| 1 | n/a | # Originally contributed by Sjoerd Mullender. |
|---|
| 2 | n/a | # Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>. |
|---|
| 3 | n/a | |
|---|
| 4 | n/a | """Fraction, infinite-precision, real numbers.""" |
|---|
| 5 | n/a | |
|---|
| 6 | n/a | from decimal import Decimal |
|---|
| 7 | n/a | import math |
|---|
| 8 | n/a | import numbers |
|---|
| 9 | n/a | import operator |
|---|
| 10 | n/a | import re |
|---|
| 11 | n/a | import sys |
|---|
| 12 | n/a | |
|---|
| 13 | n/a | __all__ = ['Fraction', 'gcd'] |
|---|
| 14 | n/a | |
|---|
| 15 | n/a | |
|---|
| 16 | n/a | |
|---|
| 17 | n/a | def gcd(a, b): |
|---|
| 18 | n/a | """Calculate the Greatest Common Divisor of a and b. |
|---|
| 19 | n/a | |
|---|
| 20 | n/a | Unless b==0, the result will have the same sign as b (so that when |
|---|
| 21 | n/a | b is divided by it, the result comes out positive). |
|---|
| 22 | n/a | """ |
|---|
| 23 | n/a | import warnings |
|---|
| 24 | n/a | warnings.warn('fractions.gcd() is deprecated. Use math.gcd() instead.', |
|---|
| 25 | n/a | DeprecationWarning, 2) |
|---|
| 26 | n/a | if type(a) is int is type(b): |
|---|
| 27 | n/a | if (b or a) < 0: |
|---|
| 28 | n/a | return -math.gcd(a, b) |
|---|
| 29 | n/a | return math.gcd(a, b) |
|---|
| 30 | n/a | return _gcd(a, b) |
|---|
| 31 | n/a | |
|---|
| 32 | n/a | def _gcd(a, b): |
|---|
| 33 | n/a | # Supports non-integers for backward compatibility. |
|---|
| 34 | n/a | while b: |
|---|
| 35 | n/a | a, b = b, a%b |
|---|
| 36 | n/a | return a |
|---|
| 37 | n/a | |
|---|
| 38 | n/a | # Constants related to the hash implementation; hash(x) is based |
|---|
| 39 | n/a | # on the reduction of x modulo the prime _PyHASH_MODULUS. |
|---|
| 40 | n/a | _PyHASH_MODULUS = sys.hash_info.modulus |
|---|
| 41 | n/a | # Value to be used for rationals that reduce to infinity modulo |
|---|
| 42 | n/a | # _PyHASH_MODULUS. |
|---|
| 43 | n/a | _PyHASH_INF = sys.hash_info.inf |
|---|
| 44 | n/a | |
|---|
| 45 | n/a | _RATIONAL_FORMAT = re.compile(r""" |
|---|
| 46 | n/a | \A\s* # optional whitespace at the start, then |
|---|
| 47 | n/a | (?P<sign>[-+]?) # an optional sign, then |
|---|
| 48 | n/a | (?=\d|\.\d) # lookahead for digit or .digit |
|---|
| 49 | n/a | (?P<num>\d*) # numerator (possibly empty) |
|---|
| 50 | n/a | (?: # followed by |
|---|
| 51 | n/a | (?:/(?P<denom>\d+))? # an optional denominator |
|---|
| 52 | n/a | | # or |
|---|
| 53 | n/a | (?:\.(?P<decimal>\d*))? # an optional fractional part |
|---|
| 54 | n/a | (?:E(?P<exp>[-+]?\d+))? # and optional exponent |
|---|
| 55 | n/a | ) |
|---|
| 56 | n/a | \s*\Z # and optional whitespace to finish |
|---|
| 57 | n/a | """, re.VERBOSE | re.IGNORECASE) |
|---|
| 58 | n/a | |
|---|
| 59 | n/a | |
|---|
| 60 | n/a | class Fraction(numbers.Rational): |
|---|
| 61 | n/a | """This class implements rational numbers. |
|---|
| 62 | n/a | |
|---|
| 63 | n/a | In the two-argument form of the constructor, Fraction(8, 6) will |
|---|
| 64 | n/a | produce a rational number equivalent to 4/3. Both arguments must |
|---|
| 65 | n/a | be Rational. The numerator defaults to 0 and the denominator |
|---|
| 66 | n/a | defaults to 1 so that Fraction(3) == 3 and Fraction() == 0. |
|---|
| 67 | n/a | |
|---|
| 68 | n/a | Fractions can also be constructed from: |
|---|
| 69 | n/a | |
|---|
| 70 | n/a | - numeric strings similar to those accepted by the |
|---|
| 71 | n/a | float constructor (for example, '-2.3' or '1e10') |
|---|
| 72 | n/a | |
|---|
| 73 | n/a | - strings of the form '123/456' |
|---|
| 74 | n/a | |
|---|
| 75 | n/a | - float and Decimal instances |
|---|
| 76 | n/a | |
|---|
| 77 | n/a | - other Rational instances (including integers) |
|---|
| 78 | n/a | |
|---|
| 79 | n/a | """ |
|---|
| 80 | n/a | |
|---|
| 81 | n/a | __slots__ = ('_numerator', '_denominator') |
|---|
| 82 | n/a | |
|---|
| 83 | n/a | # We're immutable, so use __new__ not __init__ |
|---|
| 84 | n/a | def __new__(cls, numerator=0, denominator=None, *, _normalize=True): |
|---|
| 85 | n/a | """Constructs a Rational. |
|---|
| 86 | n/a | |
|---|
| 87 | n/a | Takes a string like '3/2' or '1.5', another Rational instance, a |
|---|
| 88 | n/a | numerator/denominator pair, or a float. |
|---|
| 89 | n/a | |
|---|
| 90 | n/a | Examples |
|---|
| 91 | n/a | -------- |
|---|
| 92 | n/a | |
|---|
| 93 | n/a | >>> Fraction(10, -8) |
|---|
| 94 | n/a | Fraction(-5, 4) |
|---|
| 95 | n/a | >>> Fraction(Fraction(1, 7), 5) |
|---|
| 96 | n/a | Fraction(1, 35) |
|---|
| 97 | n/a | >>> Fraction(Fraction(1, 7), Fraction(2, 3)) |
|---|
| 98 | n/a | Fraction(3, 14) |
|---|
| 99 | n/a | >>> Fraction('314') |
|---|
| 100 | n/a | Fraction(314, 1) |
|---|
| 101 | n/a | >>> Fraction('-35/4') |
|---|
| 102 | n/a | Fraction(-35, 4) |
|---|
| 103 | n/a | >>> Fraction('3.1415') # conversion from numeric string |
|---|
| 104 | n/a | Fraction(6283, 2000) |
|---|
| 105 | n/a | >>> Fraction('-47e-2') # string may include a decimal exponent |
|---|
| 106 | n/a | Fraction(-47, 100) |
|---|
| 107 | n/a | >>> Fraction(1.47) # direct construction from float (exact conversion) |
|---|
| 108 | n/a | Fraction(6620291452234629, 4503599627370496) |
|---|
| 109 | n/a | >>> Fraction(2.25) |
|---|
| 110 | n/a | Fraction(9, 4) |
|---|
| 111 | n/a | >>> Fraction(Decimal('1.47')) |
|---|
| 112 | n/a | Fraction(147, 100) |
|---|
| 113 | n/a | |
|---|
| 114 | n/a | """ |
|---|
| 115 | n/a | self = super(Fraction, cls).__new__(cls) |
|---|
| 116 | n/a | |
|---|
| 117 | n/a | if denominator is None: |
|---|
| 118 | n/a | if type(numerator) is int: |
|---|
| 119 | n/a | self._numerator = numerator |
|---|
| 120 | n/a | self._denominator = 1 |
|---|
| 121 | n/a | return self |
|---|
| 122 | n/a | |
|---|
| 123 | n/a | elif isinstance(numerator, numbers.Rational): |
|---|
| 124 | n/a | self._numerator = numerator.numerator |
|---|
| 125 | n/a | self._denominator = numerator.denominator |
|---|
| 126 | n/a | return self |
|---|
| 127 | n/a | |
|---|
| 128 | n/a | elif isinstance(numerator, (float, Decimal)): |
|---|
| 129 | n/a | # Exact conversion |
|---|
| 130 | n/a | self._numerator, self._denominator = numerator.as_integer_ratio() |
|---|
| 131 | n/a | return self |
|---|
| 132 | n/a | |
|---|
| 133 | n/a | elif isinstance(numerator, str): |
|---|
| 134 | n/a | # Handle construction from strings. |
|---|
| 135 | n/a | m = _RATIONAL_FORMAT.match(numerator) |
|---|
| 136 | n/a | if m is None: |
|---|
| 137 | n/a | raise ValueError('Invalid literal for Fraction: %r' % |
|---|
| 138 | n/a | numerator) |
|---|
| 139 | n/a | numerator = int(m.group('num') or '0') |
|---|
| 140 | n/a | denom = m.group('denom') |
|---|
| 141 | n/a | if denom: |
|---|
| 142 | n/a | denominator = int(denom) |
|---|
| 143 | n/a | else: |
|---|
| 144 | n/a | denominator = 1 |
|---|
| 145 | n/a | decimal = m.group('decimal') |
|---|
| 146 | n/a | if decimal: |
|---|
| 147 | n/a | scale = 10**len(decimal) |
|---|
| 148 | n/a | numerator = numerator * scale + int(decimal) |
|---|
| 149 | n/a | denominator *= scale |
|---|
| 150 | n/a | exp = m.group('exp') |
|---|
| 151 | n/a | if exp: |
|---|
| 152 | n/a | exp = int(exp) |
|---|
| 153 | n/a | if exp >= 0: |
|---|
| 154 | n/a | numerator *= 10**exp |
|---|
| 155 | n/a | else: |
|---|
| 156 | n/a | denominator *= 10**-exp |
|---|
| 157 | n/a | if m.group('sign') == '-': |
|---|
| 158 | n/a | numerator = -numerator |
|---|
| 159 | n/a | |
|---|
| 160 | n/a | else: |
|---|
| 161 | n/a | raise TypeError("argument should be a string " |
|---|
| 162 | n/a | "or a Rational instance") |
|---|
| 163 | n/a | |
|---|
| 164 | n/a | elif type(numerator) is int is type(denominator): |
|---|
| 165 | n/a | pass # *very* normal case |
|---|
| 166 | n/a | |
|---|
| 167 | n/a | elif (isinstance(numerator, numbers.Rational) and |
|---|
| 168 | n/a | isinstance(denominator, numbers.Rational)): |
|---|
| 169 | n/a | numerator, denominator = ( |
|---|
| 170 | n/a | numerator.numerator * denominator.denominator, |
|---|
| 171 | n/a | denominator.numerator * numerator.denominator |
|---|
| 172 | n/a | ) |
|---|
| 173 | n/a | else: |
|---|
| 174 | n/a | raise TypeError("both arguments should be " |
|---|
| 175 | n/a | "Rational instances") |
|---|
| 176 | n/a | |
|---|
| 177 | n/a | if denominator == 0: |
|---|
| 178 | n/a | raise ZeroDivisionError('Fraction(%s, 0)' % numerator) |
|---|
| 179 | n/a | if _normalize: |
|---|
| 180 | n/a | if type(numerator) is int is type(denominator): |
|---|
| 181 | n/a | # *very* normal case |
|---|
| 182 | n/a | g = math.gcd(numerator, denominator) |
|---|
| 183 | n/a | if denominator < 0: |
|---|
| 184 | n/a | g = -g |
|---|
| 185 | n/a | else: |
|---|
| 186 | n/a | g = _gcd(numerator, denominator) |
|---|
| 187 | n/a | numerator //= g |
|---|
| 188 | n/a | denominator //= g |
|---|
| 189 | n/a | self._numerator = numerator |
|---|
| 190 | n/a | self._denominator = denominator |
|---|
| 191 | n/a | return self |
|---|
| 192 | n/a | |
|---|
| 193 | n/a | @classmethod |
|---|
| 194 | n/a | def from_float(cls, f): |
|---|
| 195 | n/a | """Converts a finite float to a rational number, exactly. |
|---|
| 196 | n/a | |
|---|
| 197 | n/a | Beware that Fraction.from_float(0.3) != Fraction(3, 10). |
|---|
| 198 | n/a | |
|---|
| 199 | n/a | """ |
|---|
| 200 | n/a | if isinstance(f, numbers.Integral): |
|---|
| 201 | n/a | return cls(f) |
|---|
| 202 | n/a | elif not isinstance(f, float): |
|---|
| 203 | n/a | raise TypeError("%s.from_float() only takes floats, not %r (%s)" % |
|---|
| 204 | n/a | (cls.__name__, f, type(f).__name__)) |
|---|
| 205 | n/a | return cls(*f.as_integer_ratio()) |
|---|
| 206 | n/a | |
|---|
| 207 | n/a | @classmethod |
|---|
| 208 | n/a | def from_decimal(cls, dec): |
|---|
| 209 | n/a | """Converts a finite Decimal instance to a rational number, exactly.""" |
|---|
| 210 | n/a | from decimal import Decimal |
|---|
| 211 | n/a | if isinstance(dec, numbers.Integral): |
|---|
| 212 | n/a | dec = Decimal(int(dec)) |
|---|
| 213 | n/a | elif not isinstance(dec, Decimal): |
|---|
| 214 | n/a | raise TypeError( |
|---|
| 215 | n/a | "%s.from_decimal() only takes Decimals, not %r (%s)" % |
|---|
| 216 | n/a | (cls.__name__, dec, type(dec).__name__)) |
|---|
| 217 | n/a | return cls(*dec.as_integer_ratio()) |
|---|
| 218 | n/a | |
|---|
| 219 | n/a | def limit_denominator(self, max_denominator=1000000): |
|---|
| 220 | n/a | """Closest Fraction to self with denominator at most max_denominator. |
|---|
| 221 | n/a | |
|---|
| 222 | n/a | >>> Fraction('3.141592653589793').limit_denominator(10) |
|---|
| 223 | n/a | Fraction(22, 7) |
|---|
| 224 | n/a | >>> Fraction('3.141592653589793').limit_denominator(100) |
|---|
| 225 | n/a | Fraction(311, 99) |
|---|
| 226 | n/a | >>> Fraction(4321, 8765).limit_denominator(10000) |
|---|
| 227 | n/a | Fraction(4321, 8765) |
|---|
| 228 | n/a | |
|---|
| 229 | n/a | """ |
|---|
| 230 | n/a | # Algorithm notes: For any real number x, define a *best upper |
|---|
| 231 | n/a | # approximation* to x to be a rational number p/q such that: |
|---|
| 232 | n/a | # |
|---|
| 233 | n/a | # (1) p/q >= x, and |
|---|
| 234 | n/a | # (2) if p/q > r/s >= x then s > q, for any rational r/s. |
|---|
| 235 | n/a | # |
|---|
| 236 | n/a | # Define *best lower approximation* similarly. Then it can be |
|---|
| 237 | n/a | # proved that a rational number is a best upper or lower |
|---|
| 238 | n/a | # approximation to x if, and only if, it is a convergent or |
|---|
| 239 | n/a | # semiconvergent of the (unique shortest) continued fraction |
|---|
| 240 | n/a | # associated to x. |
|---|
| 241 | n/a | # |
|---|
| 242 | n/a | # To find a best rational approximation with denominator <= M, |
|---|
| 243 | n/a | # we find the best upper and lower approximations with |
|---|
| 244 | n/a | # denominator <= M and take whichever of these is closer to x. |
|---|
| 245 | n/a | # In the event of a tie, the bound with smaller denominator is |
|---|
| 246 | n/a | # chosen. If both denominators are equal (which can happen |
|---|
| 247 | n/a | # only when max_denominator == 1 and self is midway between |
|---|
| 248 | n/a | # two integers) the lower bound---i.e., the floor of self, is |
|---|
| 249 | n/a | # taken. |
|---|
| 250 | n/a | |
|---|
| 251 | n/a | if max_denominator < 1: |
|---|
| 252 | n/a | raise ValueError("max_denominator should be at least 1") |
|---|
| 253 | n/a | if self._denominator <= max_denominator: |
|---|
| 254 | n/a | return Fraction(self) |
|---|
| 255 | n/a | |
|---|
| 256 | n/a | p0, q0, p1, q1 = 0, 1, 1, 0 |
|---|
| 257 | n/a | n, d = self._numerator, self._denominator |
|---|
| 258 | n/a | while True: |
|---|
| 259 | n/a | a = n//d |
|---|
| 260 | n/a | q2 = q0+a*q1 |
|---|
| 261 | n/a | if q2 > max_denominator: |
|---|
| 262 | n/a | break |
|---|
| 263 | n/a | p0, q0, p1, q1 = p1, q1, p0+a*p1, q2 |
|---|
| 264 | n/a | n, d = d, n-a*d |
|---|
| 265 | n/a | |
|---|
| 266 | n/a | k = (max_denominator-q0)//q1 |
|---|
| 267 | n/a | bound1 = Fraction(p0+k*p1, q0+k*q1) |
|---|
| 268 | n/a | bound2 = Fraction(p1, q1) |
|---|
| 269 | n/a | if abs(bound2 - self) <= abs(bound1-self): |
|---|
| 270 | n/a | return bound2 |
|---|
| 271 | n/a | else: |
|---|
| 272 | n/a | return bound1 |
|---|
| 273 | n/a | |
|---|
| 274 | n/a | @property |
|---|
| 275 | n/a | def numerator(a): |
|---|
| 276 | n/a | return a._numerator |
|---|
| 277 | n/a | |
|---|
| 278 | n/a | @property |
|---|
| 279 | n/a | def denominator(a): |
|---|
| 280 | n/a | return a._denominator |
|---|
| 281 | n/a | |
|---|
| 282 | n/a | def __repr__(self): |
|---|
| 283 | n/a | """repr(self)""" |
|---|
| 284 | n/a | return '%s(%s, %s)' % (self.__class__.__name__, |
|---|
| 285 | n/a | self._numerator, self._denominator) |
|---|
| 286 | n/a | |
|---|
| 287 | n/a | def __str__(self): |
|---|
| 288 | n/a | """str(self)""" |
|---|
| 289 | n/a | if self._denominator == 1: |
|---|
| 290 | n/a | return str(self._numerator) |
|---|
| 291 | n/a | else: |
|---|
| 292 | n/a | return '%s/%s' % (self._numerator, self._denominator) |
|---|
| 293 | n/a | |
|---|
| 294 | n/a | def _operator_fallbacks(monomorphic_operator, fallback_operator): |
|---|
| 295 | n/a | """Generates forward and reverse operators given a purely-rational |
|---|
| 296 | n/a | operator and a function from the operator module. |
|---|
| 297 | n/a | |
|---|
| 298 | n/a | Use this like: |
|---|
| 299 | n/a | __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op) |
|---|
| 300 | n/a | |
|---|
| 301 | n/a | In general, we want to implement the arithmetic operations so |
|---|
| 302 | n/a | that mixed-mode operations either call an implementation whose |
|---|
| 303 | n/a | author knew about the types of both arguments, or convert both |
|---|
| 304 | n/a | to the nearest built in type and do the operation there. In |
|---|
| 305 | n/a | Fraction, that means that we define __add__ and __radd__ as: |
|---|
| 306 | n/a | |
|---|
| 307 | n/a | def __add__(self, other): |
|---|
| 308 | n/a | # Both types have numerators/denominator attributes, |
|---|
| 309 | n/a | # so do the operation directly |
|---|
| 310 | n/a | if isinstance(other, (int, Fraction)): |
|---|
| 311 | n/a | return Fraction(self.numerator * other.denominator + |
|---|
| 312 | n/a | other.numerator * self.denominator, |
|---|
| 313 | n/a | self.denominator * other.denominator) |
|---|
| 314 | n/a | # float and complex don't have those operations, but we |
|---|
| 315 | n/a | # know about those types, so special case them. |
|---|
| 316 | n/a | elif isinstance(other, float): |
|---|
| 317 | n/a | return float(self) + other |
|---|
| 318 | n/a | elif isinstance(other, complex): |
|---|
| 319 | n/a | return complex(self) + other |
|---|
| 320 | n/a | # Let the other type take over. |
|---|
| 321 | n/a | return NotImplemented |
|---|
| 322 | n/a | |
|---|
| 323 | n/a | def __radd__(self, other): |
|---|
| 324 | n/a | # radd handles more types than add because there's |
|---|
| 325 | n/a | # nothing left to fall back to. |
|---|
| 326 | n/a | if isinstance(other, numbers.Rational): |
|---|
| 327 | n/a | return Fraction(self.numerator * other.denominator + |
|---|
| 328 | n/a | other.numerator * self.denominator, |
|---|
| 329 | n/a | self.denominator * other.denominator) |
|---|
| 330 | n/a | elif isinstance(other, Real): |
|---|
| 331 | n/a | return float(other) + float(self) |
|---|
| 332 | n/a | elif isinstance(other, Complex): |
|---|
| 333 | n/a | return complex(other) + complex(self) |
|---|
| 334 | n/a | return NotImplemented |
|---|
| 335 | n/a | |
|---|
| 336 | n/a | |
|---|
| 337 | n/a | There are 5 different cases for a mixed-type addition on |
|---|
| 338 | n/a | Fraction. I'll refer to all of the above code that doesn't |
|---|
| 339 | n/a | refer to Fraction, float, or complex as "boilerplate". 'r' |
|---|
| 340 | n/a | will be an instance of Fraction, which is a subtype of |
|---|
| 341 | n/a | Rational (r : Fraction <: Rational), and b : B <: |
|---|
| 342 | n/a | Complex. The first three involve 'r + b': |
|---|
| 343 | n/a | |
|---|
| 344 | n/a | 1. If B <: Fraction, int, float, or complex, we handle |
|---|
| 345 | n/a | that specially, and all is well. |
|---|
| 346 | n/a | 2. If Fraction falls back to the boilerplate code, and it |
|---|
| 347 | n/a | were to return a value from __add__, we'd miss the |
|---|
| 348 | n/a | possibility that B defines a more intelligent __radd__, |
|---|
| 349 | n/a | so the boilerplate should return NotImplemented from |
|---|
| 350 | n/a | __add__. In particular, we don't handle Rational |
|---|
| 351 | n/a | here, even though we could get an exact answer, in case |
|---|
| 352 | n/a | the other type wants to do something special. |
|---|
| 353 | n/a | 3. If B <: Fraction, Python tries B.__radd__ before |
|---|
| 354 | n/a | Fraction.__add__. This is ok, because it was |
|---|
| 355 | n/a | implemented with knowledge of Fraction, so it can |
|---|
| 356 | n/a | handle those instances before delegating to Real or |
|---|
| 357 | n/a | Complex. |
|---|
| 358 | n/a | |
|---|
| 359 | n/a | The next two situations describe 'b + r'. We assume that b |
|---|
| 360 | n/a | didn't know about Fraction in its implementation, and that it |
|---|
| 361 | n/a | uses similar boilerplate code: |
|---|
| 362 | n/a | |
|---|
| 363 | n/a | 4. If B <: Rational, then __radd_ converts both to the |
|---|
| 364 | n/a | builtin rational type (hey look, that's us) and |
|---|
| 365 | n/a | proceeds. |
|---|
| 366 | n/a | 5. Otherwise, __radd__ tries to find the nearest common |
|---|
| 367 | n/a | base ABC, and fall back to its builtin type. Since this |
|---|
| 368 | n/a | class doesn't subclass a concrete type, there's no |
|---|
| 369 | n/a | implementation to fall back to, so we need to try as |
|---|
| 370 | n/a | hard as possible to return an actual value, or the user |
|---|
| 371 | n/a | will get a TypeError. |
|---|
| 372 | n/a | |
|---|
| 373 | n/a | """ |
|---|
| 374 | n/a | def forward(a, b): |
|---|
| 375 | n/a | if isinstance(b, (int, Fraction)): |
|---|
| 376 | n/a | return monomorphic_operator(a, b) |
|---|
| 377 | n/a | elif isinstance(b, float): |
|---|
| 378 | n/a | return fallback_operator(float(a), b) |
|---|
| 379 | n/a | elif isinstance(b, complex): |
|---|
| 380 | n/a | return fallback_operator(complex(a), b) |
|---|
| 381 | n/a | else: |
|---|
| 382 | n/a | return NotImplemented |
|---|
| 383 | n/a | forward.__name__ = '__' + fallback_operator.__name__ + '__' |
|---|
| 384 | n/a | forward.__doc__ = monomorphic_operator.__doc__ |
|---|
| 385 | n/a | |
|---|
| 386 | n/a | def reverse(b, a): |
|---|
| 387 | n/a | if isinstance(a, numbers.Rational): |
|---|
| 388 | n/a | # Includes ints. |
|---|
| 389 | n/a | return monomorphic_operator(a, b) |
|---|
| 390 | n/a | elif isinstance(a, numbers.Real): |
|---|
| 391 | n/a | return fallback_operator(float(a), float(b)) |
|---|
| 392 | n/a | elif isinstance(a, numbers.Complex): |
|---|
| 393 | n/a | return fallback_operator(complex(a), complex(b)) |
|---|
| 394 | n/a | else: |
|---|
| 395 | n/a | return NotImplemented |
|---|
| 396 | n/a | reverse.__name__ = '__r' + fallback_operator.__name__ + '__' |
|---|
| 397 | n/a | reverse.__doc__ = monomorphic_operator.__doc__ |
|---|
| 398 | n/a | |
|---|
| 399 | n/a | return forward, reverse |
|---|
| 400 | n/a | |
|---|
| 401 | n/a | def _add(a, b): |
|---|
| 402 | n/a | """a + b""" |
|---|
| 403 | n/a | da, db = a.denominator, b.denominator |
|---|
| 404 | n/a | return Fraction(a.numerator * db + b.numerator * da, |
|---|
| 405 | n/a | da * db) |
|---|
| 406 | n/a | |
|---|
| 407 | n/a | __add__, __radd__ = _operator_fallbacks(_add, operator.add) |
|---|
| 408 | n/a | |
|---|
| 409 | n/a | def _sub(a, b): |
|---|
| 410 | n/a | """a - b""" |
|---|
| 411 | n/a | da, db = a.denominator, b.denominator |
|---|
| 412 | n/a | return Fraction(a.numerator * db - b.numerator * da, |
|---|
| 413 | n/a | da * db) |
|---|
| 414 | n/a | |
|---|
| 415 | n/a | __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub) |
|---|
| 416 | n/a | |
|---|
| 417 | n/a | def _mul(a, b): |
|---|
| 418 | n/a | """a * b""" |
|---|
| 419 | n/a | return Fraction(a.numerator * b.numerator, a.denominator * b.denominator) |
|---|
| 420 | n/a | |
|---|
| 421 | n/a | __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul) |
|---|
| 422 | n/a | |
|---|
| 423 | n/a | def _div(a, b): |
|---|
| 424 | n/a | """a / b""" |
|---|
| 425 | n/a | return Fraction(a.numerator * b.denominator, |
|---|
| 426 | n/a | a.denominator * b.numerator) |
|---|
| 427 | n/a | |
|---|
| 428 | n/a | __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv) |
|---|
| 429 | n/a | |
|---|
| 430 | n/a | def __floordiv__(a, b): |
|---|
| 431 | n/a | """a // b""" |
|---|
| 432 | n/a | return math.floor(a / b) |
|---|
| 433 | n/a | |
|---|
| 434 | n/a | def __rfloordiv__(b, a): |
|---|
| 435 | n/a | """a // b""" |
|---|
| 436 | n/a | return math.floor(a / b) |
|---|
| 437 | n/a | |
|---|
| 438 | n/a | def __mod__(a, b): |
|---|
| 439 | n/a | """a % b""" |
|---|
| 440 | n/a | div = a // b |
|---|
| 441 | n/a | return a - b * div |
|---|
| 442 | n/a | |
|---|
| 443 | n/a | def __rmod__(b, a): |
|---|
| 444 | n/a | """a % b""" |
|---|
| 445 | n/a | div = a // b |
|---|
| 446 | n/a | return a - b * div |
|---|
| 447 | n/a | |
|---|
| 448 | n/a | def __pow__(a, b): |
|---|
| 449 | n/a | """a ** b |
|---|
| 450 | n/a | |
|---|
| 451 | n/a | If b is not an integer, the result will be a float or complex |
|---|
| 452 | n/a | since roots are generally irrational. If b is an integer, the |
|---|
| 453 | n/a | result will be rational. |
|---|
| 454 | n/a | |
|---|
| 455 | n/a | """ |
|---|
| 456 | n/a | if isinstance(b, numbers.Rational): |
|---|
| 457 | n/a | if b.denominator == 1: |
|---|
| 458 | n/a | power = b.numerator |
|---|
| 459 | n/a | if power >= 0: |
|---|
| 460 | n/a | return Fraction(a._numerator ** power, |
|---|
| 461 | n/a | a._denominator ** power, |
|---|
| 462 | n/a | _normalize=False) |
|---|
| 463 | n/a | elif a._numerator >= 0: |
|---|
| 464 | n/a | return Fraction(a._denominator ** -power, |
|---|
| 465 | n/a | a._numerator ** -power, |
|---|
| 466 | n/a | _normalize=False) |
|---|
| 467 | n/a | else: |
|---|
| 468 | n/a | return Fraction((-a._denominator) ** -power, |
|---|
| 469 | n/a | (-a._numerator) ** -power, |
|---|
| 470 | n/a | _normalize=False) |
|---|
| 471 | n/a | else: |
|---|
| 472 | n/a | # A fractional power will generally produce an |
|---|
| 473 | n/a | # irrational number. |
|---|
| 474 | n/a | return float(a) ** float(b) |
|---|
| 475 | n/a | else: |
|---|
| 476 | n/a | return float(a) ** b |
|---|
| 477 | n/a | |
|---|
| 478 | n/a | def __rpow__(b, a): |
|---|
| 479 | n/a | """a ** b""" |
|---|
| 480 | n/a | if b._denominator == 1 and b._numerator >= 0: |
|---|
| 481 | n/a | # If a is an int, keep it that way if possible. |
|---|
| 482 | n/a | return a ** b._numerator |
|---|
| 483 | n/a | |
|---|
| 484 | n/a | if isinstance(a, numbers.Rational): |
|---|
| 485 | n/a | return Fraction(a.numerator, a.denominator) ** b |
|---|
| 486 | n/a | |
|---|
| 487 | n/a | if b._denominator == 1: |
|---|
| 488 | n/a | return a ** b._numerator |
|---|
| 489 | n/a | |
|---|
| 490 | n/a | return a ** float(b) |
|---|
| 491 | n/a | |
|---|
| 492 | n/a | def __pos__(a): |
|---|
| 493 | n/a | """+a: Coerces a subclass instance to Fraction""" |
|---|
| 494 | n/a | return Fraction(a._numerator, a._denominator, _normalize=False) |
|---|
| 495 | n/a | |
|---|
| 496 | n/a | def __neg__(a): |
|---|
| 497 | n/a | """-a""" |
|---|
| 498 | n/a | return Fraction(-a._numerator, a._denominator, _normalize=False) |
|---|
| 499 | n/a | |
|---|
| 500 | n/a | def __abs__(a): |
|---|
| 501 | n/a | """abs(a)""" |
|---|
| 502 | n/a | return Fraction(abs(a._numerator), a._denominator, _normalize=False) |
|---|
| 503 | n/a | |
|---|
| 504 | n/a | def __trunc__(a): |
|---|
| 505 | n/a | """trunc(a)""" |
|---|
| 506 | n/a | if a._numerator < 0: |
|---|
| 507 | n/a | return -(-a._numerator // a._denominator) |
|---|
| 508 | n/a | else: |
|---|
| 509 | n/a | return a._numerator // a._denominator |
|---|
| 510 | n/a | |
|---|
| 511 | n/a | def __floor__(a): |
|---|
| 512 | n/a | """Will be math.floor(a) in 3.0.""" |
|---|
| 513 | n/a | return a.numerator // a.denominator |
|---|
| 514 | n/a | |
|---|
| 515 | n/a | def __ceil__(a): |
|---|
| 516 | n/a | """Will be math.ceil(a) in 3.0.""" |
|---|
| 517 | n/a | # The negations cleverly convince floordiv to return the ceiling. |
|---|
| 518 | n/a | return -(-a.numerator // a.denominator) |
|---|
| 519 | n/a | |
|---|
| 520 | n/a | def __round__(self, ndigits=None): |
|---|
| 521 | n/a | """Will be round(self, ndigits) in 3.0. |
|---|
| 522 | n/a | |
|---|
| 523 | n/a | Rounds half toward even. |
|---|
| 524 | n/a | """ |
|---|
| 525 | n/a | if ndigits is None: |
|---|
| 526 | n/a | floor, remainder = divmod(self.numerator, self.denominator) |
|---|
| 527 | n/a | if remainder * 2 < self.denominator: |
|---|
| 528 | n/a | return floor |
|---|
| 529 | n/a | elif remainder * 2 > self.denominator: |
|---|
| 530 | n/a | return floor + 1 |
|---|
| 531 | n/a | # Deal with the half case: |
|---|
| 532 | n/a | elif floor % 2 == 0: |
|---|
| 533 | n/a | return floor |
|---|
| 534 | n/a | else: |
|---|
| 535 | n/a | return floor + 1 |
|---|
| 536 | n/a | shift = 10**abs(ndigits) |
|---|
| 537 | n/a | # See _operator_fallbacks.forward to check that the results of |
|---|
| 538 | n/a | # these operations will always be Fraction and therefore have |
|---|
| 539 | n/a | # round(). |
|---|
| 540 | n/a | if ndigits > 0: |
|---|
| 541 | n/a | return Fraction(round(self * shift), shift) |
|---|
| 542 | n/a | else: |
|---|
| 543 | n/a | return Fraction(round(self / shift) * shift) |
|---|
| 544 | n/a | |
|---|
| 545 | n/a | def __hash__(self): |
|---|
| 546 | n/a | """hash(self)""" |
|---|
| 547 | n/a | |
|---|
| 548 | n/a | # XXX since this method is expensive, consider caching the result |
|---|
| 549 | n/a | |
|---|
| 550 | n/a | # In order to make sure that the hash of a Fraction agrees |
|---|
| 551 | n/a | # with the hash of a numerically equal integer, float or |
|---|
| 552 | n/a | # Decimal instance, we follow the rules for numeric hashes |
|---|
| 553 | n/a | # outlined in the documentation. (See library docs, 'Built-in |
|---|
| 554 | n/a | # Types'). |
|---|
| 555 | n/a | |
|---|
| 556 | n/a | # dinv is the inverse of self._denominator modulo the prime |
|---|
| 557 | n/a | # _PyHASH_MODULUS, or 0 if self._denominator is divisible by |
|---|
| 558 | n/a | # _PyHASH_MODULUS. |
|---|
| 559 | n/a | dinv = pow(self._denominator, _PyHASH_MODULUS - 2, _PyHASH_MODULUS) |
|---|
| 560 | n/a | if not dinv: |
|---|
| 561 | n/a | hash_ = _PyHASH_INF |
|---|
| 562 | n/a | else: |
|---|
| 563 | n/a | hash_ = abs(self._numerator) * dinv % _PyHASH_MODULUS |
|---|
| 564 | n/a | result = hash_ if self >= 0 else -hash_ |
|---|
| 565 | n/a | return -2 if result == -1 else result |
|---|
| 566 | n/a | |
|---|
| 567 | n/a | def __eq__(a, b): |
|---|
| 568 | n/a | """a == b""" |
|---|
| 569 | n/a | if type(b) is int: |
|---|
| 570 | n/a | return a._numerator == b and a._denominator == 1 |
|---|
| 571 | n/a | if isinstance(b, numbers.Rational): |
|---|
| 572 | n/a | return (a._numerator == b.numerator and |
|---|
| 573 | n/a | a._denominator == b.denominator) |
|---|
| 574 | n/a | if isinstance(b, numbers.Complex) and b.imag == 0: |
|---|
| 575 | n/a | b = b.real |
|---|
| 576 | n/a | if isinstance(b, float): |
|---|
| 577 | n/a | if math.isnan(b) or math.isinf(b): |
|---|
| 578 | n/a | # comparisons with an infinity or nan should behave in |
|---|
| 579 | n/a | # the same way for any finite a, so treat a as zero. |
|---|
| 580 | n/a | return 0.0 == b |
|---|
| 581 | n/a | else: |
|---|
| 582 | n/a | return a == a.from_float(b) |
|---|
| 583 | n/a | else: |
|---|
| 584 | n/a | # Since a doesn't know how to compare with b, let's give b |
|---|
| 585 | n/a | # a chance to compare itself with a. |
|---|
| 586 | n/a | return NotImplemented |
|---|
| 587 | n/a | |
|---|
| 588 | n/a | def _richcmp(self, other, op): |
|---|
| 589 | n/a | """Helper for comparison operators, for internal use only. |
|---|
| 590 | n/a | |
|---|
| 591 | n/a | Implement comparison between a Rational instance `self`, and |
|---|
| 592 | n/a | either another Rational instance or a float `other`. If |
|---|
| 593 | n/a | `other` is not a Rational instance or a float, return |
|---|
| 594 | n/a | NotImplemented. `op` should be one of the six standard |
|---|
| 595 | n/a | comparison operators. |
|---|
| 596 | n/a | |
|---|
| 597 | n/a | """ |
|---|
| 598 | n/a | # convert other to a Rational instance where reasonable. |
|---|
| 599 | n/a | if isinstance(other, numbers.Rational): |
|---|
| 600 | n/a | return op(self._numerator * other.denominator, |
|---|
| 601 | n/a | self._denominator * other.numerator) |
|---|
| 602 | n/a | if isinstance(other, float): |
|---|
| 603 | n/a | if math.isnan(other) or math.isinf(other): |
|---|
| 604 | n/a | return op(0.0, other) |
|---|
| 605 | n/a | else: |
|---|
| 606 | n/a | return op(self, self.from_float(other)) |
|---|
| 607 | n/a | else: |
|---|
| 608 | n/a | return NotImplemented |
|---|
| 609 | n/a | |
|---|
| 610 | n/a | def __lt__(a, b): |
|---|
| 611 | n/a | """a < b""" |
|---|
| 612 | n/a | return a._richcmp(b, operator.lt) |
|---|
| 613 | n/a | |
|---|
| 614 | n/a | def __gt__(a, b): |
|---|
| 615 | n/a | """a > b""" |
|---|
| 616 | n/a | return a._richcmp(b, operator.gt) |
|---|
| 617 | n/a | |
|---|
| 618 | n/a | def __le__(a, b): |
|---|
| 619 | n/a | """a <= b""" |
|---|
| 620 | n/a | return a._richcmp(b, operator.le) |
|---|
| 621 | n/a | |
|---|
| 622 | n/a | def __ge__(a, b): |
|---|
| 623 | n/a | """a >= b""" |
|---|
| 624 | n/a | return a._richcmp(b, operator.ge) |
|---|
| 625 | n/a | |
|---|
| 626 | n/a | def __bool__(a): |
|---|
| 627 | n/a | """a != 0""" |
|---|
| 628 | n/a | return a._numerator != 0 |
|---|
| 629 | n/a | |
|---|
| 630 | n/a | # support for pickling, copy, and deepcopy |
|---|
| 631 | n/a | |
|---|
| 632 | n/a | def __reduce__(self): |
|---|
| 633 | n/a | return (self.__class__, (str(self),)) |
|---|
| 634 | n/a | |
|---|
| 635 | n/a | def __copy__(self): |
|---|
| 636 | n/a | if type(self) == Fraction: |
|---|
| 637 | n/a | return self # I'm immutable; therefore I am my own clone |
|---|
| 638 | n/a | return self.__class__(self._numerator, self._denominator) |
|---|
| 639 | n/a | |
|---|
| 640 | n/a | def __deepcopy__(self, memo): |
|---|
| 641 | n/a | if type(self) == Fraction: |
|---|
| 642 | n/a | return self # My components are also immutable |
|---|
| 643 | n/a | return self.__class__(self._numerator, self._denominator) |
|---|