1 | n/a | """ Routines for manipulating RFC2047 encoded words. |
---|
2 | n/a | |
---|
3 | n/a | This is currently a package-private API, but will be considered for promotion |
---|
4 | n/a | to a public API if there is demand. |
---|
5 | n/a | |
---|
6 | n/a | """ |
---|
7 | n/a | |
---|
8 | n/a | # An ecoded word looks like this: |
---|
9 | n/a | # |
---|
10 | n/a | # =?charset[*lang]?cte?encoded_string?= |
---|
11 | n/a | # |
---|
12 | n/a | # for more information about charset see the charset module. Here it is one |
---|
13 | n/a | # of the preferred MIME charset names (hopefully; you never know when parsing). |
---|
14 | n/a | # cte (Content Transfer Encoding) is either 'q' or 'b' (ignoring case). In |
---|
15 | n/a | # theory other letters could be used for other encodings, but in practice this |
---|
16 | n/a | # (almost?) never happens. There could be a public API for adding entries |
---|
17 | n/a | # to the CTE tables, but YAGNI for now. 'q' is Quoted Printable, 'b' is |
---|
18 | n/a | # Base64. The meaning of encoded_string should be obvious. 'lang' is optional |
---|
19 | n/a | # as indicated by the brackets (they are not part of the syntax) but is almost |
---|
20 | n/a | # never encountered in practice. |
---|
21 | n/a | # |
---|
22 | n/a | # The general interface for a CTE decoder is that it takes the encoded_string |
---|
23 | n/a | # as its argument, and returns a tuple (cte_decoded_string, defects). The |
---|
24 | n/a | # cte_decoded_string is the original binary that was encoded using the |
---|
25 | n/a | # specified cte. 'defects' is a list of MessageDefect instances indicating any |
---|
26 | n/a | # problems encountered during conversion. 'charset' and 'lang' are the |
---|
27 | n/a | # corresponding strings extracted from the EW, case preserved. |
---|
28 | n/a | # |
---|
29 | n/a | # The general interface for a CTE encoder is that it takes a binary sequence |
---|
30 | n/a | # as input and returns the cte_encoded_string, which is an ascii-only string. |
---|
31 | n/a | # |
---|
32 | n/a | # Each decoder must also supply a length function that takes the binary |
---|
33 | n/a | # sequence as its argument and returns the length of the resulting encoded |
---|
34 | n/a | # string. |
---|
35 | n/a | # |
---|
36 | n/a | # The main API functions for the module are decode, which calls the decoder |
---|
37 | n/a | # referenced by the cte specifier, and encode, which adds the appropriate |
---|
38 | n/a | # RFC 2047 "chrome" to the encoded string, and can optionally automatically |
---|
39 | n/a | # select the shortest possible encoding. See their docstrings below for |
---|
40 | n/a | # details. |
---|
41 | n/a | |
---|
42 | n/a | import re |
---|
43 | n/a | import base64 |
---|
44 | n/a | import binascii |
---|
45 | n/a | import functools |
---|
46 | n/a | from string import ascii_letters, digits |
---|
47 | n/a | from email import errors |
---|
48 | n/a | |
---|
49 | n/a | __all__ = ['decode_q', |
---|
50 | n/a | 'encode_q', |
---|
51 | n/a | 'decode_b', |
---|
52 | n/a | 'encode_b', |
---|
53 | n/a | 'len_q', |
---|
54 | n/a | 'len_b', |
---|
55 | n/a | 'decode', |
---|
56 | n/a | 'encode', |
---|
57 | n/a | ] |
---|
58 | n/a | |
---|
59 | n/a | # |
---|
60 | n/a | # Quoted Printable |
---|
61 | n/a | # |
---|
62 | n/a | |
---|
63 | n/a | # regex based decoder. |
---|
64 | n/a | _q_byte_subber = functools.partial(re.compile(br'=([a-fA-F0-9]{2})').sub, |
---|
65 | n/a | lambda m: bytes.fromhex(m.group(1).decode())) |
---|
66 | n/a | |
---|
67 | n/a | def decode_q(encoded): |
---|
68 | n/a | encoded = encoded.replace(b'_', b' ') |
---|
69 | n/a | return _q_byte_subber(encoded), [] |
---|
70 | n/a | |
---|
71 | n/a | |
---|
72 | n/a | # dict mapping bytes to their encoded form |
---|
73 | n/a | class _QByteMap(dict): |
---|
74 | n/a | |
---|
75 | n/a | safe = b'-!*+/' + ascii_letters.encode('ascii') + digits.encode('ascii') |
---|
76 | n/a | |
---|
77 | n/a | def __missing__(self, key): |
---|
78 | n/a | if key in self.safe: |
---|
79 | n/a | self[key] = chr(key) |
---|
80 | n/a | else: |
---|
81 | n/a | self[key] = "={:02X}".format(key) |
---|
82 | n/a | return self[key] |
---|
83 | n/a | |
---|
84 | n/a | _q_byte_map = _QByteMap() |
---|
85 | n/a | |
---|
86 | n/a | # In headers spaces are mapped to '_'. |
---|
87 | n/a | _q_byte_map[ord(' ')] = '_' |
---|
88 | n/a | |
---|
89 | n/a | def encode_q(bstring): |
---|
90 | n/a | return ''.join(_q_byte_map[x] for x in bstring) |
---|
91 | n/a | |
---|
92 | n/a | def len_q(bstring): |
---|
93 | n/a | return sum(len(_q_byte_map[x]) for x in bstring) |
---|
94 | n/a | |
---|
95 | n/a | |
---|
96 | n/a | # |
---|
97 | n/a | # Base64 |
---|
98 | n/a | # |
---|
99 | n/a | |
---|
100 | n/a | def decode_b(encoded): |
---|
101 | n/a | defects = [] |
---|
102 | n/a | pad_err = len(encoded) % 4 |
---|
103 | n/a | if pad_err: |
---|
104 | n/a | defects.append(errors.InvalidBase64PaddingDefect()) |
---|
105 | n/a | padded_encoded = encoded + b'==='[:4-pad_err] |
---|
106 | n/a | else: |
---|
107 | n/a | padded_encoded = encoded |
---|
108 | n/a | try: |
---|
109 | n/a | return base64.b64decode(padded_encoded, validate=True), defects |
---|
110 | n/a | except binascii.Error: |
---|
111 | n/a | # Since we had correct padding, this must an invalid char error. |
---|
112 | n/a | defects = [errors.InvalidBase64CharactersDefect()] |
---|
113 | n/a | # The non-alphabet characters are ignored as far as padding |
---|
114 | n/a | # goes, but we don't know how many there are. So we'll just |
---|
115 | n/a | # try various padding lengths until something works. |
---|
116 | n/a | for i in 0, 1, 2, 3: |
---|
117 | n/a | try: |
---|
118 | n/a | return base64.b64decode(encoded+b'='*i, validate=False), defects |
---|
119 | n/a | except binascii.Error: |
---|
120 | n/a | if i==0: |
---|
121 | n/a | defects.append(errors.InvalidBase64PaddingDefect()) |
---|
122 | n/a | else: |
---|
123 | n/a | # This should never happen. |
---|
124 | n/a | raise AssertionError("unexpected binascii.Error") |
---|
125 | n/a | |
---|
126 | n/a | def encode_b(bstring): |
---|
127 | n/a | return base64.b64encode(bstring).decode('ascii') |
---|
128 | n/a | |
---|
129 | n/a | def len_b(bstring): |
---|
130 | n/a | groups_of_3, leftover = divmod(len(bstring), 3) |
---|
131 | n/a | # 4 bytes out for each 3 bytes (or nonzero fraction thereof) in. |
---|
132 | n/a | return groups_of_3 * 4 + (4 if leftover else 0) |
---|
133 | n/a | |
---|
134 | n/a | |
---|
135 | n/a | _cte_decoders = { |
---|
136 | n/a | 'q': decode_q, |
---|
137 | n/a | 'b': decode_b, |
---|
138 | n/a | } |
---|
139 | n/a | |
---|
140 | n/a | def decode(ew): |
---|
141 | n/a | """Decode encoded word and return (string, charset, lang, defects) tuple. |
---|
142 | n/a | |
---|
143 | n/a | An RFC 2047/2243 encoded word has the form: |
---|
144 | n/a | |
---|
145 | n/a | =?charset*lang?cte?encoded_string?= |
---|
146 | n/a | |
---|
147 | n/a | where '*lang' may be omitted but the other parts may not be. |
---|
148 | n/a | |
---|
149 | n/a | This function expects exactly such a string (that is, it does not check the |
---|
150 | n/a | syntax and may raise errors if the string is not well formed), and returns |
---|
151 | n/a | the encoded_string decoded first from its Content Transfer Encoding and |
---|
152 | n/a | then from the resulting bytes into unicode using the specified charset. If |
---|
153 | n/a | the cte-decoded string does not successfully decode using the specified |
---|
154 | n/a | character set, a defect is added to the defects list and the unknown octets |
---|
155 | n/a | are replaced by the unicode 'unknown' character \\uFDFF. |
---|
156 | n/a | |
---|
157 | n/a | The specified charset and language are returned. The default for language, |
---|
158 | n/a | which is rarely if ever encountered, is the empty string. |
---|
159 | n/a | |
---|
160 | n/a | """ |
---|
161 | n/a | _, charset, cte, cte_string, _ = ew.split('?') |
---|
162 | n/a | charset, _, lang = charset.partition('*') |
---|
163 | n/a | cte = cte.lower() |
---|
164 | n/a | # Recover the original bytes and do CTE decoding. |
---|
165 | n/a | bstring = cte_string.encode('ascii', 'surrogateescape') |
---|
166 | n/a | bstring, defects = _cte_decoders[cte](bstring) |
---|
167 | n/a | # Turn the CTE decoded bytes into unicode. |
---|
168 | n/a | try: |
---|
169 | n/a | string = bstring.decode(charset) |
---|
170 | n/a | except UnicodeError: |
---|
171 | n/a | defects.append(errors.UndecodableBytesDefect("Encoded word " |
---|
172 | n/a | "contains bytes not decodable using {} charset".format(charset))) |
---|
173 | n/a | string = bstring.decode(charset, 'surrogateescape') |
---|
174 | n/a | except LookupError: |
---|
175 | n/a | string = bstring.decode('ascii', 'surrogateescape') |
---|
176 | n/a | if charset.lower() != 'unknown-8bit': |
---|
177 | n/a | defects.append(errors.CharsetError("Unknown charset {} " |
---|
178 | n/a | "in encoded word; decoded as unknown bytes".format(charset))) |
---|
179 | n/a | return string, charset, lang, defects |
---|
180 | n/a | |
---|
181 | n/a | |
---|
182 | n/a | _cte_encoders = { |
---|
183 | n/a | 'q': encode_q, |
---|
184 | n/a | 'b': encode_b, |
---|
185 | n/a | } |
---|
186 | n/a | |
---|
187 | n/a | _cte_encode_length = { |
---|
188 | n/a | 'q': len_q, |
---|
189 | n/a | 'b': len_b, |
---|
190 | n/a | } |
---|
191 | n/a | |
---|
192 | n/a | def encode(string, charset='utf-8', encoding=None, lang=''): |
---|
193 | n/a | """Encode string using the CTE encoding that produces the shorter result. |
---|
194 | n/a | |
---|
195 | n/a | Produces an RFC 2047/2243 encoded word of the form: |
---|
196 | n/a | |
---|
197 | n/a | =?charset*lang?cte?encoded_string?= |
---|
198 | n/a | |
---|
199 | n/a | where '*lang' is omitted unless the 'lang' parameter is given a value. |
---|
200 | n/a | Optional argument charset (defaults to utf-8) specifies the charset to use |
---|
201 | n/a | to encode the string to binary before CTE encoding it. Optional argument |
---|
202 | n/a | 'encoding' is the cte specifier for the encoding that should be used ('q' |
---|
203 | n/a | or 'b'); if it is None (the default) the encoding which produces the |
---|
204 | n/a | shortest encoded sequence is used, except that 'q' is preferred if it is up |
---|
205 | n/a | to five characters longer. Optional argument 'lang' (default '') gives the |
---|
206 | n/a | RFC 2243 language string to specify in the encoded word. |
---|
207 | n/a | |
---|
208 | n/a | """ |
---|
209 | n/a | if charset == 'unknown-8bit': |
---|
210 | n/a | bstring = string.encode('ascii', 'surrogateescape') |
---|
211 | n/a | else: |
---|
212 | n/a | bstring = string.encode(charset) |
---|
213 | n/a | if encoding is None: |
---|
214 | n/a | qlen = _cte_encode_length['q'](bstring) |
---|
215 | n/a | blen = _cte_encode_length['b'](bstring) |
---|
216 | n/a | # Bias toward q. 5 is arbitrary. |
---|
217 | n/a | encoding = 'q' if qlen - blen < 5 else 'b' |
---|
218 | n/a | encoded = _cte_encoders[encoding](bstring) |
---|
219 | n/a | if lang: |
---|
220 | n/a | lang = '*' + lang |
---|
221 | n/a | return "=?{}{}?{}?{}?=".format(charset, lang, encoding, encoded) |
---|