find a best rational approximation with denominator <= M, |
---|
243 | n/a | # we find the best upper and lower approximations with |
---|
244 | n/a | # denominator <= M and take whichever of these is closer to x. |
---|
245 | n/a | # In the event of a tie, the bound with smaller denominator is |
---|
246 | n/a | # chosen. If both denominators are equal (which can happen |
---|
247 | n/a | # only when max_denominator == 1 and self is midway between |
---|
248 | n/a | # two integers) the lower bound---i.e., the floor of self, is |
---|
249 | n/a | # taken. |
---|
250 | n/a | |
---|
251 | n/a | if max_denominator < 1: |
---|
252 | n/a | raise ValueError("max_denominator should be at least 1") |
---|
253 | n/a | if self._denominator <= max_denominator: |
---|
254 | n/a | return Fraction(self) |
---|
255 | n/a | |
---|
256 | n/a | p0, q0, p1, q1 = 0, 1, 1, 0 |
---|
257 | n/a | n, d = self._numerator, self._denominator |
---|
258 | n/a | while True: |
---|
259 | n/a | a = n//d |
---|
260 | n/a | q2 = q0+a*q1 |
---|
261 | n/a | if q2 > max_denominator: |
---|
262 | n/a | break |
---|
263 | n/a | p0, q0, p1, q1 = p1, q1, p0+a*p1, q2 |
---|
264 | n/a | n, d = d, n-a*d |
---|
265 | n/a | |
---|
266 | n/a | k = (max_denominator-q0)//q1 |
---|
267 | n/a | bound1 = Fraction(p0+k*p1, q0+k*q1) |
---|
268 | n/a | bound2 = Fraction(p1, q1) |
---|
269 | n/a | if abs(bound2 - self) <= abs(bound1-self): |
---|
270 | n/a | return bound2 |
---|
271 | n/a | else: |
---|
272 | n/a | return bound1 |
---|
273 | n/a | |
---|
274 | n/a | @property |
---|
275 | n/a | def numerator(a): |
---|
276 | n/a | return a._numerator |
---|
277 | n/a | |
---|
278 | n/a | @property |
---|
279 | n/a | def denominator(a): |
---|
280 | n/a | return a._denominator |
---|
281 | n/a | |
---|
282 | n/a | def __repr__(self): |
---|
283 | n/a | """repr(self)""" |
---|
284 | n/a | return '%s(%s, %s)' % (self.__class__.__name__, |
---|
285 | n/a | self._numerator, self._denominator) |
---|
286 | n/a | |
---|
287 | n/a | def __str__(self): |
---|
288 | n/a | """str(self)""" |
---|
289 | n/a | if self._denominator == 1: |
---|
290 | n/a | return str(self._numerator) |
---|
291 | n/a | else: |
---|
292 | n/a | return '%s/%s' % (self._numerator, self._denominator) |
---|
293 | n/a | |
---|
294 | n/a | def _operator_fallbacks(monomorphic_operator, fallback_operator): |
---|
295 | n/a | """Generates forward and reverse operators given a purely-rational |
---|
296 | n/a | operator and a function from the operator module. |
---|
297 | n/a | |
---|
298 | n/a | Use this like: |
---|
299 | n/a | __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op) |
---|
300 | n/a | |
---|
301 | n/a | In general, we want to implement the arithmetic operations so |
---|
302 | n/a | that mixed-mode operations either call an implementation whose |
---|
303 | n/a | author knew about the types of both arguments, or convert both |
---|
304 | n/a | to the nearest built in type and do the operation there. In |
---|
305 | n/a | Fraction, that means that we define __add__ and __radd__ as: |
---|
306 | n/a | |
---|
307 | n/a | def __add__(self, other): |
---|
308 | n/a | # Both types have numerators/denominator attributes, |
---|
309 | n/a | # so do the operation directly |
---|
310 | n/a | if isinstance(other, (int, Fraction)): |
---|
311 | n/a | return Fraction(self.numerator * other.denominator + |
---|
312 | n/a | other.numerator * self.denominator, |
---|
313 | n/a | self.denominator * other.denominator) |
---|
314 | n/a | # float and complex don't have those operations, but we |
---|
315 | n/a | # know about those types, so special case them. |
---|
316 | n/a | elif isinstance(other, float): |
---|
317 | n/a | return float(self) + other |
---|
318 | n/a | elif isinstance(other, complex): |
---|
319 | n/a | return complex(self) + other |
---|
320 | n/a | # Let the other type take over. |
---|
321 | n/a | return NotImplemented |
---|
322 | n/a | |
---|
323 | n/a | def __radd__(self, other): |
---|
324 | n/a | # radd handles more types than add because there's |
---|
325 | n/a | # nothing left to fall back to. |
---|
326 | n/a | if isinstance(other, numbers.Rational): |
---|
327 | n/a | return Fraction(self.numerator * other.denominator + |
---|
328 | n/a | other.numerator * self.denominator, |
---|
329 | n/a | self.denominator * other.denominator) |
---|
330 | n/a | elif isinstance(other, Real): |
---|
331 | n/a | return float(other) + float(self) |
---|
332 | n/a | elif isinstance(other, Complex): |
---|
333 | n/a | return complex(other) + complex(self) |
---|
334 | n/a | return NotImplemented |
---|
335 | n/a | |
---|
336 | n/a | |
---|
337 | n/a | There are 5 different cases for a mixed-type addition on |
---|
338 | n/a | Fraction. I'll refer to all of the above code that doesn't |
---|
339 | n/a | refer to Fraction, float, or complex as "boilerplate". 'r' |
---|
340 | n/a | will be an instance of Fraction, which is a subtype of |
---|
341 | n/a | Rational (r : Fraction <: Rational), and b : B <: |
---|
342 | n/a | Complex. The first three involve 'r + b': |
---|
343 | n/a | |
---|
344 | n/a | 1. If B <: Fraction, int, float, or complex, we handle |
---|
345 | n/a | that specially, and all is well. |
---|
346 | n/a | 2. If Fraction falls back to the boilerplate code, and it |
---|
347 | n/a | were to return a value from __add__, we'd miss the |
---|
348 | n/a | possibility that B defines a more intelligent __radd__, |
---|
349 | n/a | so the boilerplate should return NotImplemented from |
---|
350 | n/a | __add__. In particular, we don't handle Rational |
---|
351 | n/a | here, even though we could get an exact answer, in case |
---|
352 | n/a | the other type wants to do something special. |
---|
353 | n/a | 3. If B <: Fraction, Python tries B.__radd__ before |
---|
354 | n/a | Fraction.__add__. This is ok, because it was |
---|
355 | n/a | implemented with knowledge of Fraction, so it can |
---|
356 | n/a | handle those instances before delegating to Real or |
---|
357 | n/a | Complex. |
---|
358 | n/a | |
---|
359 | n/a | The next two situations describe 'b + r'. We assume that b |
---|
360 | n/a | didn't know about Fraction in its implementation, and that it |
---|
361 | n/a | uses similar boilerplate code: |
---|
362 | n/a | |
---|
363 | n/a | 4. If B <: Rational, then __radd_ converts both to the |
---|
364 | n/a | builtin rational type (hey look, that's us) and |
---|
365 | n/a | proceeds. |
---|
366 | n/a | 5. Otherwise, __radd__ tries to find the nearest common |
---|
367 | n/a | base ABC, and fall back to its builtin type. Since this |
---|
368 | n/a | class doesn't subclass a concrete type, there's no |
---|
369 | n/a | implementation to fall back to, so we need to try as |
---|
370 | n/a | hard as possible to return an actual value, or the user |
---|
371 | n/a | will get a TypeError. |
---|
372 | n/a | |
---|
373 | n/a | """ |
---|
374 | n/a | def forward(a, b): |
---|
375 | n/a | if isinstance(b, (int, Fraction)): |
---|
376 | n/a | return monomorphic_operator(a, b) |
---|
377 | n/a | elif isinstance(b, float): |
---|
378 | n/a | return fallback_operator(float(a), b) |
---|
379 | n/a | elif isinstance(b, complex): |
---|
380 | n/a | return fallback_operator(complex(a), b) |
---|
381 | n/a | else: |
---|
382 | n/a | return NotImplemented |
---|
383 | n/a | forward.__name__ = '__' + fallback_operator.__name__ + '__' |
---|
384 | n/a | forward.__doc__ = monomorphic_operator.__doc__ |
---|
385 | n/a | |
---|
386 | n/a | def reverse(b, a): |
---|
387 | n/a | if isinstance(a, numbers.Rational): |
---|
388 | n/a | # Includes ints. |
---|
389 | n/a | return monomorphic_operator(a, b) |
---|
390 | n/a | elif isinstance(a, numbers.Real): |
---|
391 | n/a | return fallback_operator(float(a), float(b)) |
---|
392 | n/a | elif isinstance(a, numbers.Complex): |
---|
393 | n/a | return fallback_operator(complex(a), complex(b)) |
---|
394 | n/a | else: |
---|
395 | n/a | return NotImplemented |
---|
396 | n/a | reverse.__name__ = '__r' + fallback_operator.__name__ + '__' |
---|
397 | n/a | reverse.__doc__ = monomorphic_operator.__doc__ |
---|
398 | n/a | |
---|
399 | n/a | return forward, reverse |
---|
400 | n/a | |
---|
401 | n/a | def _add(a, b): |
---|
402 | n/a | """a + b""" |
---|
403 | n/a | da, db = a.denominator, b.denominator |
---|
404 | n/a | return Fraction(a.numerator * db + b.numerator * da, |
---|
405 | n/a | da * db) |
---|
406 | n/a | |
---|
407 | n/a | __add__, __radd__ = _operator_fallbacks(_add, operator.add) |
---|
408 | n/a | |
---|
409 | n/a | def _sub(a, b): |
---|
410 | n/a | """a - b""" |
---|
411 | n/a | da, db = a.denominator, b.denominator |
---|
412 | n/a | return Fraction(a.numerator * db - b.numerator * da, |
---|
413 | n/a | da * db) |
---|
414 | n/a | |
---|
415 | n/a | __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub) |
---|
416 | n/a | |
---|
417 | n/a | def _mul(a, b): |
---|
418 | n/a | """a * b""" |
---|
419 | n/a | return Fraction(a.numerator * b.numerator, a.denominator * b.denominator) |
---|
420 | n/a | |
---|
421 | n/a | __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul) |
---|
422 | n/a | |
---|
423 | n/a | def _div(a, b): |
---|
424 | n/a | """a / b""" |
---|
425 | n/a | return Fraction(a.numerator * b.denominator, |
---|
426 | n/a | a.denominator * b.numerator) |
---|
427 | n/a | |
---|
428 | n/a | __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv) |
---|
429 | n/a | |
---|
430 | n/a | def __floordiv__(a, b): |
---|
431 | n/a | """a // b""" |
---|
432 | n/a | return math.floor(a / b) |
---|
433 | n/a | |
---|
434 | n/a | def __rfloordiv__(b, a): |
---|
435 | n/a | """a // b""" |
---|
436 | n/a | return math.floor(a / b) |
---|
437 | n/a | |
---|
438 | n/a | def __mod__(a, b): |
---|
439 | n/a | """a % b""" |
---|
440 | n/a | div = a // b |
---|
441 | n/a | return a - b * div |
---|
442 | n/a | |
---|
443 | n/a | def __rmod__(b, a): |
---|
444 | n/a | """a % b""" |
---|
445 | n/a | div = a // b |
---|
446 | n/a | return a - b * div |
---|
447 | n/a | |
---|
448 | n/a | def __pow__(a, b): |
---|
449 | n/a | """a ** b |
---|
450 | n/a | |
---|
451 | n/a | If b is not an integer, the result will be a float or complex |
---|
452 | n/a | since roots are generally irrational. If b is an integer, the |
---|
453 | n/a | result will be rational. |
---|
454 | n/a | |
---|
455 | n/a | """ |
---|
456 | n/a | if isinstance(b, numbers.Rational): |
---|
457 | n/a | if b.denominator == 1: |
---|
458 | n/a | power = b.numerator |
---|
459 | n/a | if power >= 0: |
---|
460 | n/a | return Fraction(a._numerator ** power, |
---|
461 | n/a | a._denominator ** power, |
---|
462 | n/a | _normalize=False) |
---|
463 | n/a | elif a._numerator >= 0: |
---|
464 | n/a | return Fraction(a._denominator ** -power, |
---|
465 | n/a | a._numerator ** -power, |
---|
466 | n/a | _normalize=False) |
---|
467 | n/a | else: |
---|
468 | n/a | return Fraction((-a._denominator) ** -power, |
---|
469 | n/a | (-a._numerator) ** -power, |
---|
470 | n/a | _normalize=False) |
---|
471 | n/a | else: |
---|
472 | n/a | # A fractional power will generally produce an |
---|
473 | n/a | # irrational number. |
---|
474 | n/a | return float(a) ** float(b) |
---|
475 | n/a | else: |
---|
476 | n/a | return float(a) ** b |
---|
477 | n/a | |
---|
478 | n/a | def __rpow__(b, a): |
---|
479 | n/a | """a ** b""" |
---|
480 | n/a | if b._denominator == 1 and b._numerator >= 0: |
---|
481 | n/a | # If a is an int, keep it that way if possible. |
---|
482 | n/a | return a ** b._numerator |
---|
483 | n/a | |
---|
484 | n/a | if isinstance(a, numbers.Rational): |
---|
485 | n/a | return Fraction(a.numerator, a.denominator) ** b |
---|
486 | n/a | |
---|
487 | n/a | if b._denominator == 1: |
---|
488 | n/a | return a ** b._numerator |
---|
489 | n/a | |
---|
490 | n/a | return a ** float(b) |
---|
491 | n/a | |
---|
492 | n/a | def __pos__(a): |
---|
493 | n/a | """+a: Coerces a subclass instance to Fraction""" |
---|
494 | n/a | return Fraction(a._numerator, a._denominator, _normalize=False) |
---|
495 | n/a | |
---|
496 | n/a | def __neg__(a): |
---|
497 | n/a | """-a""" |
---|
498 | n/a | return Fraction(-a._numerator, a._denominator, _normalize=False) |
---|
499 | n/a | |
---|
500 | n/a | def __abs__(a): |
---|
501 | n/a | """abs(a)""" |
---|
502 | n/a | return Fraction(abs(a._numerator), a._denominator, _normalize=False) |
---|
503 | n/a | |
---|
504 | n/a | def __trunc__(a): |
---|
505 | n/a | """trunc(a)""" |
---|
506 | n/a | if a._numerator < 0: |
---|
507 | n/a | return -(-a._numerator // a._denominator) |
---|
508 | n/a | else: |
---|
509 | n/a | return a._numerator // a._denominator |
---|
510 | n/a | |
---|
511 | n/a | def __floor__(a): |
---|
512 | n/a | """Will be math.floor(a) in 3.0.""" |
---|
513 | n/a | return a.numerator // a.denominator |
---|
514 | n/a | |
---|
515 | n/a | def __ceil__(a): |
---|
516 | n/a | """Will be math.ceil(a) in 3.0.""" |
---|
517 | n/a | # The negations cleverly convince floordiv to return the ceiling. |
---|
518 | n/a | return -(-a.numerator // a.denominator) |
---|
519 | n/a | |
---|
520 | n/a | def __round__(self, ndigits=None): |
---|
521 | n/a | """Will be round(self, ndigits) in 3.0. |
---|
522 | n/a | |
---|
523 | n/a | Rounds half toward even. |
---|
524 | n/a | """ |
---|
525 | n/a | if ndigits is None: |
---|
526 | n/a | floor, remainder = divmod(self.numerator, self.denominator) |
---|
527 | n/a | if remainder * 2 < self.denominator: |
---|
528 | n/a | return floor |
---|
529 | n/a | elif remainder * 2 > self.denominator: |
---|
530 | n/a | return floor + 1 |
---|
531 | n/a | # Deal with the half case: |
---|
532 | n/a | elif floor % 2 == 0: |
---|
533 | n/a | return floor |
---|
534 | n/a | else: |
---|
535 | n/a | return floor + 1 |
---|
536 | n/a | shift = 10**abs(ndigits) |
---|
537 | n/a | # See _operator_fallbacks.forward to check that the results of |
---|
538 | n/a | # these operations will always be Fraction and therefore have |
---|
539 | n/a | # round(). |
---|
540 | n/a | if ndigits > 0: |
---|
541 | n/a | return Fraction(round(self * shift), shift) |
---|
542 | n/a | else: |
---|
543 | n/a | return Fraction(round(self / shift) * shift) |
---|
544 | n/a | |
---|
545 | n/a | def __hash__(self): |
---|
546 | n/a | """hash(self)""" |
---|
547 | n/a | |
---|
548 | n/a | # XXX since this method is expensive, consider caching the result |
---|
549 | n/a | |
---|
550 | n/a | # In order to make sure that the hash of a Fraction agrees |
---|
551 | n/a | # with the hash of a numerically equal integer, float or |
---|
552 | n/a | # Decimal instance, we follow the rules for numeric hashes |
---|
553 | n/a | # outlined in the documentation. (See library docs, 'Built-in |
---|
554 | n/a | # Types'). |
---|
555 | n/a | |
---|
556 | n/a | # dinv is the inverse of self._denominator modulo the prime |
---|
557 | n/a | # _PyHASH_MODULUS, or 0 if self._denominator is divisible by |
---|
558 | n/a | # _PyHASH_MODULUS. |
---|
559 | n/a | dinv = pow(self._denominator, _PyHASH_MODULUS - 2, _PyHASH_MODULUS) |
---|
560 | n/a | if not dinv: |
---|
561 | n/a | hash_ = _PyHASH_INF |
---|
562 | n/a | else: |
---|
563 | n/a | hash_ = abs(self._numerator) * dinv % _PyHASH_MODULUS |
---|
564 | n/a | result = hash_ if self >= 0 else -hash_ |
---|
565 | n/a | return -2 if result == -1 else result |
---|
566 | n/a | |
---|
567 | n/a | def __eq__(a, b): |
---|
568 | n/a | """a == b""" |
---|
569 | n/a | if type(b) is int: |
---|
570 | n/a | return a._numerator == b and a._denominator == 1 |
---|
571 | n/a | if isinstance(b, numbers.Rational): |
---|
572 | n/a | return (a._numerator == b.numerator and |
---|
573 | n/a | a._denominator == b.denominator) |
---|
574 | n/a | if isinstance(b, numbers.Complex) and b.imag == 0: |
---|
575 | n/a | b = b.real |
---|
576 | n/a | if isinstance(b, float): |
---|
577 | n/a | if math.isnan(b) or math.isinf(b): |
---|
578 | n/a | # comparisons with an infinity or nan should behave in |
---|
579 | n/a | # the same way for any finite a, so treat a as zero. |
---|
580 | n/a | return 0.0 == b |
---|
581 | n/a | else: |
---|
582 | n/a | return a == a.from_float(b) |
---|
583 | n/a | else: |
---|
584 | n/a | # Since a doesn't know how to compare with b, let's give b |
---|
585 | n/a | # a chance to compare itself with a. |
---|
586 | n/a | return NotImplemented |
---|
587 | n/a | |
---|
588 | n/a | def _richcmp(self, other, op): |
---|
589 | n/a | """Helper for comparison operators, for internal use only. |
---|
590 | n/a | |
---|
591 | n/a | Implement comparison between a Rational instance `self`, and |
---|
592 | n/a | either another Rational instance or a float `other`. If |
---|
593 | n/a | `other` is not a Rational instance or a float, return |
---|
594 | n/a | NotImplemented. `op` should be one of the six standard |
---|
595 | n/a | comparison operators. |
---|
596 | n/a | |
---|
597 | n/a | """ |
---|
598 | n/a | # convert other to a Rational instance where reasonable. |
---|
599 | n/a | if isinstance(other, numbers.Rational): |
---|
600 | n/a | return op(self._numerator * other.denominator, |
---|
601 | n/a | self._denominator * other.numerator) |
---|
602 | n/a | if isinstance(other, float): |
---|
603 | n/a | if math.isnan(other) or math.isinf(other): |
---|
604 | n/a | return op(0.0, other) |
---|
605 | n/a | else: |
---|
606 | n/a | return op(self, self.from_float(other)) |
---|
607 | n/a | else: |
---|
608 | n/a | return NotImplemented |
---|
609 | n/a | |
---|
610 | n/a | def __lt__(a, b): |
---|
611 | n/a | """a < b""" |
---|
612 | n/a | return a._richcmp(b, operator.lt) |
---|
613 | n/a | |
---|
614 | n/a | def __gt__(a, b): |
---|
615 | n/a | """a > b""" |
---|
616 | n/a | return a._richcmp(b, operator.gt) |
---|
617 | n/a | |
---|
618 | n/a | def __le__(a, b): |
---|
619 | n/a | """a <= b""" |
---|
620 | n/a | return a._richcmp(b, operator.le) |
---|
621 | n/a | |
---|
622 | n/a | def __ge__(a, b): |
---|
623 | n/a | """a >= b""" |
---|
624 | n/a | return a._richcmp(b, operator.ge) |
---|
625 | n/a | |
---|
626 | n/a | def __bool__(a): |
---|
627 | n/a | """a != 0""" |
---|
628 | n/a | return a._numerator != 0 |
---|
629 | n/a | |
---|
630 | n/a | # support for pickling, copy, and deepcopy |
---|
631 | n/a | |
---|
632 | n/a | def __reduce__(self): |
---|
633 | n/a | return (self.__class__, (str(self),)) |
---|
634 | n/a | |
---|
635 | n/a | def __copy__(self): |
---|
636 | n/a | if type(self) == Fraction: |
---|
637 | n/a | return self # I'm immutable; therefore I am my own clone |
---|
638 | n/a | return self.__class__(self._numerator, self._denominator) |
---|
639 | n/a | |
---|
640 | n/a | def __deepcopy__(self, memo): |
---|
641 | n/a | if type(self) == Fraction: |
---|
642 | n/a | return self # My components are also immutable |
---|
643 | n/a | return self.__class__(self._numerator, self._denominator) |
---|