1 | n/a | |
---|
2 | n/a | """ |
---|
3 | n/a | csv.py - read/write/investigate CSV files |
---|
4 | n/a | """ |
---|
5 | n/a | |
---|
6 | n/a | import re |
---|
7 | n/a | from _csv import Error, __version__, writer, reader, register_dialect, \ |
---|
8 | n/a | unregister_dialect, get_dialect, list_dialects, \ |
---|
9 | n/a | field_size_limit, \ |
---|
10 | n/a | QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONNUMERIC, QUOTE_NONE, \ |
---|
11 | n/a | __doc__ |
---|
12 | n/a | from _csv import Dialect as _Dialect |
---|
13 | n/a | |
---|
14 | n/a | from collections import OrderedDict |
---|
15 | n/a | from io import StringIO |
---|
16 | n/a | |
---|
17 | n/a | __all__ = ["QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE", |
---|
18 | n/a | "Error", "Dialect", "__doc__", "excel", "excel_tab", |
---|
19 | n/a | "field_size_limit", "reader", "writer", |
---|
20 | n/a | "register_dialect", "get_dialect", "list_dialects", "Sniffer", |
---|
21 | n/a | "unregister_dialect", "__version__", "DictReader", "DictWriter", |
---|
22 | n/a | "unix_dialect"] |
---|
23 | n/a | |
---|
24 | n/a | class Dialect: |
---|
25 | n/a | """Describe a CSV dialect. |
---|
26 | n/a | |
---|
27 | n/a | This must be subclassed (see csv.excel). Valid attributes are: |
---|
28 | n/a | delimiter, quotechar, escapechar, doublequote, skipinitialspace, |
---|
29 | n/a | lineterminator, quoting. |
---|
30 | n/a | |
---|
31 | n/a | """ |
---|
32 | n/a | _name = "" |
---|
33 | n/a | _valid = False |
---|
34 | n/a | # placeholders |
---|
35 | n/a | delimiter = None |
---|
36 | n/a | quotechar = None |
---|
37 | n/a | escapechar = None |
---|
38 | n/a | doublequote = None |
---|
39 | n/a | skipinitialspace = None |
---|
40 | n/a | lineterminator = None |
---|
41 | n/a | quoting = None |
---|
42 | n/a | |
---|
43 | n/a | def __init__(self): |
---|
44 | n/a | if self.__class__ != Dialect: |
---|
45 | n/a | self._valid = True |
---|
46 | n/a | self._validate() |
---|
47 | n/a | |
---|
48 | n/a | def _validate(self): |
---|
49 | n/a | try: |
---|
50 | n/a | _Dialect(self) |
---|
51 | n/a | except TypeError as e: |
---|
52 | n/a | # We do this for compatibility with py2.3 |
---|
53 | n/a | raise Error(str(e)) |
---|
54 | n/a | |
---|
55 | n/a | class excel(Dialect): |
---|
56 | n/a | """Describe the usual properties of Excel-generated CSV files.""" |
---|
57 | n/a | delimiter = ',' |
---|
58 | n/a | quotechar = '"' |
---|
59 | n/a | doublequote = True |
---|
60 | n/a | skipinitialspace = False |
---|
61 | n/a | lineterminator = '\r\n' |
---|
62 | n/a | quoting = QUOTE_MINIMAL |
---|
63 | n/a | register_dialect("excel", excel) |
---|
64 | n/a | |
---|
65 | n/a | class excel_tab(excel): |
---|
66 | n/a | """Describe the usual properties of Excel-generated TAB-delimited files.""" |
---|
67 | n/a | delimiter = '\t' |
---|
68 | n/a | register_dialect("excel-tab", excel_tab) |
---|
69 | n/a | |
---|
70 | n/a | class unix_dialect(Dialect): |
---|
71 | n/a | """Describe the usual properties of Unix-generated CSV files.""" |
---|
72 | n/a | delimiter = ',' |
---|
73 | n/a | quotechar = '"' |
---|
74 | n/a | doublequote = True |
---|
75 | n/a | skipinitialspace = False |
---|
76 | n/a | lineterminator = '\n' |
---|
77 | n/a | quoting = QUOTE_ALL |
---|
78 | n/a | register_dialect("unix", unix_dialect) |
---|
79 | n/a | |
---|
80 | n/a | |
---|
81 | n/a | class DictReader: |
---|
82 | n/a | def __init__(self, f, fieldnames=None, restkey=None, restval=None, |
---|
83 | n/a | dialect="excel", *args, **kwds): |
---|
84 | n/a | self._fieldnames = fieldnames # list of keys for the dict |
---|
85 | n/a | self.restkey = restkey # key to catch long rows |
---|
86 | n/a | self.restval = restval # default value for short rows |
---|
87 | n/a | self.reader = reader(f, dialect, *args, **kwds) |
---|
88 | n/a | self.dialect = dialect |
---|
89 | n/a | self.line_num = 0 |
---|
90 | n/a | |
---|
91 | n/a | def __iter__(self): |
---|
92 | n/a | return self |
---|
93 | n/a | |
---|
94 | n/a | @property |
---|
95 | n/a | def fieldnames(self): |
---|
96 | n/a | if self._fieldnames is None: |
---|
97 | n/a | try: |
---|
98 | n/a | self._fieldnames = next(self.reader) |
---|
99 | n/a | except StopIteration: |
---|
100 | n/a | pass |
---|
101 | n/a | self.line_num = self.reader.line_num |
---|
102 | n/a | return self._fieldnames |
---|
103 | n/a | |
---|
104 | n/a | @fieldnames.setter |
---|
105 | n/a | def fieldnames(self, value): |
---|
106 | n/a | self._fieldnames = value |
---|
107 | n/a | |
---|
108 | n/a | def __next__(self): |
---|
109 | n/a | if self.line_num == 0: |
---|
110 | n/a | # Used only for its side effect. |
---|
111 | n/a | self.fieldnames |
---|
112 | n/a | row = next(self.reader) |
---|
113 | n/a | self.line_num = self.reader.line_num |
---|
114 | n/a | |
---|
115 | n/a | # unlike the basic reader, we prefer not to return blanks, |
---|
116 | n/a | # because we will typically wind up with a dict full of None |
---|
117 | n/a | # values |
---|
118 | n/a | while row == []: |
---|
119 | n/a | row = next(self.reader) |
---|
120 | n/a | d = OrderedDict(zip(self.fieldnames, row)) |
---|
121 | n/a | lf = len(self.fieldnames) |
---|
122 | n/a | lr = len(row) |
---|
123 | n/a | if lf < lr: |
---|
124 | n/a | d[self.restkey] = row[lf:] |
---|
125 | n/a | elif lf > lr: |
---|
126 | n/a | for key in self.fieldnames[lr:]: |
---|
127 | n/a | d[key] = self.restval |
---|
128 | n/a | return d |
---|
129 | n/a | |
---|
130 | n/a | |
---|
131 | n/a | class DictWriter: |
---|
132 | n/a | def __init__(self, f, fieldnames, restval="", extrasaction="raise", |
---|
133 | n/a | dialect="excel", *args, **kwds): |
---|
134 | n/a | self.fieldnames = fieldnames # list of keys for the dict |
---|
135 | n/a | self.restval = restval # for writing short dicts |
---|
136 | n/a | if extrasaction.lower() not in ("raise", "ignore"): |
---|
137 | n/a | raise ValueError("extrasaction (%s) must be 'raise' or 'ignore'" |
---|
138 | n/a | % extrasaction) |
---|
139 | n/a | self.extrasaction = extrasaction |
---|
140 | n/a | self.writer = writer(f, dialect, *args, **kwds) |
---|
141 | n/a | |
---|
142 | n/a | def writeheader(self): |
---|
143 | n/a | header = dict(zip(self.fieldnames, self.fieldnames)) |
---|
144 | n/a | self.writerow(header) |
---|
145 | n/a | |
---|
146 | n/a | def _dict_to_list(self, rowdict): |
---|
147 | n/a | if self.extrasaction == "raise": |
---|
148 | n/a | wrong_fields = rowdict.keys() - self.fieldnames |
---|
149 | n/a | if wrong_fields: |
---|
150 | n/a | raise ValueError("dict contains fields not in fieldnames: " |
---|
151 | n/a | + ", ".join([repr(x) for x in wrong_fields])) |
---|
152 | n/a | return (rowdict.get(key, self.restval) for key in self.fieldnames) |
---|
153 | n/a | |
---|
154 | n/a | def writerow(self, rowdict): |
---|
155 | n/a | return self.writer.writerow(self._dict_to_list(rowdict)) |
---|
156 | n/a | |
---|
157 | n/a | def writerows(self, rowdicts): |
---|
158 | n/a | return self.writer.writerows(map(self._dict_to_list, rowdicts)) |
---|
159 | n/a | |
---|
160 | n/a | # Guard Sniffer's type checking against builds that exclude complex() |
---|
161 | n/a | try: |
---|
162 | n/a | complex |
---|
163 | n/a | except NameError: |
---|
164 | n/a | complex = float |
---|
165 | n/a | |
---|
166 | n/a | class Sniffer: |
---|
167 | n/a | ''' |
---|
168 | n/a | "Sniffs" the format of a CSV file (i.e. delimiter, quotechar) |
---|
169 | n/a | Returns a Dialect object. |
---|
170 | n/a | ''' |
---|
171 | n/a | def __init__(self): |
---|
172 | n/a | # in case there is more than one possible delimiter |
---|
173 | n/a | self.preferred = [',', '\t', ';', ' ', ':'] |
---|
174 | n/a | |
---|
175 | n/a | |
---|
176 | n/a | def sniff(self, sample, delimiters=None): |
---|
177 | n/a | """ |
---|
178 | n/a | Returns a dialect (or None) corresponding to the sample |
---|
179 | n/a | """ |
---|
180 | n/a | |
---|
181 | n/a | quotechar, doublequote, delimiter, skipinitialspace = \ |
---|
182 | n/a | self._guess_quote_and_delimiter(sample, delimiters) |
---|
183 | n/a | if not delimiter: |
---|
184 | n/a | delimiter, skipinitialspace = self._guess_delimiter(sample, |
---|
185 | n/a | delimiters) |
---|
186 | n/a | |
---|
187 | n/a | if not delimiter: |
---|
188 | n/a | raise Error("Could not determine delimiter") |
---|
189 | n/a | |
---|
190 | n/a | class dialect(Dialect): |
---|
191 | n/a | _name = "sniffed" |
---|
192 | n/a | lineterminator = '\r\n' |
---|
193 | n/a | quoting = QUOTE_MINIMAL |
---|
194 | n/a | # escapechar = '' |
---|
195 | n/a | |
---|
196 | n/a | dialect.doublequote = doublequote |
---|
197 | n/a | dialect.delimiter = delimiter |
---|
198 | n/a | # _csv.reader won't accept a quotechar of '' |
---|
199 | n/a | dialect.quotechar = quotechar or '"' |
---|
200 | n/a | dialect.skipinitialspace = skipinitialspace |
---|
201 | n/a | |
---|
202 | n/a | return dialect |
---|
203 | n/a | |
---|
204 | n/a | |
---|
205 | n/a | def _guess_quote_and_delimiter(self, data, delimiters): |
---|
206 | n/a | """ |
---|
207 | n/a | Looks for text enclosed between two identical quotes |
---|
208 | n/a | (the probable quotechar) which are preceded and followed |
---|
209 | n/a | by the same character (the probable delimiter). |
---|
210 | n/a | For example: |
---|
211 | n/a | ,'some text', |
---|
212 | n/a | The quote with the most wins, same with the delimiter. |
---|
213 | n/a | If there is no quotechar the delimiter can't be determined |
---|
214 | n/a | this way. |
---|
215 | n/a | """ |
---|
216 | n/a | |
---|
217 | n/a | matches = [] |
---|
218 | n/a | for restr in (r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?", |
---|
219 | n/a | r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)', # ".*?", |
---|
220 | n/a | r'(?P<delim>>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)', # ,".*?" |
---|
221 | n/a | r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'): # ".*?" (no delim, no space) |
---|
222 | n/a | regexp = re.compile(restr, re.DOTALL | re.MULTILINE) |
---|
223 | n/a | matches = regexp.findall(data) |
---|
224 | n/a | if matches: |
---|
225 | n/a | break |
---|
226 | n/a | |
---|
227 | n/a | if not matches: |
---|
228 | n/a | # (quotechar, doublequote, delimiter, skipinitialspace) |
---|
229 | n/a | return ('', False, None, 0) |
---|
230 | n/a | quotes = {} |
---|
231 | n/a | delims = {} |
---|
232 | n/a | spaces = 0 |
---|
233 | n/a | groupindex = regexp.groupindex |
---|
234 | n/a | for m in matches: |
---|
235 | n/a | n = groupindex['quote'] - 1 |
---|
236 | n/a | key = m[n] |
---|
237 | n/a | if key: |
---|
238 | n/a | quotes[key] = quotes.get(key, 0) + 1 |
---|
239 | n/a | try: |
---|
240 | n/a | n = groupindex['delim'] - 1 |
---|
241 | n/a | key = m[n] |
---|
242 | n/a | except KeyError: |
---|
243 | n/a | continue |
---|
244 | n/a | if key and (delimiters is None or key in delimiters): |
---|
245 | n/a | delims[key] = delims.get(key, 0) + 1 |
---|
246 | n/a | try: |
---|
247 | n/a | n = groupindex['space'] - 1 |
---|
248 | n/a | except KeyError: |
---|
249 | n/a | continue |
---|
250 | n/a | if m[n]: |
---|
251 | n/a | spaces += 1 |
---|
252 | n/a | |
---|
253 | n/a | quotechar = max(quotes, key=quotes.get) |
---|
254 | n/a | |
---|
255 | n/a | if delims: |
---|
256 | n/a | delim = max(delims, key=delims.get) |
---|
257 | n/a | skipinitialspace = delims[delim] == spaces |
---|
258 | n/a | if delim == '\n': # most likely a file with a single column |
---|
259 | n/a | delim = '' |
---|
260 | n/a | else: |
---|
261 | n/a | # there is *no* delimiter, it's a single column of quoted data |
---|
262 | n/a | delim = '' |
---|
263 | n/a | skipinitialspace = 0 |
---|
264 | n/a | |
---|
265 | n/a | # if we see an extra quote between delimiters, we've got a |
---|
266 | n/a | # double quoted format |
---|
267 | n/a | dq_regexp = re.compile( |
---|
268 | n/a | r"((%(delim)s)|^)\W*%(quote)s[^%(delim)s\n]*%(quote)s[^%(delim)s\n]*%(quote)s\W*((%(delim)s)|$)" % \ |
---|
269 | n/a | {'delim':re.escape(delim), 'quote':quotechar}, re.MULTILINE) |
---|
270 | n/a | |
---|
271 | n/a | |
---|
272 | n/a | |
---|
273 | n/a | if dq_regexp.search(data): |
---|
274 | n/a | doublequote = True |
---|
275 | n/a | else: |
---|
276 | n/a | doublequote = False |
---|
277 | n/a | |
---|
278 | n/a | return (quotechar, doublequote, delim, skipinitialspace) |
---|
279 | n/a | |
---|
280 | n/a | |
---|
281 | n/a | def _guess_delimiter(self, data, delimiters): |
---|
282 | n/a | """ |
---|
283 | n/a | The delimiter /should/ occur the same number of times on |
---|
284 | n/a | each row. However, due to malformed data, it may not. We don't want |
---|
285 | n/a | an all or nothing approach, so we allow for small variations in this |
---|
286 | n/a | number. |
---|
287 | n/a | 1) build a table of the frequency of each character on every line. |
---|
288 | n/a | 2) build a table of frequencies of this frequency (meta-frequency?), |
---|
289 | n/a | e.g. 'x occurred 5 times in 10 rows, 6 times in 1000 rows, |
---|
290 | n/a | 7 times in 2 rows' |
---|
291 | n/a | 3) use the mode of the meta-frequency to determine the /expected/ |
---|
292 | n/a | frequency for that character |
---|
293 | n/a | 4) find out how often the character actually meets that goal |
---|
294 | n/a | 5) the character that best meets its goal is the delimiter |
---|
295 | n/a | For performance reasons, the data is evaluated in chunks, so it can |
---|
296 | n/a | try and evaluate the smallest portion of the data possible, evaluating |
---|
297 | n/a | additional chunks as necessary. |
---|
298 | n/a | """ |
---|
299 | n/a | |
---|
300 | n/a | data = list(filter(None, data.split('\n'))) |
---|
301 | n/a | |
---|
302 | n/a | ascii = [chr(c) for c in range(127)] # 7-bit ASCII |
---|
303 | n/a | |
---|
304 | n/a | # build frequency tables |
---|
305 | n/a | chunkLength = min(10, len(data)) |
---|
306 | n/a | iteration = 0 |
---|
307 | n/a | charFrequency = {} |
---|
308 | n/a | modes = {} |
---|
309 | n/a | delims = {} |
---|
310 | n/a | start, end = 0, chunkLength |
---|
311 | n/a | while start < len(data): |
---|
312 | n/a | iteration += 1 |
---|
313 | n/a | for line in data[start:end]: |
---|
314 | n/a | for char in ascii: |
---|
315 | n/a | metaFrequency = charFrequency.get(char, {}) |
---|
316 | n/a | # must count even if frequency is 0 |
---|
317 | n/a | freq = line.count(char) |
---|
318 | n/a | # value is the mode |
---|
319 | n/a | metaFrequency[freq] = metaFrequency.get(freq, 0) + 1 |
---|
320 | n/a | charFrequency[char] = metaFrequency |
---|
321 | n/a | |
---|
322 | n/a | for char in charFrequency.keys(): |
---|
323 | n/a | items = list(charFrequency[char].items()) |
---|
324 | n/a | if len(items) == 1 and items[0][0] == 0: |
---|
325 | n/a | continue |
---|
326 | n/a | # get the mode of the frequencies |
---|
327 | n/a | if len(items) > 1: |
---|
328 | n/a | modes[char] = max(items, key=lambda x: x[1]) |
---|
329 | n/a | # adjust the mode - subtract the sum of all |
---|
330 | n/a | # other frequencies |
---|
331 | n/a | items.remove(modes[char]) |
---|
332 | n/a | modes[char] = (modes[char][0], modes[char][1] |
---|
333 | n/a | - sum(item[1] for item in items)) |
---|
334 | n/a | else: |
---|
335 | n/a | modes[char] = items[0] |
---|
336 | n/a | |
---|
337 | n/a | # build a list of possible delimiters |
---|
338 | n/a | modeList = modes.items() |
---|
339 | n/a | total = float(min(chunkLength * iteration, len(data))) |
---|
340 | n/a | # (rows of consistent data) / (number of rows) = 100% |
---|
341 | n/a | consistency = 1.0 |
---|
342 | n/a | # minimum consistency threshold |
---|
343 | n/a | threshold = 0.9 |
---|
344 | n/a | while len(delims) == 0 and consistency >= threshold: |
---|
345 | n/a | for k, v in modeList: |
---|
346 | n/a | if v[0] > 0 and v[1] > 0: |
---|
347 | n/a | if ((v[1]/total) >= consistency and |
---|
348 | n/a | (delimiters is None or k in delimiters)): |
---|
349 | n/a | delims[k] = v |
---|
350 | n/a | consistency -= 0.01 |
---|
351 | n/a | |
---|
352 | n/a | if len(delims) == 1: |
---|
353 | n/a | delim = list(delims.keys())[0] |
---|
354 | n/a | skipinitialspace = (data[0].count(delim) == |
---|
355 | n/a | data[0].count("%c " % delim)) |
---|
356 | n/a | return (delim, skipinitialspace) |
---|
357 | n/a | |
---|
358 | n/a | # analyze another chunkLength lines |
---|
359 | n/a | start = end |
---|
360 | n/a | end += chunkLength |
---|
361 | n/a | |
---|
362 | n/a | if not delims: |
---|
363 | n/a | return ('', 0) |
---|
364 | n/a | |
---|
365 | n/a | # if there's more than one, fall back to a 'preferred' list |
---|
366 | n/a | if len(delims) > 1: |
---|
367 | n/a | for d in self.preferred: |
---|
368 | n/a | if d in delims.keys(): |
---|
369 | n/a | skipinitialspace = (data[0].count(d) == |
---|
370 | n/a | data[0].count("%c " % d)) |
---|
371 | n/a | return (d, skipinitialspace) |
---|
372 | n/a | |
---|
373 | n/a | # nothing else indicates a preference, pick the character that |
---|
374 | n/a | # dominates(?) |
---|
375 | n/a | items = [(v,k) for (k,v) in delims.items()] |
---|
376 | n/a | items.sort() |
---|
377 | n/a | delim = items[-1][1] |
---|
378 | n/a | |
---|
379 | n/a | skipinitialspace = (data[0].count(delim) == |
---|
380 | n/a | data[0].count("%c " % delim)) |
---|
381 | n/a | return (delim, skipinitialspace) |
---|
382 | n/a | |
---|
383 | n/a | |
---|
384 | n/a | def has_header(self, sample): |
---|
385 | n/a | # Creates a dictionary of types of data in each column. If any |
---|
386 | n/a | # column is of a single type (say, integers), *except* for the first |
---|
387 | n/a | # row, then the first row is presumed to be labels. If the type |
---|
388 | n/a | # can't be determined, it is assumed to be a string in which case |
---|
389 | n/a | # the length of the string is the determining factor: if all of the |
---|
390 | n/a | # rows except for the first are the same length, it's a header. |
---|
391 | n/a | # Finally, a 'vote' is taken at the end for each column, adding or |
---|
392 | n/a | # subtracting from the likelihood of the first row being a header. |
---|
393 | n/a | |
---|
394 | n/a | rdr = reader(StringIO(sample), self.sniff(sample)) |
---|
395 | n/a | |
---|
396 | n/a | header = next(rdr) # assume first row is header |
---|
397 | n/a | |
---|
398 | n/a | columns = len(header) |
---|
399 | n/a | columnTypes = {} |
---|
400 | n/a | for i in range(columns): columnTypes[i] = None |
---|
401 | n/a | |
---|
402 | n/a | checked = 0 |
---|
403 | n/a | for row in rdr: |
---|
404 | n/a | # arbitrary number of rows to check, to keep it sane |
---|
405 | n/a | if checked > 20: |
---|
406 | n/a | break |
---|
407 | n/a | checked += 1 |
---|
408 | n/a | |
---|
409 | n/a | if len(row) != columns: |
---|
410 | n/a | continue # skip rows that have irregular number of columns |
---|
411 | n/a | |
---|
412 | n/a | for col in list(columnTypes.keys()): |
---|
413 | n/a | |
---|
414 | n/a | for thisType in [int, float, complex]: |
---|
415 | n/a | try: |
---|
416 | n/a | thisType(row[col]) |
---|
417 | n/a | break |
---|
418 | n/a | except (ValueError, OverflowError): |
---|
419 | n/a | pass |
---|
420 | n/a | else: |
---|
421 | n/a | # fallback to length of string |
---|
422 | n/a | thisType = len(row[col]) |
---|
423 | n/a | |
---|
424 | n/a | if thisType != columnTypes[col]: |
---|
425 | n/a | if columnTypes[col] is None: # add new column type |
---|
426 | n/a | columnTypes[col] = thisType |
---|
427 | n/a | else: |
---|
428 | n/a | # type is inconsistent, remove column from |
---|
429 | n/a | # consideration |
---|
430 | n/a | del columnTypes[col] |
---|
431 | n/a | |
---|
432 | n/a | # finally, compare results against first row and "vote" |
---|
433 | n/a | # on whether it's a header |
---|
434 | n/a | hasHeader = 0 |
---|
435 | n/a | for col, colType in columnTypes.items(): |
---|
436 | n/a | if type(colType) == type(0): # it's a length |
---|
437 | n/a | if len(header[col]) != colType: |
---|
438 | n/a | hasHeader += 1 |
---|
439 | n/a | else: |
---|
440 | n/a | hasHeader -= 1 |
---|
441 | n/a | else: # attempt typecast |
---|
442 | n/a | try: |
---|
443 | n/a | colType(header[col]) |
---|
444 | n/a | except (ValueError, TypeError): |
---|
445 | n/a | hasHeader += 1 |
---|
446 | n/a | else: |
---|
447 | n/a | hasHeader -= 1 |
---|
448 | n/a | |
---|
449 | n/a | return hasHeader > 0 |
---|