1 | n/a | # Copyright (c) 2004 Python Software Foundation. |
---|
2 | n/a | # All rights reserved. |
---|
3 | n/a | |
---|
4 | n/a | # Written by Eric Price <eprice at tjhsst.edu> |
---|
5 | n/a | # and Facundo Batista <facundo at taniquetil.com.ar> |
---|
6 | n/a | # and Raymond Hettinger <python at rcn.com> |
---|
7 | n/a | # and Aahz <aahz at pobox.com> |
---|
8 | n/a | # and Tim Peters |
---|
9 | n/a | |
---|
10 | n/a | # This module should be kept in sync with the latest updates of the |
---|
11 | n/a | # IBM specification as it evolves. Those updates will be treated |
---|
12 | n/a | # as bug fixes (deviation from the spec is a compatibility, usability |
---|
13 | n/a | # bug) and will be backported. At this point the spec is stabilizing |
---|
14 | n/a | # and the updates are becoming fewer, smaller, and less significant. |
---|
15 | n/a | |
---|
16 | n/a | """ |
---|
17 | n/a | This is an implementation of decimal floating point arithmetic based on |
---|
18 | n/a | the General Decimal Arithmetic Specification: |
---|
19 | n/a | |
---|
20 | n/a | http://speleotrove.com/decimal/decarith.html |
---|
21 | n/a | |
---|
22 | n/a | and IEEE standard 854-1987: |
---|
23 | n/a | |
---|
24 | n/a | http://en.wikipedia.org/wiki/IEEE_854-1987 |
---|
25 | n/a | |
---|
26 | n/a | Decimal floating point has finite precision with arbitrarily large bounds. |
---|
27 | n/a | |
---|
28 | n/a | The purpose of this module is to support arithmetic using familiar |
---|
29 | n/a | "schoolhouse" rules and to avoid some of the tricky representation |
---|
30 | n/a | issues associated with binary floating point. The package is especially |
---|
31 | n/a | useful for financial applications or for contexts where users have |
---|
32 | n/a | expectations that are at odds with binary floating point (for instance, |
---|
33 | n/a | in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead |
---|
34 | n/a | of 0.0; Decimal('1.00') % Decimal('0.1') returns the expected |
---|
35 | n/a | Decimal('0.00')). |
---|
36 | n/a | |
---|
37 | n/a | Here are some examples of using the decimal module: |
---|
38 | n/a | |
---|
39 | n/a | >>> from decimal import * |
---|
40 | n/a | >>> setcontext(ExtendedContext) |
---|
41 | n/a | >>> Decimal(0) |
---|
42 | n/a | Decimal('0') |
---|
43 | n/a | >>> Decimal('1') |
---|
44 | n/a | Decimal('1') |
---|
45 | n/a | >>> Decimal('-.0123') |
---|
46 | n/a | Decimal('-0.0123') |
---|
47 | n/a | >>> Decimal(123456) |
---|
48 | n/a | Decimal('123456') |
---|
49 | n/a | >>> Decimal('123.45e12345678') |
---|
50 | n/a | Decimal('1.2345E+12345680') |
---|
51 | n/a | >>> Decimal('1.33') + Decimal('1.27') |
---|
52 | n/a | Decimal('2.60') |
---|
53 | n/a | >>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41') |
---|
54 | n/a | Decimal('-2.20') |
---|
55 | n/a | >>> dig = Decimal(1) |
---|
56 | n/a | >>> print(dig / Decimal(3)) |
---|
57 | n/a | 0.333333333 |
---|
58 | n/a | >>> getcontext().prec = 18 |
---|
59 | n/a | >>> print(dig / Decimal(3)) |
---|
60 | n/a | 0.333333333333333333 |
---|
61 | n/a | >>> print(dig.sqrt()) |
---|
62 | n/a | 1 |
---|
63 | n/a | >>> print(Decimal(3).sqrt()) |
---|
64 | n/a | 1.73205080756887729 |
---|
65 | n/a | >>> print(Decimal(3) ** 123) |
---|
66 | n/a | 4.85192780976896427E+58 |
---|
67 | n/a | >>> inf = Decimal(1) / Decimal(0) |
---|
68 | n/a | >>> print(inf) |
---|
69 | n/a | Infinity |
---|
70 | n/a | >>> neginf = Decimal(-1) / Decimal(0) |
---|
71 | n/a | >>> print(neginf) |
---|
72 | n/a | -Infinity |
---|
73 | n/a | >>> print(neginf + inf) |
---|
74 | n/a | NaN |
---|
75 | n/a | >>> print(neginf * inf) |
---|
76 | n/a | -Infinity |
---|
77 | n/a | >>> print(dig / 0) |
---|
78 | n/a | Infinity |
---|
79 | n/a | >>> getcontext().traps[DivisionByZero] = 1 |
---|
80 | n/a | >>> print(dig / 0) |
---|
81 | n/a | Traceback (most recent call last): |
---|
82 | n/a | ... |
---|
83 | n/a | ... |
---|
84 | n/a | ... |
---|
85 | n/a | decimal.DivisionByZero: x / 0 |
---|
86 | n/a | >>> c = Context() |
---|
87 | n/a | >>> c.traps[InvalidOperation] = 0 |
---|
88 | n/a | >>> print(c.flags[InvalidOperation]) |
---|
89 | n/a | 0 |
---|
90 | n/a | >>> c.divide(Decimal(0), Decimal(0)) |
---|
91 | n/a | Decimal('NaN') |
---|
92 | n/a | >>> c.traps[InvalidOperation] = 1 |
---|
93 | n/a | >>> print(c.flags[InvalidOperation]) |
---|
94 | n/a | 1 |
---|
95 | n/a | >>> c.flags[InvalidOperation] = 0 |
---|
96 | n/a | >>> print(c.flags[InvalidOperation]) |
---|
97 | n/a | 0 |
---|
98 | n/a | >>> print(c.divide(Decimal(0), Decimal(0))) |
---|
99 | n/a | Traceback (most recent call last): |
---|
100 | n/a | ... |
---|
101 | n/a | ... |
---|
102 | n/a | ... |
---|
103 | n/a | decimal.InvalidOperation: 0 / 0 |
---|
104 | n/a | >>> print(c.flags[InvalidOperation]) |
---|
105 | n/a | 1 |
---|
106 | n/a | >>> c.flags[InvalidOperation] = 0 |
---|
107 | n/a | >>> c.traps[InvalidOperation] = 0 |
---|
108 | n/a | >>> print(c.divide(Decimal(0), Decimal(0))) |
---|
109 | n/a | NaN |
---|
110 | n/a | >>> print(c.flags[InvalidOperation]) |
---|
111 | n/a | 1 |
---|
112 | n/a | >>> |
---|
113 | n/a | """ |
---|
114 | n/a | |
---|
115 | n/a | __all__ = [ |
---|
116 | n/a | # Two major classes |
---|
117 | n/a | 'Decimal', 'Context', |
---|
118 | n/a | |
---|
119 | n/a | # Named tuple representation |
---|
120 | n/a | 'DecimalTuple', |
---|
121 | n/a | |
---|
122 | n/a | # Contexts |
---|
123 | n/a | 'DefaultContext', 'BasicContext', 'ExtendedContext', |
---|
124 | n/a | |
---|
125 | n/a | # Exceptions |
---|
126 | n/a | 'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero', |
---|
127 | n/a | 'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow', |
---|
128 | n/a | 'FloatOperation', |
---|
129 | n/a | |
---|
130 | n/a | # Exceptional conditions that trigger InvalidOperation |
---|
131 | n/a | 'DivisionImpossible', 'InvalidContext', 'ConversionSyntax', 'DivisionUndefined', |
---|
132 | n/a | |
---|
133 | n/a | # Constants for use in setting up contexts |
---|
134 | n/a | 'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING', |
---|
135 | n/a | 'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP', |
---|
136 | n/a | |
---|
137 | n/a | # Functions for manipulating contexts |
---|
138 | n/a | 'setcontext', 'getcontext', 'localcontext', |
---|
139 | n/a | |
---|
140 | n/a | # Limits for the C version for compatibility |
---|
141 | n/a | 'MAX_PREC', 'MAX_EMAX', 'MIN_EMIN', 'MIN_ETINY', |
---|
142 | n/a | |
---|
143 | n/a | # C version: compile time choice that enables the thread local context |
---|
144 | n/a | 'HAVE_THREADS' |
---|
145 | n/a | ] |
---|
146 | n/a | |
---|
147 | n/a | __xname__ = __name__ # sys.modules lookup (--without-threads) |
---|
148 | n/a | __name__ = 'decimal' # For pickling |
---|
149 | n/a | __version__ = '1.70' # Highest version of the spec this complies with |
---|
150 | n/a | # See http://speleotrove.com/decimal/ |
---|
151 | n/a | __libmpdec_version__ = "2.4.2" # compatible libmpdec version |
---|
152 | n/a | |
---|
153 | n/a | import math as _math |
---|
154 | n/a | import numbers as _numbers |
---|
155 | n/a | import sys |
---|
156 | n/a | |
---|
157 | n/a | try: |
---|
158 | n/a | from collections import namedtuple as _namedtuple |
---|
159 | n/a | DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent') |
---|
160 | n/a | except ImportError: |
---|
161 | n/a | DecimalTuple = lambda *args: args |
---|
162 | n/a | |
---|
163 | n/a | # Rounding |
---|
164 | n/a | ROUND_DOWN = 'ROUND_DOWN' |
---|
165 | n/a | ROUND_HALF_UP = 'ROUND_HALF_UP' |
---|
166 | n/a | ROUND_HALF_EVEN = 'ROUND_HALF_EVEN' |
---|
167 | n/a | ROUND_CEILING = 'ROUND_CEILING' |
---|
168 | n/a | ROUND_FLOOR = 'ROUND_FLOOR' |
---|
169 | n/a | ROUND_UP = 'ROUND_UP' |
---|
170 | n/a | ROUND_HALF_DOWN = 'ROUND_HALF_DOWN' |
---|
171 | n/a | ROUND_05UP = 'ROUND_05UP' |
---|
172 | n/a | |
---|
173 | n/a | # Compatibility with the C version |
---|
174 | n/a | HAVE_THREADS = True |
---|
175 | n/a | if sys.maxsize == 2**63-1: |
---|
176 | n/a | MAX_PREC = 999999999999999999 |
---|
177 | n/a | MAX_EMAX = 999999999999999999 |
---|
178 | n/a | MIN_EMIN = -999999999999999999 |
---|
179 | n/a | else: |
---|
180 | n/a | MAX_PREC = 425000000 |
---|
181 | n/a | MAX_EMAX = 425000000 |
---|
182 | n/a | MIN_EMIN = -425000000 |
---|
183 | n/a | |
---|
184 | n/a | MIN_ETINY = MIN_EMIN - (MAX_PREC-1) |
---|
185 | n/a | |
---|
186 | n/a | # Errors |
---|
187 | n/a | |
---|
188 | n/a | class DecimalException(ArithmeticError): |
---|
189 | n/a | """Base exception class. |
---|
190 | n/a | |
---|
191 | n/a | Used exceptions derive from this. |
---|
192 | n/a | If an exception derives from another exception besides this (such as |
---|
193 | n/a | Underflow (Inexact, Rounded, Subnormal) that indicates that it is only |
---|
194 | n/a | called if the others are present. This isn't actually used for |
---|
195 | n/a | anything, though. |
---|
196 | n/a | |
---|
197 | n/a | handle -- Called when context._raise_error is called and the |
---|
198 | n/a | trap_enabler is not set. First argument is self, second is the |
---|
199 | n/a | context. More arguments can be given, those being after |
---|
200 | n/a | the explanation in _raise_error (For example, |
---|
201 | n/a | context._raise_error(NewError, '(-x)!', self._sign) would |
---|
202 | n/a | call NewError().handle(context, self._sign).) |
---|
203 | n/a | |
---|
204 | n/a | To define a new exception, it should be sufficient to have it derive |
---|
205 | n/a | from DecimalException. |
---|
206 | n/a | """ |
---|
207 | n/a | def handle(self, context, *args): |
---|
208 | n/a | pass |
---|
209 | n/a | |
---|
210 | n/a | |
---|
211 | n/a | class Clamped(DecimalException): |
---|
212 | n/a | """Exponent of a 0 changed to fit bounds. |
---|
213 | n/a | |
---|
214 | n/a | This occurs and signals clamped if the exponent of a result has been |
---|
215 | n/a | altered in order to fit the constraints of a specific concrete |
---|
216 | n/a | representation. This may occur when the exponent of a zero result would |
---|
217 | n/a | be outside the bounds of a representation, or when a large normal |
---|
218 | n/a | number would have an encoded exponent that cannot be represented. In |
---|
219 | n/a | this latter case, the exponent is reduced to fit and the corresponding |
---|
220 | n/a | number of zero digits are appended to the coefficient ("fold-down"). |
---|
221 | n/a | """ |
---|
222 | n/a | |
---|
223 | n/a | class InvalidOperation(DecimalException): |
---|
224 | n/a | """An invalid operation was performed. |
---|
225 | n/a | |
---|
226 | n/a | Various bad things cause this: |
---|
227 | n/a | |
---|
228 | n/a | Something creates a signaling NaN |
---|
229 | n/a | -INF + INF |
---|
230 | n/a | 0 * (+-)INF |
---|
231 | n/a | (+-)INF / (+-)INF |
---|
232 | n/a | x % 0 |
---|
233 | n/a | (+-)INF % x |
---|
234 | n/a | x._rescale( non-integer ) |
---|
235 | n/a | sqrt(-x) , x > 0 |
---|
236 | n/a | 0 ** 0 |
---|
237 | n/a | x ** (non-integer) |
---|
238 | n/a | x ** (+-)INF |
---|
239 | n/a | An operand is invalid |
---|
240 | n/a | |
---|
241 | n/a | The result of the operation after these is a quiet positive NaN, |
---|
242 | n/a | except when the cause is a signaling NaN, in which case the result is |
---|
243 | n/a | also a quiet NaN, but with the original sign, and an optional |
---|
244 | n/a | diagnostic information. |
---|
245 | n/a | """ |
---|
246 | n/a | def handle(self, context, *args): |
---|
247 | n/a | if args: |
---|
248 | n/a | ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True) |
---|
249 | n/a | return ans._fix_nan(context) |
---|
250 | n/a | return _NaN |
---|
251 | n/a | |
---|
252 | n/a | class ConversionSyntax(InvalidOperation): |
---|
253 | n/a | """Trying to convert badly formed string. |
---|
254 | n/a | |
---|
255 | n/a | This occurs and signals invalid-operation if a string is being |
---|
256 | n/a | converted to a number and it does not conform to the numeric string |
---|
257 | n/a | syntax. The result is [0,qNaN]. |
---|
258 | n/a | """ |
---|
259 | n/a | def handle(self, context, *args): |
---|
260 | n/a | return _NaN |
---|
261 | n/a | |
---|
262 | n/a | class DivisionByZero(DecimalException, ZeroDivisionError): |
---|
263 | n/a | """Division by 0. |
---|
264 | n/a | |
---|
265 | n/a | This occurs and signals division-by-zero if division of a finite number |
---|
266 | n/a | by zero was attempted (during a divide-integer or divide operation, or a |
---|
267 | n/a | power operation with negative right-hand operand), and the dividend was |
---|
268 | n/a | not zero. |
---|
269 | n/a | |
---|
270 | n/a | The result of the operation is [sign,inf], where sign is the exclusive |
---|
271 | n/a | or of the signs of the operands for divide, or is 1 for an odd power of |
---|
272 | n/a | -0, for power. |
---|
273 | n/a | """ |
---|
274 | n/a | |
---|
275 | n/a | def handle(self, context, sign, *args): |
---|
276 | n/a | return _SignedInfinity[sign] |
---|
277 | n/a | |
---|
278 | n/a | class DivisionImpossible(InvalidOperation): |
---|
279 | n/a | """Cannot perform the division adequately. |
---|
280 | n/a | |
---|
281 | n/a | This occurs and signals invalid-operation if the integer result of a |
---|
282 | n/a | divide-integer or remainder operation had too many digits (would be |
---|
283 | n/a | longer than precision). The result is [0,qNaN]. |
---|
284 | n/a | """ |
---|
285 | n/a | |
---|
286 | n/a | def handle(self, context, *args): |
---|
287 | n/a | return _NaN |
---|
288 | n/a | |
---|
289 | n/a | class DivisionUndefined(InvalidOperation, ZeroDivisionError): |
---|
290 | n/a | """Undefined result of division. |
---|
291 | n/a | |
---|
292 | n/a | This occurs and signals invalid-operation if division by zero was |
---|
293 | n/a | attempted (during a divide-integer, divide, or remainder operation), and |
---|
294 | n/a | the dividend is also zero. The result is [0,qNaN]. |
---|
295 | n/a | """ |
---|
296 | n/a | |
---|
297 | n/a | def handle(self, context, *args): |
---|
298 | n/a | return _NaN |
---|
299 | n/a | |
---|
300 | n/a | class Inexact(DecimalException): |
---|
301 | n/a | """Had to round, losing information. |
---|
302 | n/a | |
---|
303 | n/a | This occurs and signals inexact whenever the result of an operation is |
---|
304 | n/a | not exact (that is, it needed to be rounded and any discarded digits |
---|
305 | n/a | were non-zero), or if an overflow or underflow condition occurs. The |
---|
306 | n/a | result in all cases is unchanged. |
---|
307 | n/a | |
---|
308 | n/a | The inexact signal may be tested (or trapped) to determine if a given |
---|
309 | n/a | operation (or sequence of operations) was inexact. |
---|
310 | n/a | """ |
---|
311 | n/a | |
---|
312 | n/a | class InvalidContext(InvalidOperation): |
---|
313 | n/a | """Invalid context. Unknown rounding, for example. |
---|
314 | n/a | |
---|
315 | n/a | This occurs and signals invalid-operation if an invalid context was |
---|
316 | n/a | detected during an operation. This can occur if contexts are not checked |
---|
317 | n/a | on creation and either the precision exceeds the capability of the |
---|
318 | n/a | underlying concrete representation or an unknown or unsupported rounding |
---|
319 | n/a | was specified. These aspects of the context need only be checked when |
---|
320 | n/a | the values are required to be used. The result is [0,qNaN]. |
---|
321 | n/a | """ |
---|
322 | n/a | |
---|
323 | n/a | def handle(self, context, *args): |
---|
324 | n/a | return _NaN |
---|
325 | n/a | |
---|
326 | n/a | class Rounded(DecimalException): |
---|
327 | n/a | """Number got rounded (not necessarily changed during rounding). |
---|
328 | n/a | |
---|
329 | n/a | This occurs and signals rounded whenever the result of an operation is |
---|
330 | n/a | rounded (that is, some zero or non-zero digits were discarded from the |
---|
331 | n/a | coefficient), or if an overflow or underflow condition occurs. The |
---|
332 | n/a | result in all cases is unchanged. |
---|
333 | n/a | |
---|
334 | n/a | The rounded signal may be tested (or trapped) to determine if a given |
---|
335 | n/a | operation (or sequence of operations) caused a loss of precision. |
---|
336 | n/a | """ |
---|
337 | n/a | |
---|
338 | n/a | class Subnormal(DecimalException): |
---|
339 | n/a | """Exponent < Emin before rounding. |
---|
340 | n/a | |
---|
341 | n/a | This occurs and signals subnormal whenever the result of a conversion or |
---|
342 | n/a | operation is subnormal (that is, its adjusted exponent is less than |
---|
343 | n/a | Emin, before any rounding). The result in all cases is unchanged. |
---|
344 | n/a | |
---|
345 | n/a | The subnormal signal may be tested (or trapped) to determine if a given |
---|
346 | n/a | or operation (or sequence of operations) yielded a subnormal result. |
---|
347 | n/a | """ |
---|
348 | n/a | |
---|
349 | n/a | class Overflow(Inexact, Rounded): |
---|
350 | n/a | """Numerical overflow. |
---|
351 | n/a | |
---|
352 | n/a | This occurs and signals overflow if the adjusted exponent of a result |
---|
353 | n/a | (from a conversion or from an operation that is not an attempt to divide |
---|
354 | n/a | by zero), after rounding, would be greater than the largest value that |
---|
355 | n/a | can be handled by the implementation (the value Emax). |
---|
356 | n/a | |
---|
357 | n/a | The result depends on the rounding mode: |
---|
358 | n/a | |
---|
359 | n/a | For round-half-up and round-half-even (and for round-half-down and |
---|
360 | n/a | round-up, if implemented), the result of the operation is [sign,inf], |
---|
361 | n/a | where sign is the sign of the intermediate result. For round-down, the |
---|
362 | n/a | result is the largest finite number that can be represented in the |
---|
363 | n/a | current precision, with the sign of the intermediate result. For |
---|
364 | n/a | round-ceiling, the result is the same as for round-down if the sign of |
---|
365 | n/a | the intermediate result is 1, or is [0,inf] otherwise. For round-floor, |
---|
366 | n/a | the result is the same as for round-down if the sign of the intermediate |
---|
367 | n/a | result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded |
---|
368 | n/a | will also be raised. |
---|
369 | n/a | """ |
---|
370 | n/a | |
---|
371 | n/a | def handle(self, context, sign, *args): |
---|
372 | n/a | if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN, |
---|
373 | n/a | ROUND_HALF_DOWN, ROUND_UP): |
---|
374 | n/a | return _SignedInfinity[sign] |
---|
375 | n/a | if sign == 0: |
---|
376 | n/a | if context.rounding == ROUND_CEILING: |
---|
377 | n/a | return _SignedInfinity[sign] |
---|
378 | n/a | return _dec_from_triple(sign, '9'*context.prec, |
---|
379 | n/a | context.Emax-context.prec+1) |
---|
380 | n/a | if sign == 1: |
---|
381 | n/a | if context.rounding == ROUND_FLOOR: |
---|
382 | n/a | return _SignedInfinity[sign] |
---|
383 | n/a | return _dec_from_triple(sign, '9'*context.prec, |
---|
384 | n/a | context.Emax-context.prec+1) |
---|
385 | n/a | |
---|
386 | n/a | |
---|
387 | n/a | class Underflow(Inexact, Rounded, Subnormal): |
---|
388 | n/a | """Numerical underflow with result rounded to 0. |
---|
389 | n/a | |
---|
390 | n/a | This occurs and signals underflow if a result is inexact and the |
---|
391 | n/a | adjusted exponent of the result would be smaller (more negative) than |
---|
392 | n/a | the smallest value that can be handled by the implementation (the value |
---|
393 | n/a | Emin). That is, the result is both inexact and subnormal. |
---|
394 | n/a | |
---|
395 | n/a | The result after an underflow will be a subnormal number rounded, if |
---|
396 | n/a | necessary, so that its exponent is not less than Etiny. This may result |
---|
397 | n/a | in 0 with the sign of the intermediate result and an exponent of Etiny. |
---|
398 | n/a | |
---|
399 | n/a | In all cases, Inexact, Rounded, and Subnormal will also be raised. |
---|
400 | n/a | """ |
---|
401 | n/a | |
---|
402 | n/a | class FloatOperation(DecimalException, TypeError): |
---|
403 | n/a | """Enable stricter semantics for mixing floats and Decimals. |
---|
404 | n/a | |
---|
405 | n/a | If the signal is not trapped (default), mixing floats and Decimals is |
---|
406 | n/a | permitted in the Decimal() constructor, context.create_decimal() and |
---|
407 | n/a | all comparison operators. Both conversion and comparisons are exact. |
---|
408 | n/a | Any occurrence of a mixed operation is silently recorded by setting |
---|
409 | n/a | FloatOperation in the context flags. Explicit conversions with |
---|
410 | n/a | Decimal.from_float() or context.create_decimal_from_float() do not |
---|
411 | n/a | set the flag. |
---|
412 | n/a | |
---|
413 | n/a | Otherwise (the signal is trapped), only equality comparisons and explicit |
---|
414 | n/a | conversions are silent. All other mixed operations raise FloatOperation. |
---|
415 | n/a | """ |
---|
416 | n/a | |
---|
417 | n/a | # List of public traps and flags |
---|
418 | n/a | _signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded, |
---|
419 | n/a | Underflow, InvalidOperation, Subnormal, FloatOperation] |
---|
420 | n/a | |
---|
421 | n/a | # Map conditions (per the spec) to signals |
---|
422 | n/a | _condition_map = {ConversionSyntax:InvalidOperation, |
---|
423 | n/a | DivisionImpossible:InvalidOperation, |
---|
424 | n/a | DivisionUndefined:InvalidOperation, |
---|
425 | n/a | InvalidContext:InvalidOperation} |
---|
426 | n/a | |
---|
427 | n/a | # Valid rounding modes |
---|
428 | n/a | _rounding_modes = (ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_CEILING, |
---|
429 | n/a | ROUND_FLOOR, ROUND_UP, ROUND_HALF_DOWN, ROUND_05UP) |
---|
430 | n/a | |
---|
431 | n/a | ##### Context Functions ################################################## |
---|
432 | n/a | |
---|
433 | n/a | # The getcontext() and setcontext() function manage access to a thread-local |
---|
434 | n/a | # current context. Py2.4 offers direct support for thread locals. If that |
---|
435 | n/a | # is not available, use threading.current_thread() which is slower but will |
---|
436 | n/a | # work for older Pythons. If threads are not part of the build, create a |
---|
437 | n/a | # mock threading object with threading.local() returning the module namespace. |
---|
438 | n/a | |
---|
439 | n/a | try: |
---|
440 | n/a | import threading |
---|
441 | n/a | except ImportError: |
---|
442 | n/a | # Python was compiled without threads; create a mock object instead |
---|
443 | n/a | class MockThreading(object): |
---|
444 | n/a | def local(self, sys=sys): |
---|
445 | n/a | return sys.modules[__xname__] |
---|
446 | n/a | threading = MockThreading() |
---|
447 | n/a | del MockThreading |
---|
448 | n/a | |
---|
449 | n/a | try: |
---|
450 | n/a | threading.local |
---|
451 | n/a | |
---|
452 | n/a | except AttributeError: |
---|
453 | n/a | |
---|
454 | n/a | # To fix reloading, force it to create a new context |
---|
455 | n/a | # Old contexts have different exceptions in their dicts, making problems. |
---|
456 | n/a | if hasattr(threading.current_thread(), '__decimal_context__'): |
---|
457 | n/a | del threading.current_thread().__decimal_context__ |
---|
458 | n/a | |
---|
459 | n/a | def setcontext(context): |
---|
460 | n/a | """Set this thread's context to context.""" |
---|
461 | n/a | if context in (DefaultContext, BasicContext, ExtendedContext): |
---|
462 | n/a | context = context.copy() |
---|
463 | n/a | context.clear_flags() |
---|
464 | n/a | threading.current_thread().__decimal_context__ = context |
---|
465 | n/a | |
---|
466 | n/a | def getcontext(): |
---|
467 | n/a | """Returns this thread's context. |
---|
468 | n/a | |
---|
469 | n/a | If this thread does not yet have a context, returns |
---|
470 | n/a | a new context and sets this thread's context. |
---|
471 | n/a | New contexts are copies of DefaultContext. |
---|
472 | n/a | """ |
---|
473 | n/a | try: |
---|
474 | n/a | return threading.current_thread().__decimal_context__ |
---|
475 | n/a | except AttributeError: |
---|
476 | n/a | context = Context() |
---|
477 | n/a | threading.current_thread().__decimal_context__ = context |
---|
478 | n/a | return context |
---|
479 | n/a | |
---|
480 | n/a | else: |
---|
481 | n/a | |
---|
482 | n/a | local = threading.local() |
---|
483 | n/a | if hasattr(local, '__decimal_context__'): |
---|
484 | n/a | del local.__decimal_context__ |
---|
485 | n/a | |
---|
486 | n/a | def getcontext(_local=local): |
---|
487 | n/a | """Returns this thread's context. |
---|
488 | n/a | |
---|
489 | n/a | If this thread does not yet have a context, returns |
---|
490 | n/a | a new context and sets this thread's context. |
---|
491 | n/a | New contexts are copies of DefaultContext. |
---|
492 | n/a | """ |
---|
493 | n/a | try: |
---|
494 | n/a | return _local.__decimal_context__ |
---|
495 | n/a | except AttributeError: |
---|
496 | n/a | context = Context() |
---|
497 | n/a | _local.__decimal_context__ = context |
---|
498 | n/a | return context |
---|
499 | n/a | |
---|
500 | n/a | def setcontext(context, _local=local): |
---|
501 | n/a | """Set this thread's context to context.""" |
---|
502 | n/a | if context in (DefaultContext, BasicContext, ExtendedContext): |
---|
503 | n/a | context = context.copy() |
---|
504 | n/a | context.clear_flags() |
---|
505 | n/a | _local.__decimal_context__ = context |
---|
506 | n/a | |
---|
507 | n/a | del threading, local # Don't contaminate the namespace |
---|
508 | n/a | |
---|
509 | n/a | def localcontext(ctx=None): |
---|
510 | n/a | """Return a context manager for a copy of the supplied context |
---|
511 | n/a | |
---|
512 | n/a | Uses a copy of the current context if no context is specified |
---|
513 | n/a | The returned context manager creates a local decimal context |
---|
514 | n/a | in a with statement: |
---|
515 | n/a | def sin(x): |
---|
516 | n/a | with localcontext() as ctx: |
---|
517 | n/a | ctx.prec += 2 |
---|
518 | n/a | # Rest of sin calculation algorithm |
---|
519 | n/a | # uses a precision 2 greater than normal |
---|
520 | n/a | return +s # Convert result to normal precision |
---|
521 | n/a | |
---|
522 | n/a | def sin(x): |
---|
523 | n/a | with localcontext(ExtendedContext): |
---|
524 | n/a | # Rest of sin calculation algorithm |
---|
525 | n/a | # uses the Extended Context from the |
---|
526 | n/a | # General Decimal Arithmetic Specification |
---|
527 | n/a | return +s # Convert result to normal context |
---|
528 | n/a | |
---|
529 | n/a | >>> setcontext(DefaultContext) |
---|
530 | n/a | >>> print(getcontext().prec) |
---|
531 | n/a | 28 |
---|
532 | n/a | >>> with localcontext(): |
---|
533 | n/a | ... ctx = getcontext() |
---|
534 | n/a | ... ctx.prec += 2 |
---|
535 | n/a | ... print(ctx.prec) |
---|
536 | n/a | ... |
---|
537 | n/a | 30 |
---|
538 | n/a | >>> with localcontext(ExtendedContext): |
---|
539 | n/a | ... print(getcontext().prec) |
---|
540 | n/a | ... |
---|
541 | n/a | 9 |
---|
542 | n/a | >>> print(getcontext().prec) |
---|
543 | n/a | 28 |
---|
544 | n/a | """ |
---|
545 | n/a | if ctx is None: ctx = getcontext() |
---|
546 | n/a | return _ContextManager(ctx) |
---|
547 | n/a | |
---|
548 | n/a | |
---|
549 | n/a | ##### Decimal class ####################################################### |
---|
550 | n/a | |
---|
551 | n/a | # Do not subclass Decimal from numbers.Real and do not register it as such |
---|
552 | n/a | # (because Decimals are not interoperable with floats). See the notes in |
---|
553 | n/a | # numbers.py for more detail. |
---|
554 | n/a | |
---|
555 | n/a | class Decimal(object): |
---|
556 | n/a | """Floating point class for decimal arithmetic.""" |
---|
557 | n/a | |
---|
558 | n/a | __slots__ = ('_exp','_int','_sign', '_is_special') |
---|
559 | n/a | # Generally, the value of the Decimal instance is given by |
---|
560 | n/a | # (-1)**_sign * _int * 10**_exp |
---|
561 | n/a | # Special values are signified by _is_special == True |
---|
562 | n/a | |
---|
563 | n/a | # We're immutable, so use __new__ not __init__ |
---|
564 | n/a | def __new__(cls, value="0", context=None): |
---|
565 | n/a | """Create a decimal point instance. |
---|
566 | n/a | |
---|
567 | n/a | >>> Decimal('3.14') # string input |
---|
568 | n/a | Decimal('3.14') |
---|
569 | n/a | >>> Decimal((0, (3, 1, 4), -2)) # tuple (sign, digit_tuple, exponent) |
---|
570 | n/a | Decimal('3.14') |
---|
571 | n/a | >>> Decimal(314) # int |
---|
572 | n/a | Decimal('314') |
---|
573 | n/a | >>> Decimal(Decimal(314)) # another decimal instance |
---|
574 | n/a | Decimal('314') |
---|
575 | n/a | >>> Decimal(' 3.14 \\n') # leading and trailing whitespace okay |
---|
576 | n/a | Decimal('3.14') |
---|
577 | n/a | """ |
---|
578 | n/a | |
---|
579 | n/a | # Note that the coefficient, self._int, is actually stored as |
---|
580 | n/a | # a string rather than as a tuple of digits. This speeds up |
---|
581 | n/a | # the "digits to integer" and "integer to digits" conversions |
---|
582 | n/a | # that are used in almost every arithmetic operation on |
---|
583 | n/a | # Decimals. This is an internal detail: the as_tuple function |
---|
584 | n/a | # and the Decimal constructor still deal with tuples of |
---|
585 | n/a | # digits. |
---|
586 | n/a | |
---|
587 | n/a | self = object.__new__(cls) |
---|
588 | n/a | |
---|
589 | n/a | # From a string |
---|
590 | n/a | # REs insist on real strings, so we can too. |
---|
591 | n/a | if isinstance(value, str): |
---|
592 | n/a | m = _parser(value.strip().replace("_", "")) |
---|
593 | n/a | if m is None: |
---|
594 | n/a | if context is None: |
---|
595 | n/a | context = getcontext() |
---|
596 | n/a | return context._raise_error(ConversionSyntax, |
---|
597 | n/a | "Invalid literal for Decimal: %r" % value) |
---|
598 | n/a | |
---|
599 | n/a | if m.group('sign') == "-": |
---|
600 | n/a | self._sign = 1 |
---|
601 | n/a | else: |
---|
602 | n/a | self._sign = 0 |
---|
603 | n/a | intpart = m.group('int') |
---|
604 | n/a | if intpart is not None: |
---|
605 | n/a | # finite number |
---|
606 | n/a | fracpart = m.group('frac') or '' |
---|
607 | n/a | exp = int(m.group('exp') or '0') |
---|
608 | n/a | self._int = str(int(intpart+fracpart)) |
---|
609 | n/a | self._exp = exp - len(fracpart) |
---|
610 | n/a | self._is_special = False |
---|
611 | n/a | else: |
---|
612 | n/a | diag = m.group('diag') |
---|
613 | n/a | if diag is not None: |
---|
614 | n/a | # NaN |
---|
615 | n/a | self._int = str(int(diag or '0')).lstrip('0') |
---|
616 | n/a | if m.group('signal'): |
---|
617 | n/a | self._exp = 'N' |
---|
618 | n/a | else: |
---|
619 | n/a | self._exp = 'n' |
---|
620 | n/a | else: |
---|
621 | n/a | # infinity |
---|
622 | n/a | self._int = '0' |
---|
623 | n/a | self._exp = 'F' |
---|
624 | n/a | self._is_special = True |
---|
625 | n/a | return self |
---|
626 | n/a | |
---|
627 | n/a | # From an integer |
---|
628 | n/a | if isinstance(value, int): |
---|
629 | n/a | if value >= 0: |
---|
630 | n/a | self._sign = 0 |
---|
631 | n/a | else: |
---|
632 | n/a | self._sign = 1 |
---|
633 | n/a | self._exp = 0 |
---|
634 | n/a | self._int = str(abs(value)) |
---|
635 | n/a | self._is_special = False |
---|
636 | n/a | return self |
---|
637 | n/a | |
---|
638 | n/a | # From another decimal |
---|
639 | n/a | if isinstance(value, Decimal): |
---|
640 | n/a | self._exp = value._exp |
---|
641 | n/a | self._sign = value._sign |
---|
642 | n/a | self._int = value._int |
---|
643 | n/a | self._is_special = value._is_special |
---|
644 | n/a | return self |
---|
645 | n/a | |
---|
646 | n/a | # From an internal working value |
---|
647 | n/a | if isinstance(value, _WorkRep): |
---|
648 | n/a | self._sign = value.sign |
---|
649 | n/a | self._int = str(value.int) |
---|
650 | n/a | self._exp = int(value.exp) |
---|
651 | n/a | self._is_special = False |
---|
652 | n/a | return self |
---|
653 | n/a | |
---|
654 | n/a | # tuple/list conversion (possibly from as_tuple()) |
---|
655 | n/a | if isinstance(value, (list,tuple)): |
---|
656 | n/a | if len(value) != 3: |
---|
657 | n/a | raise ValueError('Invalid tuple size in creation of Decimal ' |
---|
658 | n/a | 'from list or tuple. The list or tuple ' |
---|
659 | n/a | 'should have exactly three elements.') |
---|
660 | n/a | # process sign. The isinstance test rejects floats |
---|
661 | n/a | if not (isinstance(value[0], int) and value[0] in (0,1)): |
---|
662 | n/a | raise ValueError("Invalid sign. The first value in the tuple " |
---|
663 | n/a | "should be an integer; either 0 for a " |
---|
664 | n/a | "positive number or 1 for a negative number.") |
---|
665 | n/a | self._sign = value[0] |
---|
666 | n/a | if value[2] == 'F': |
---|
667 | n/a | # infinity: value[1] is ignored |
---|
668 | n/a | self._int = '0' |
---|
669 | n/a | self._exp = value[2] |
---|
670 | n/a | self._is_special = True |
---|
671 | n/a | else: |
---|
672 | n/a | # process and validate the digits in value[1] |
---|
673 | n/a | digits = [] |
---|
674 | n/a | for digit in value[1]: |
---|
675 | n/a | if isinstance(digit, int) and 0 <= digit <= 9: |
---|
676 | n/a | # skip leading zeros |
---|
677 | n/a | if digits or digit != 0: |
---|
678 | n/a | digits.append(digit) |
---|
679 | n/a | else: |
---|
680 | n/a | raise ValueError("The second value in the tuple must " |
---|
681 | n/a | "be composed of integers in the range " |
---|
682 | n/a | "0 through 9.") |
---|
683 | n/a | if value[2] in ('n', 'N'): |
---|
684 | n/a | # NaN: digits form the diagnostic |
---|
685 | n/a | self._int = ''.join(map(str, digits)) |
---|
686 | n/a | self._exp = value[2] |
---|
687 | n/a | self._is_special = True |
---|
688 | n/a | elif isinstance(value[2], int): |
---|
689 | n/a | # finite number: digits give the coefficient |
---|
690 | n/a | self._int = ''.join(map(str, digits or [0])) |
---|
691 | n/a | self._exp = value[2] |
---|
692 | n/a | self._is_special = False |
---|
693 | n/a | else: |
---|
694 | n/a | raise ValueError("The third value in the tuple must " |
---|
695 | n/a | "be an integer, or one of the " |
---|
696 | n/a | "strings 'F', 'n', 'N'.") |
---|
697 | n/a | return self |
---|
698 | n/a | |
---|
699 | n/a | if isinstance(value, float): |
---|
700 | n/a | if context is None: |
---|
701 | n/a | context = getcontext() |
---|
702 | n/a | context._raise_error(FloatOperation, |
---|
703 | n/a | "strict semantics for mixing floats and Decimals are " |
---|
704 | n/a | "enabled") |
---|
705 | n/a | value = Decimal.from_float(value) |
---|
706 | n/a | self._exp = value._exp |
---|
707 | n/a | self._sign = value._sign |
---|
708 | n/a | self._int = value._int |
---|
709 | n/a | self._is_special = value._is_special |
---|
710 | n/a | return self |
---|
711 | n/a | |
---|
712 | n/a | raise TypeError("Cannot convert %r to Decimal" % value) |
---|
713 | n/a | |
---|
714 | n/a | @classmethod |
---|
715 | n/a | def from_float(cls, f): |
---|
716 | n/a | """Converts a float to a decimal number, exactly. |
---|
717 | n/a | |
---|
718 | n/a | Note that Decimal.from_float(0.1) is not the same as Decimal('0.1'). |
---|
719 | n/a | Since 0.1 is not exactly representable in binary floating point, the |
---|
720 | n/a | value is stored as the nearest representable value which is |
---|
721 | n/a | 0x1.999999999999ap-4. The exact equivalent of the value in decimal |
---|
722 | n/a | is 0.1000000000000000055511151231257827021181583404541015625. |
---|
723 | n/a | |
---|
724 | n/a | >>> Decimal.from_float(0.1) |
---|
725 | n/a | Decimal('0.1000000000000000055511151231257827021181583404541015625') |
---|
726 | n/a | >>> Decimal.from_float(float('nan')) |
---|
727 | n/a | Decimal('NaN') |
---|
728 | n/a | >>> Decimal.from_float(float('inf')) |
---|
729 | n/a | Decimal('Infinity') |
---|
730 | n/a | >>> Decimal.from_float(-float('inf')) |
---|
731 | n/a | Decimal('-Infinity') |
---|
732 | n/a | >>> Decimal.from_float(-0.0) |
---|
733 | n/a | Decimal('-0') |
---|
734 | n/a | |
---|
735 | n/a | """ |
---|
736 | n/a | if isinstance(f, int): # handle integer inputs |
---|
737 | n/a | return cls(f) |
---|
738 | n/a | if not isinstance(f, float): |
---|
739 | n/a | raise TypeError("argument must be int or float.") |
---|
740 | n/a | if _math.isinf(f) or _math.isnan(f): |
---|
741 | n/a | return cls(repr(f)) |
---|
742 | n/a | if _math.copysign(1.0, f) == 1.0: |
---|
743 | n/a | sign = 0 |
---|
744 | n/a | else: |
---|
745 | n/a | sign = 1 |
---|
746 | n/a | n, d = abs(f).as_integer_ratio() |
---|
747 | n/a | k = d.bit_length() - 1 |
---|
748 | n/a | result = _dec_from_triple(sign, str(n*5**k), -k) |
---|
749 | n/a | if cls is Decimal: |
---|
750 | n/a | return result |
---|
751 | n/a | else: |
---|
752 | n/a | return cls(result) |
---|
753 | n/a | |
---|
754 | n/a | def _isnan(self): |
---|
755 | n/a | """Returns whether the number is not actually one. |
---|
756 | n/a | |
---|
757 | n/a | 0 if a number |
---|
758 | n/a | 1 if NaN |
---|
759 | n/a | 2 if sNaN |
---|
760 | n/a | """ |
---|
761 | n/a | if self._is_special: |
---|
762 | n/a | exp = self._exp |
---|
763 | n/a | if exp == 'n': |
---|
764 | n/a | return 1 |
---|
765 | n/a | elif exp == 'N': |
---|
766 | n/a | return 2 |
---|
767 | n/a | return 0 |
---|
768 | n/a | |
---|
769 | n/a | def _isinfinity(self): |
---|
770 | n/a | """Returns whether the number is infinite |
---|
771 | n/a | |
---|
772 | n/a | 0 if finite or not a number |
---|
773 | n/a | 1 if +INF |
---|
774 | n/a | -1 if -INF |
---|
775 | n/a | """ |
---|
776 | n/a | if self._exp == 'F': |
---|
777 | n/a | if self._sign: |
---|
778 | n/a | return -1 |
---|
779 | n/a | return 1 |
---|
780 | n/a | return 0 |
---|
781 | n/a | |
---|
782 | n/a | def _check_nans(self, other=None, context=None): |
---|
783 | n/a | """Returns whether the number is not actually one. |
---|
784 | n/a | |
---|
785 | n/a | if self, other are sNaN, signal |
---|
786 | n/a | if self, other are NaN return nan |
---|
787 | n/a | return 0 |
---|
788 | n/a | |
---|
789 | n/a | Done before operations. |
---|
790 | n/a | """ |
---|
791 | n/a | |
---|
792 | n/a | self_is_nan = self._isnan() |
---|
793 | n/a | if other is None: |
---|
794 | n/a | other_is_nan = False |
---|
795 | n/a | else: |
---|
796 | n/a | other_is_nan = other._isnan() |
---|
797 | n/a | |
---|
798 | n/a | if self_is_nan or other_is_nan: |
---|
799 | n/a | if context is None: |
---|
800 | n/a | context = getcontext() |
---|
801 | n/a | |
---|
802 | n/a | if self_is_nan == 2: |
---|
803 | n/a | return context._raise_error(InvalidOperation, 'sNaN', |
---|
804 | n/a | self) |
---|
805 | n/a | if other_is_nan == 2: |
---|
806 | n/a | return context._raise_error(InvalidOperation, 'sNaN', |
---|
807 | n/a | other) |
---|
808 | n/a | if self_is_nan: |
---|
809 | n/a | return self._fix_nan(context) |
---|
810 | n/a | |
---|
811 | n/a | return other._fix_nan(context) |
---|
812 | n/a | return 0 |
---|
813 | n/a | |
---|
814 | n/a | def _compare_check_nans(self, other, context): |
---|
815 | n/a | """Version of _check_nans used for the signaling comparisons |
---|
816 | n/a | compare_signal, __le__, __lt__, __ge__, __gt__. |
---|
817 | n/a | |
---|
818 | n/a | Signal InvalidOperation if either self or other is a (quiet |
---|
819 | n/a | or signaling) NaN. Signaling NaNs take precedence over quiet |
---|
820 | n/a | NaNs. |
---|
821 | n/a | |
---|
822 | n/a | Return 0 if neither operand is a NaN. |
---|
823 | n/a | |
---|
824 | n/a | """ |
---|
825 | n/a | if context is None: |
---|
826 | n/a | context = getcontext() |
---|
827 | n/a | |
---|
828 | n/a | if self._is_special or other._is_special: |
---|
829 | n/a | if self.is_snan(): |
---|
830 | n/a | return context._raise_error(InvalidOperation, |
---|
831 | n/a | 'comparison involving sNaN', |
---|
832 | n/a | self) |
---|
833 | n/a | elif other.is_snan(): |
---|
834 | n/a | return context._raise_error(InvalidOperation, |
---|
835 | n/a | 'comparison involving sNaN', |
---|
836 | n/a | other) |
---|
837 | n/a | elif self.is_qnan(): |
---|
838 | n/a | return context._raise_error(InvalidOperation, |
---|
839 | n/a | 'comparison involving NaN', |
---|
840 | n/a | self) |
---|
841 | n/a | elif other.is_qnan(): |
---|
842 | n/a | return context._raise_error(InvalidOperation, |
---|
843 | n/a | 'comparison involving NaN', |
---|
844 | n/a | other) |
---|
845 | n/a | return 0 |
---|
846 | n/a | |
---|
847 | n/a | def __bool__(self): |
---|
848 | n/a | """Return True if self is nonzero; otherwise return False. |
---|
849 | n/a | |
---|
850 | n/a | NaNs and infinities are considered nonzero. |
---|
851 | n/a | """ |
---|
852 | n/a | return self._is_special or self._int != '0' |
---|
853 | n/a | |
---|
854 | n/a | def _cmp(self, other): |
---|
855 | n/a | """Compare the two non-NaN decimal instances self and other. |
---|
856 | n/a | |
---|
857 | n/a | Returns -1 if self < other, 0 if self == other and 1 |
---|
858 | n/a | if self > other. This routine is for internal use only.""" |
---|
859 | n/a | |
---|
860 | n/a | if self._is_special or other._is_special: |
---|
861 | n/a | self_inf = self._isinfinity() |
---|
862 | n/a | other_inf = other._isinfinity() |
---|
863 | n/a | if self_inf == other_inf: |
---|
864 | n/a | return 0 |
---|
865 | n/a | elif self_inf < other_inf: |
---|
866 | n/a | return -1 |
---|
867 | n/a | else: |
---|
868 | n/a | return 1 |
---|
869 | n/a | |
---|
870 | n/a | # check for zeros; Decimal('0') == Decimal('-0') |
---|
871 | n/a | if not self: |
---|
872 | n/a | if not other: |
---|
873 | n/a | return 0 |
---|
874 | n/a | else: |
---|
875 | n/a | return -((-1)**other._sign) |
---|
876 | n/a | if not other: |
---|
877 | n/a | return (-1)**self._sign |
---|
878 | n/a | |
---|
879 | n/a | # If different signs, neg one is less |
---|
880 | n/a | if other._sign < self._sign: |
---|
881 | n/a | return -1 |
---|
882 | n/a | if self._sign < other._sign: |
---|
883 | n/a | return 1 |
---|
884 | n/a | |
---|
885 | n/a | self_adjusted = self.adjusted() |
---|
886 | n/a | other_adjusted = other.adjusted() |
---|
887 | n/a | if self_adjusted == other_adjusted: |
---|
888 | n/a | self_padded = self._int + '0'*(self._exp - other._exp) |
---|
889 | n/a | other_padded = other._int + '0'*(other._exp - self._exp) |
---|
890 | n/a | if self_padded == other_padded: |
---|
891 | n/a | return 0 |
---|
892 | n/a | elif self_padded < other_padded: |
---|
893 | n/a | return -(-1)**self._sign |
---|
894 | n/a | else: |
---|
895 | n/a | return (-1)**self._sign |
---|
896 | n/a | elif self_adjusted > other_adjusted: |
---|
897 | n/a | return (-1)**self._sign |
---|
898 | n/a | else: # self_adjusted < other_adjusted |
---|
899 | n/a | return -((-1)**self._sign) |
---|
900 | n/a | |
---|
901 | n/a | # Note: The Decimal standard doesn't cover rich comparisons for |
---|
902 | n/a | # Decimals. In particular, the specification is silent on the |
---|
903 | n/a | # subject of what should happen for a comparison involving a NaN. |
---|
904 | n/a | # We take the following approach: |
---|
905 | n/a | # |
---|
906 | n/a | # == comparisons involving a quiet NaN always return False |
---|
907 | n/a | # != comparisons involving a quiet NaN always return True |
---|
908 | n/a | # == or != comparisons involving a signaling NaN signal |
---|
909 | n/a | # InvalidOperation, and return False or True as above if the |
---|
910 | n/a | # InvalidOperation is not trapped. |
---|
911 | n/a | # <, >, <= and >= comparisons involving a (quiet or signaling) |
---|
912 | n/a | # NaN signal InvalidOperation, and return False if the |
---|
913 | n/a | # InvalidOperation is not trapped. |
---|
914 | n/a | # |
---|
915 | n/a | # This behavior is designed to conform as closely as possible to |
---|
916 | n/a | # that specified by IEEE 754. |
---|
917 | n/a | |
---|
918 | n/a | def __eq__(self, other, context=None): |
---|
919 | n/a | self, other = _convert_for_comparison(self, other, equality_op=True) |
---|
920 | n/a | if other is NotImplemented: |
---|
921 | n/a | return other |
---|
922 | n/a | if self._check_nans(other, context): |
---|
923 | n/a | return False |
---|
924 | n/a | return self._cmp(other) == 0 |
---|
925 | n/a | |
---|
926 | n/a | def __lt__(self, other, context=None): |
---|
927 | n/a | self, other = _convert_for_comparison(self, other) |
---|
928 | n/a | if other is NotImplemented: |
---|
929 | n/a | return other |
---|
930 | n/a | ans = self._compare_check_nans(other, context) |
---|
931 | n/a | if ans: |
---|
932 | n/a | return False |
---|
933 | n/a | return self._cmp(other) < 0 |
---|
934 | n/a | |
---|
935 | n/a | def __le__(self, other, context=None): |
---|
936 | n/a | self, other = _convert_for_comparison(self, other) |
---|
937 | n/a | if other is NotImplemented: |
---|
938 | n/a | return other |
---|
939 | n/a | ans = self._compare_check_nans(other, context) |
---|
940 | n/a | if ans: |
---|
941 | n/a | return False |
---|
942 | n/a | return self._cmp(other) <= 0 |
---|
943 | n/a | |
---|
944 | n/a | def __gt__(self, other, context=None): |
---|
945 | n/a | self, other = _convert_for_comparison(self, other) |
---|
946 | n/a | if other is NotImplemented: |
---|
947 | n/a | return other |
---|
948 | n/a | ans = self._compare_check_nans(other, context) |
---|
949 | n/a | if ans: |
---|
950 | n/a | return False |
---|
951 | n/a | return self._cmp(other) > 0 |
---|
952 | n/a | |
---|
953 | n/a | def __ge__(self, other, context=None): |
---|
954 | n/a | self, other = _convert_for_comparison(self, other) |
---|
955 | n/a | if other is NotImplemented: |
---|
956 | n/a | return other |
---|
957 | n/a | ans = self._compare_check_nans(other, context) |
---|
958 | n/a | if ans: |
---|
959 | n/a | return False |
---|
960 | n/a | return self._cmp(other) >= 0 |
---|
961 | n/a | |
---|
962 | n/a | def compare(self, other, context=None): |
---|
963 | n/a | """Compare self to other. Return a decimal value: |
---|
964 | n/a | |
---|
965 | n/a | a or b is a NaN ==> Decimal('NaN') |
---|
966 | n/a | a < b ==> Decimal('-1') |
---|
967 | n/a | a == b ==> Decimal('0') |
---|
968 | n/a | a > b ==> Decimal('1') |
---|
969 | n/a | """ |
---|
970 | n/a | other = _convert_other(other, raiseit=True) |
---|
971 | n/a | |
---|
972 | n/a | # Compare(NaN, NaN) = NaN |
---|
973 | n/a | if (self._is_special or other and other._is_special): |
---|
974 | n/a | ans = self._check_nans(other, context) |
---|
975 | n/a | if ans: |
---|
976 | n/a | return ans |
---|
977 | n/a | |
---|
978 | n/a | return Decimal(self._cmp(other)) |
---|
979 | n/a | |
---|
980 | n/a | def __hash__(self): |
---|
981 | n/a | """x.__hash__() <==> hash(x)""" |
---|
982 | n/a | |
---|
983 | n/a | # In order to make sure that the hash of a Decimal instance |
---|
984 | n/a | # agrees with the hash of a numerically equal integer, float |
---|
985 | n/a | # or Fraction, we follow the rules for numeric hashes outlined |
---|
986 | n/a | # in the documentation. (See library docs, 'Built-in Types'). |
---|
987 | n/a | if self._is_special: |
---|
988 | n/a | if self.is_snan(): |
---|
989 | n/a | raise TypeError('Cannot hash a signaling NaN value.') |
---|
990 | n/a | elif self.is_nan(): |
---|
991 | n/a | return _PyHASH_NAN |
---|
992 | n/a | else: |
---|
993 | n/a | if self._sign: |
---|
994 | n/a | return -_PyHASH_INF |
---|
995 | n/a | else: |
---|
996 | n/a | return _PyHASH_INF |
---|
997 | n/a | |
---|
998 | n/a | if self._exp >= 0: |
---|
999 | n/a | exp_hash = pow(10, self._exp, _PyHASH_MODULUS) |
---|
1000 | n/a | else: |
---|
1001 | n/a | exp_hash = pow(_PyHASH_10INV, -self._exp, _PyHASH_MODULUS) |
---|
1002 | n/a | hash_ = int(self._int) * exp_hash % _PyHASH_MODULUS |
---|
1003 | n/a | ans = hash_ if self >= 0 else -hash_ |
---|
1004 | n/a | return -2 if ans == -1 else ans |
---|
1005 | n/a | |
---|
1006 | n/a | def as_tuple(self): |
---|
1007 | n/a | """Represents the number as a triple tuple. |
---|
1008 | n/a | |
---|
1009 | n/a | To show the internals exactly as they are. |
---|
1010 | n/a | """ |
---|
1011 | n/a | return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp) |
---|
1012 | n/a | |
---|
1013 | n/a | def as_integer_ratio(self): |
---|
1014 | n/a | """Express a finite Decimal instance in the form n / d. |
---|
1015 | n/a | |
---|
1016 | n/a | Returns a pair (n, d) of integers. When called on an infinity |
---|
1017 | n/a | or NaN, raises OverflowError or ValueError respectively. |
---|
1018 | n/a | |
---|
1019 | n/a | >>> Decimal('3.14').as_integer_ratio() |
---|
1020 | n/a | (157, 50) |
---|
1021 | n/a | >>> Decimal('-123e5').as_integer_ratio() |
---|
1022 | n/a | (-12300000, 1) |
---|
1023 | n/a | >>> Decimal('0.00').as_integer_ratio() |
---|
1024 | n/a | (0, 1) |
---|
1025 | n/a | |
---|
1026 | n/a | """ |
---|
1027 | n/a | if self._is_special: |
---|
1028 | n/a | if self.is_nan(): |
---|
1029 | n/a | raise ValueError("cannot convert NaN to integer ratio") |
---|
1030 | n/a | else: |
---|
1031 | n/a | raise OverflowError("cannot convert Infinity to integer ratio") |
---|
1032 | n/a | |
---|
1033 | n/a | if not self: |
---|
1034 | n/a | return 0, 1 |
---|
1035 | n/a | |
---|
1036 | n/a | # Find n, d in lowest terms such that abs(self) == n / d; |
---|
1037 | n/a | # we'll deal with the sign later. |
---|
1038 | n/a | n = int(self._int) |
---|
1039 | n/a | if self._exp >= 0: |
---|
1040 | n/a | # self is an integer. |
---|
1041 | n/a | n, d = n * 10**self._exp, 1 |
---|
1042 | n/a | else: |
---|
1043 | n/a | # Find d2, d5 such that abs(self) = n / (2**d2 * 5**d5). |
---|
1044 | n/a | d5 = -self._exp |
---|
1045 | n/a | while d5 > 0 and n % 5 == 0: |
---|
1046 | n/a | n //= 5 |
---|
1047 | n/a | d5 -= 1 |
---|
1048 | n/a | |
---|
1049 | n/a | # (n & -n).bit_length() - 1 counts trailing zeros in binary |
---|
1050 | n/a | # representation of n (provided n is nonzero). |
---|
1051 | n/a | d2 = -self._exp |
---|
1052 | n/a | shift2 = min((n & -n).bit_length() - 1, d2) |
---|
1053 | n/a | if shift2: |
---|
1054 | n/a | n >>= shift2 |
---|
1055 | n/a | d2 -= shift2 |
---|
1056 | n/a | |
---|
1057 | n/a | d = 5**d5 << d2 |
---|
1058 | n/a | |
---|
1059 | n/a | if self._sign: |
---|
1060 | n/a | n = -n |
---|
1061 | n/a | return n, d |
---|
1062 | n/a | |
---|
1063 | n/a | def __repr__(self): |
---|
1064 | n/a | """Represents the number as an instance of Decimal.""" |
---|
1065 | n/a | # Invariant: eval(repr(d)) == d |
---|
1066 | n/a | return "Decimal('%s')" % str(self) |
---|
1067 | n/a | |
---|
1068 | n/a | def __str__(self, eng=False, context=None): |
---|
1069 | n/a | """Return string representation of the number in scientific notation. |
---|
1070 | n/a | |
---|
1071 | n/a | Captures all of the information in the underlying representation. |
---|
1072 | n/a | """ |
---|
1073 | n/a | |
---|
1074 | n/a | sign = ['', '-'][self._sign] |
---|
1075 | n/a | if self._is_special: |
---|
1076 | n/a | if self._exp == 'F': |
---|
1077 | n/a | return sign + 'Infinity' |
---|
1078 | n/a | elif self._exp == 'n': |
---|
1079 | n/a | return sign + 'NaN' + self._int |
---|
1080 | n/a | else: # self._exp == 'N' |
---|
1081 | n/a | return sign + 'sNaN' + self._int |
---|
1082 | n/a | |
---|
1083 | n/a | # number of digits of self._int to left of decimal point |
---|
1084 | n/a | leftdigits = self._exp + len(self._int) |
---|
1085 | n/a | |
---|
1086 | n/a | # dotplace is number of digits of self._int to the left of the |
---|
1087 | n/a | # decimal point in the mantissa of the output string (that is, |
---|
1088 | n/a | # after adjusting the exponent) |
---|
1089 | n/a | if self._exp <= 0 and leftdigits > -6: |
---|
1090 | n/a | # no exponent required |
---|
1091 | n/a | dotplace = leftdigits |
---|
1092 | n/a | elif not eng: |
---|
1093 | n/a | # usual scientific notation: 1 digit on left of the point |
---|
1094 | n/a | dotplace = 1 |
---|
1095 | n/a | elif self._int == '0': |
---|
1096 | n/a | # engineering notation, zero |
---|
1097 | n/a | dotplace = (leftdigits + 1) % 3 - 1 |
---|
1098 | n/a | else: |
---|
1099 | n/a | # engineering notation, nonzero |
---|
1100 | n/a | dotplace = (leftdigits - 1) % 3 + 1 |
---|
1101 | n/a | |
---|
1102 | n/a | if dotplace <= 0: |
---|
1103 | n/a | intpart = '0' |
---|
1104 | n/a | fracpart = '.' + '0'*(-dotplace) + self._int |
---|
1105 | n/a | elif dotplace >= len(self._int): |
---|
1106 | n/a | intpart = self._int+'0'*(dotplace-len(self._int)) |
---|
1107 | n/a | fracpart = '' |
---|
1108 | n/a | else: |
---|
1109 | n/a | intpart = self._int[:dotplace] |
---|
1110 | n/a | fracpart = '.' + self._int[dotplace:] |
---|
1111 | n/a | if leftdigits == dotplace: |
---|
1112 | n/a | exp = '' |
---|
1113 | n/a | else: |
---|
1114 | n/a | if context is None: |
---|
1115 | n/a | context = getcontext() |
---|
1116 | n/a | exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace) |
---|
1117 | n/a | |
---|
1118 | n/a | return sign + intpart + fracpart + exp |
---|
1119 | n/a | |
---|
1120 | n/a | def to_eng_string(self, context=None): |
---|
1121 | n/a | """Convert to a string, using engineering notation if an exponent is needed. |
---|
1122 | n/a | |
---|
1123 | n/a | Engineering notation has an exponent which is a multiple of 3. This |
---|
1124 | n/a | can leave up to 3 digits to the left of the decimal place and may |
---|
1125 | n/a | require the addition of either one or two trailing zeros. |
---|
1126 | n/a | """ |
---|
1127 | n/a | return self.__str__(eng=True, context=context) |
---|
1128 | n/a | |
---|
1129 | n/a | def __neg__(self, context=None): |
---|
1130 | n/a | """Returns a copy with the sign switched. |
---|
1131 | n/a | |
---|
1132 | n/a | Rounds, if it has reason. |
---|
1133 | n/a | """ |
---|
1134 | n/a | if self._is_special: |
---|
1135 | n/a | ans = self._check_nans(context=context) |
---|
1136 | n/a | if ans: |
---|
1137 | n/a | return ans |
---|
1138 | n/a | |
---|
1139 | n/a | if context is None: |
---|
1140 | n/a | context = getcontext() |
---|
1141 | n/a | |
---|
1142 | n/a | if not self and context.rounding != ROUND_FLOOR: |
---|
1143 | n/a | # -Decimal('0') is Decimal('0'), not Decimal('-0'), except |
---|
1144 | n/a | # in ROUND_FLOOR rounding mode. |
---|
1145 | n/a | ans = self.copy_abs() |
---|
1146 | n/a | else: |
---|
1147 | n/a | ans = self.copy_negate() |
---|
1148 | n/a | |
---|
1149 | n/a | return ans._fix(context) |
---|
1150 | n/a | |
---|
1151 | n/a | def __pos__(self, context=None): |
---|
1152 | n/a | """Returns a copy, unless it is a sNaN. |
---|
1153 | n/a | |
---|
1154 | n/a | Rounds the number (if more than precision digits) |
---|
1155 | n/a | """ |
---|
1156 | n/a | if self._is_special: |
---|
1157 | n/a | ans = self._check_nans(context=context) |
---|
1158 | n/a | if ans: |
---|
1159 | n/a | return ans |
---|
1160 | n/a | |
---|
1161 | n/a | if context is None: |
---|
1162 | n/a | context = getcontext() |
---|
1163 | n/a | |
---|
1164 | n/a | if not self and context.rounding != ROUND_FLOOR: |
---|
1165 | n/a | # + (-0) = 0, except in ROUND_FLOOR rounding mode. |
---|
1166 | n/a | ans = self.copy_abs() |
---|
1167 | n/a | else: |
---|
1168 | n/a | ans = Decimal(self) |
---|
1169 | n/a | |
---|
1170 | n/a | return ans._fix(context) |
---|
1171 | n/a | |
---|
1172 | n/a | def __abs__(self, round=True, context=None): |
---|
1173 | n/a | """Returns the absolute value of self. |
---|
1174 | n/a | |
---|
1175 | n/a | If the keyword argument 'round' is false, do not round. The |
---|
1176 | n/a | expression self.__abs__(round=False) is equivalent to |
---|
1177 | n/a | self.copy_abs(). |
---|
1178 | n/a | """ |
---|
1179 | n/a | if not round: |
---|
1180 | n/a | return self.copy_abs() |
---|
1181 | n/a | |
---|
1182 | n/a | if self._is_special: |
---|
1183 | n/a | ans = self._check_nans(context=context) |
---|
1184 | n/a | if ans: |
---|
1185 | n/a | return ans |
---|
1186 | n/a | |
---|
1187 | n/a | if self._sign: |
---|
1188 | n/a | ans = self.__neg__(context=context) |
---|
1189 | n/a | else: |
---|
1190 | n/a | ans = self.__pos__(context=context) |
---|
1191 | n/a | |
---|
1192 | n/a | return ans |
---|
1193 | n/a | |
---|
1194 | n/a | def __add__(self, other, context=None): |
---|
1195 | n/a | """Returns self + other. |
---|
1196 | n/a | |
---|
1197 | n/a | -INF + INF (or the reverse) cause InvalidOperation errors. |
---|
1198 | n/a | """ |
---|
1199 | n/a | other = _convert_other(other) |
---|
1200 | n/a | if other is NotImplemented: |
---|
1201 | n/a | return other |
---|
1202 | n/a | |
---|
1203 | n/a | if context is None: |
---|
1204 | n/a | context = getcontext() |
---|
1205 | n/a | |
---|
1206 | n/a | if self._is_special or other._is_special: |
---|
1207 | n/a | ans = self._check_nans(other, context) |
---|
1208 | n/a | if ans: |
---|
1209 | n/a | return ans |
---|
1210 | n/a | |
---|
1211 | n/a | if self._isinfinity(): |
---|
1212 | n/a | # If both INF, same sign => same as both, opposite => error. |
---|
1213 | n/a | if self._sign != other._sign and other._isinfinity(): |
---|
1214 | n/a | return context._raise_error(InvalidOperation, '-INF + INF') |
---|
1215 | n/a | return Decimal(self) |
---|
1216 | n/a | if other._isinfinity(): |
---|
1217 | n/a | return Decimal(other) # Can't both be infinity here |
---|
1218 | n/a | |
---|
1219 | n/a | exp = min(self._exp, other._exp) |
---|
1220 | n/a | negativezero = 0 |
---|
1221 | n/a | if context.rounding == ROUND_FLOOR and self._sign != other._sign: |
---|
1222 | n/a | # If the answer is 0, the sign should be negative, in this case. |
---|
1223 | n/a | negativezero = 1 |
---|
1224 | n/a | |
---|
1225 | n/a | if not self and not other: |
---|
1226 | n/a | sign = min(self._sign, other._sign) |
---|
1227 | n/a | if negativezero: |
---|
1228 | n/a | sign = 1 |
---|
1229 | n/a | ans = _dec_from_triple(sign, '0', exp) |
---|
1230 | n/a | ans = ans._fix(context) |
---|
1231 | n/a | return ans |
---|
1232 | n/a | if not self: |
---|
1233 | n/a | exp = max(exp, other._exp - context.prec-1) |
---|
1234 | n/a | ans = other._rescale(exp, context.rounding) |
---|
1235 | n/a | ans = ans._fix(context) |
---|
1236 | n/a | return ans |
---|
1237 | n/a | if not other: |
---|
1238 | n/a | exp = max(exp, self._exp - context.prec-1) |
---|
1239 | n/a | ans = self._rescale(exp, context.rounding) |
---|
1240 | n/a | ans = ans._fix(context) |
---|
1241 | n/a | return ans |
---|
1242 | n/a | |
---|
1243 | n/a | op1 = _WorkRep(self) |
---|
1244 | n/a | op2 = _WorkRep(other) |
---|
1245 | n/a | op1, op2 = _normalize(op1, op2, context.prec) |
---|
1246 | n/a | |
---|
1247 | n/a | result = _WorkRep() |
---|
1248 | n/a | if op1.sign != op2.sign: |
---|
1249 | n/a | # Equal and opposite |
---|
1250 | n/a | if op1.int == op2.int: |
---|
1251 | n/a | ans = _dec_from_triple(negativezero, '0', exp) |
---|
1252 | n/a | ans = ans._fix(context) |
---|
1253 | n/a | return ans |
---|
1254 | n/a | if op1.int < op2.int: |
---|
1255 | n/a | op1, op2 = op2, op1 |
---|
1256 | n/a | # OK, now abs(op1) > abs(op2) |
---|
1257 | n/a | if op1.sign == 1: |
---|
1258 | n/a | result.sign = 1 |
---|
1259 | n/a | op1.sign, op2.sign = op2.sign, op1.sign |
---|
1260 | n/a | else: |
---|
1261 | n/a | result.sign = 0 |
---|
1262 | n/a | # So we know the sign, and op1 > 0. |
---|
1263 | n/a | elif op1.sign == 1: |
---|
1264 | n/a | result.sign = 1 |
---|
1265 | n/a | op1.sign, op2.sign = (0, 0) |
---|
1266 | n/a | else: |
---|
1267 | n/a | result.sign = 0 |
---|
1268 | n/a | # Now, op1 > abs(op2) > 0 |
---|
1269 | n/a | |
---|
1270 | n/a | if op2.sign == 0: |
---|
1271 | n/a | result.int = op1.int + op2.int |
---|
1272 | n/a | else: |
---|
1273 | n/a | result.int = op1.int - op2.int |
---|
1274 | n/a | |
---|
1275 | n/a | result.exp = op1.exp |
---|
1276 | n/a | ans = Decimal(result) |
---|
1277 | n/a | ans = ans._fix(context) |
---|
1278 | n/a | return ans |
---|
1279 | n/a | |
---|
1280 | n/a | __radd__ = __add__ |
---|
1281 | n/a | |
---|
1282 | n/a | def __sub__(self, other, context=None): |
---|
1283 | n/a | """Return self - other""" |
---|
1284 | n/a | other = _convert_other(other) |
---|
1285 | n/a | if other is NotImplemented: |
---|
1286 | n/a | return other |
---|
1287 | n/a | |
---|
1288 | n/a | if self._is_special or other._is_special: |
---|
1289 | n/a | ans = self._check_nans(other, context=context) |
---|
1290 | n/a | if ans: |
---|
1291 | n/a | return ans |
---|
1292 | n/a | |
---|
1293 | n/a | # self - other is computed as self + other.copy_negate() |
---|
1294 | n/a | return self.__add__(other.copy_negate(), context=context) |
---|
1295 | n/a | |
---|
1296 | n/a | def __rsub__(self, other, context=None): |
---|
1297 | n/a | """Return other - self""" |
---|
1298 | n/a | other = _convert_other(other) |
---|
1299 | n/a | if other is NotImplemented: |
---|
1300 | n/a | return other |
---|
1301 | n/a | |
---|
1302 | n/a | return other.__sub__(self, context=context) |
---|
1303 | n/a | |
---|
1304 | n/a | def __mul__(self, other, context=None): |
---|
1305 | n/a | """Return self * other. |
---|
1306 | n/a | |
---|
1307 | n/a | (+-) INF * 0 (or its reverse) raise InvalidOperation. |
---|
1308 | n/a | """ |
---|
1309 | n/a | other = _convert_other(other) |
---|
1310 | n/a | if other is NotImplemented: |
---|
1311 | n/a | return other |
---|
1312 | n/a | |
---|
1313 | n/a | if context is None: |
---|
1314 | n/a | context = getcontext() |
---|
1315 | n/a | |
---|
1316 | n/a | resultsign = self._sign ^ other._sign |
---|
1317 | n/a | |
---|
1318 | n/a | if self._is_special or other._is_special: |
---|
1319 | n/a | ans = self._check_nans(other, context) |
---|
1320 | n/a | if ans: |
---|
1321 | n/a | return ans |
---|
1322 | n/a | |
---|
1323 | n/a | if self._isinfinity(): |
---|
1324 | n/a | if not other: |
---|
1325 | n/a | return context._raise_error(InvalidOperation, '(+-)INF * 0') |
---|
1326 | n/a | return _SignedInfinity[resultsign] |
---|
1327 | n/a | |
---|
1328 | n/a | if other._isinfinity(): |
---|
1329 | n/a | if not self: |
---|
1330 | n/a | return context._raise_error(InvalidOperation, '0 * (+-)INF') |
---|
1331 | n/a | return _SignedInfinity[resultsign] |
---|
1332 | n/a | |
---|
1333 | n/a | resultexp = self._exp + other._exp |
---|
1334 | n/a | |
---|
1335 | n/a | # Special case for multiplying by zero |
---|
1336 | n/a | if not self or not other: |
---|
1337 | n/a | ans = _dec_from_triple(resultsign, '0', resultexp) |
---|
1338 | n/a | # Fixing in case the exponent is out of bounds |
---|
1339 | n/a | ans = ans._fix(context) |
---|
1340 | n/a | return ans |
---|
1341 | n/a | |
---|
1342 | n/a | # Special case for multiplying by power of 10 |
---|
1343 | n/a | if self._int == '1': |
---|
1344 | n/a | ans = _dec_from_triple(resultsign, other._int, resultexp) |
---|
1345 | n/a | ans = ans._fix(context) |
---|
1346 | n/a | return ans |
---|
1347 | n/a | if other._int == '1': |
---|
1348 | n/a | ans = _dec_from_triple(resultsign, self._int, resultexp) |
---|
1349 | n/a | ans = ans._fix(context) |
---|
1350 | n/a | return ans |
---|
1351 | n/a | |
---|
1352 | n/a | op1 = _WorkRep(self) |
---|
1353 | n/a | op2 = _WorkRep(other) |
---|
1354 | n/a | |
---|
1355 | n/a | ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp) |
---|
1356 | n/a | ans = ans._fix(context) |
---|
1357 | n/a | |
---|
1358 | n/a | return ans |
---|
1359 | n/a | __rmul__ = __mul__ |
---|
1360 | n/a | |
---|
1361 | n/a | def __truediv__(self, other, context=None): |
---|
1362 | n/a | """Return self / other.""" |
---|
1363 | n/a | other = _convert_other(other) |
---|
1364 | n/a | if other is NotImplemented: |
---|
1365 | n/a | return NotImplemented |
---|
1366 | n/a | |
---|
1367 | n/a | if context is None: |
---|
1368 | n/a | context = getcontext() |
---|
1369 | n/a | |
---|
1370 | n/a | sign = self._sign ^ other._sign |
---|
1371 | n/a | |
---|
1372 | n/a | if self._is_special or other._is_special: |
---|
1373 | n/a | ans = self._check_nans(other, context) |
---|
1374 | n/a | if ans: |
---|
1375 | n/a | return ans |
---|
1376 | n/a | |
---|
1377 | n/a | if self._isinfinity() and other._isinfinity(): |
---|
1378 | n/a | return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF') |
---|
1379 | n/a | |
---|
1380 | n/a | if self._isinfinity(): |
---|
1381 | n/a | return _SignedInfinity[sign] |
---|
1382 | n/a | |
---|
1383 | n/a | if other._isinfinity(): |
---|
1384 | n/a | context._raise_error(Clamped, 'Division by infinity') |
---|
1385 | n/a | return _dec_from_triple(sign, '0', context.Etiny()) |
---|
1386 | n/a | |
---|
1387 | n/a | # Special cases for zeroes |
---|
1388 | n/a | if not other: |
---|
1389 | n/a | if not self: |
---|
1390 | n/a | return context._raise_error(DivisionUndefined, '0 / 0') |
---|
1391 | n/a | return context._raise_error(DivisionByZero, 'x / 0', sign) |
---|
1392 | n/a | |
---|
1393 | n/a | if not self: |
---|
1394 | n/a | exp = self._exp - other._exp |
---|
1395 | n/a | coeff = 0 |
---|
1396 | n/a | else: |
---|
1397 | n/a | # OK, so neither = 0, INF or NaN |
---|
1398 | n/a | shift = len(other._int) - len(self._int) + context.prec + 1 |
---|
1399 | n/a | exp = self._exp - other._exp - shift |
---|
1400 | n/a | op1 = _WorkRep(self) |
---|
1401 | n/a | op2 = _WorkRep(other) |
---|
1402 | n/a | if shift >= 0: |
---|
1403 | n/a | coeff, remainder = divmod(op1.int * 10**shift, op2.int) |
---|
1404 | n/a | else: |
---|
1405 | n/a | coeff, remainder = divmod(op1.int, op2.int * 10**-shift) |
---|
1406 | n/a | if remainder: |
---|
1407 | n/a | # result is not exact; adjust to ensure correct rounding |
---|
1408 | n/a | if coeff % 5 == 0: |
---|
1409 | n/a | coeff += 1 |
---|
1410 | n/a | else: |
---|
1411 | n/a | # result is exact; get as close to ideal exponent as possible |
---|
1412 | n/a | ideal_exp = self._exp - other._exp |
---|
1413 | n/a | while exp < ideal_exp and coeff % 10 == 0: |
---|
1414 | n/a | coeff //= 10 |
---|
1415 | n/a | exp += 1 |
---|
1416 | n/a | |
---|
1417 | n/a | ans = _dec_from_triple(sign, str(coeff), exp) |
---|
1418 | n/a | return ans._fix(context) |
---|
1419 | n/a | |
---|
1420 | n/a | def _divide(self, other, context): |
---|
1421 | n/a | """Return (self // other, self % other), to context.prec precision. |
---|
1422 | n/a | |
---|
1423 | n/a | Assumes that neither self nor other is a NaN, that self is not |
---|
1424 | n/a | infinite and that other is nonzero. |
---|
1425 | n/a | """ |
---|
1426 | n/a | sign = self._sign ^ other._sign |
---|
1427 | n/a | if other._isinfinity(): |
---|
1428 | n/a | ideal_exp = self._exp |
---|
1429 | n/a | else: |
---|
1430 | n/a | ideal_exp = min(self._exp, other._exp) |
---|
1431 | n/a | |
---|
1432 | n/a | expdiff = self.adjusted() - other.adjusted() |
---|
1433 | n/a | if not self or other._isinfinity() or expdiff <= -2: |
---|
1434 | n/a | return (_dec_from_triple(sign, '0', 0), |
---|
1435 | n/a | self._rescale(ideal_exp, context.rounding)) |
---|
1436 | n/a | if expdiff <= context.prec: |
---|
1437 | n/a | op1 = _WorkRep(self) |
---|
1438 | n/a | op2 = _WorkRep(other) |
---|
1439 | n/a | if op1.exp >= op2.exp: |
---|
1440 | n/a | op1.int *= 10**(op1.exp - op2.exp) |
---|
1441 | n/a | else: |
---|
1442 | n/a | op2.int *= 10**(op2.exp - op1.exp) |
---|
1443 | n/a | q, r = divmod(op1.int, op2.int) |
---|
1444 | n/a | if q < 10**context.prec: |
---|
1445 | n/a | return (_dec_from_triple(sign, str(q), 0), |
---|
1446 | n/a | _dec_from_triple(self._sign, str(r), ideal_exp)) |
---|
1447 | n/a | |
---|
1448 | n/a | # Here the quotient is too large to be representable |
---|
1449 | n/a | ans = context._raise_error(DivisionImpossible, |
---|
1450 | n/a | 'quotient too large in //, % or divmod') |
---|
1451 | n/a | return ans, ans |
---|
1452 | n/a | |
---|
1453 | n/a | def __rtruediv__(self, other, context=None): |
---|
1454 | n/a | """Swaps self/other and returns __truediv__.""" |
---|
1455 | n/a | other = _convert_other(other) |
---|
1456 | n/a | if other is NotImplemented: |
---|
1457 | n/a | return other |
---|
1458 | n/a | return other.__truediv__(self, context=context) |
---|
1459 | n/a | |
---|
1460 | n/a | def __divmod__(self, other, context=None): |
---|
1461 | n/a | """ |
---|
1462 | n/a | Return (self // other, self % other) |
---|
1463 | n/a | """ |
---|
1464 | n/a | other = _convert_other(other) |
---|
1465 | n/a | if other is NotImplemented: |
---|
1466 | n/a | return other |
---|
1467 | n/a | |
---|
1468 | n/a | if context is None: |
---|
1469 | n/a | context = getcontext() |
---|
1470 | n/a | |
---|
1471 | n/a | ans = self._check_nans(other, context) |
---|
1472 | n/a | if ans: |
---|
1473 | n/a | return (ans, ans) |
---|
1474 | n/a | |
---|
1475 | n/a | sign = self._sign ^ other._sign |
---|
1476 | n/a | if self._isinfinity(): |
---|
1477 | n/a | if other._isinfinity(): |
---|
1478 | n/a | ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)') |
---|
1479 | n/a | return ans, ans |
---|
1480 | n/a | else: |
---|
1481 | n/a | return (_SignedInfinity[sign], |
---|
1482 | n/a | context._raise_error(InvalidOperation, 'INF % x')) |
---|
1483 | n/a | |
---|
1484 | n/a | if not other: |
---|
1485 | n/a | if not self: |
---|
1486 | n/a | ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)') |
---|
1487 | n/a | return ans, ans |
---|
1488 | n/a | else: |
---|
1489 | n/a | return (context._raise_error(DivisionByZero, 'x // 0', sign), |
---|
1490 | n/a | context._raise_error(InvalidOperation, 'x % 0')) |
---|
1491 | n/a | |
---|
1492 | n/a | quotient, remainder = self._divide(other, context) |
---|
1493 | n/a | remainder = remainder._fix(context) |
---|
1494 | n/a | return quotient, remainder |
---|
1495 | n/a | |
---|
1496 | n/a | def __rdivmod__(self, other, context=None): |
---|
1497 | n/a | """Swaps self/other and returns __divmod__.""" |
---|
1498 | n/a | other = _convert_other(other) |
---|
1499 | n/a | if other is NotImplemented: |
---|
1500 | n/a | return other |
---|
1501 | n/a | return other.__divmod__(self, context=context) |
---|
1502 | n/a | |
---|
1503 | n/a | def __mod__(self, other, context=None): |
---|
1504 | n/a | """ |
---|
1505 | n/a | self % other |
---|
1506 | n/a | """ |
---|
1507 | n/a | other = _convert_other(other) |
---|
1508 | n/a | if other is NotImplemented: |
---|
1509 | n/a | return other |
---|
1510 | n/a | |
---|
1511 | n/a | if context is None: |
---|
1512 | n/a | context = getcontext() |
---|
1513 | n/a | |
---|
1514 | n/a | ans = self._check_nans(other, context) |
---|
1515 | n/a | if ans: |
---|
1516 | n/a | return ans |
---|
1517 | n/a | |
---|
1518 | n/a | if self._isinfinity(): |
---|
1519 | n/a | return context._raise_error(InvalidOperation, 'INF % x') |
---|
1520 | n/a | elif not other: |
---|
1521 | n/a | if self: |
---|
1522 | n/a | return context._raise_error(InvalidOperation, 'x % 0') |
---|
1523 | n/a | else: |
---|
1524 | n/a | return context._raise_error(DivisionUndefined, '0 % 0') |
---|
1525 | n/a | |
---|
1526 | n/a | remainder = self._divide(other, context)[1] |
---|
1527 | n/a | remainder = remainder._fix(context) |
---|
1528 | n/a | return remainder |
---|
1529 | n/a | |
---|
1530 | n/a | def __rmod__(self, other, context=None): |
---|
1531 | n/a | """Swaps self/other and returns __mod__.""" |
---|
1532 | n/a | other = _convert_other(other) |
---|
1533 | n/a | if other is NotImplemented: |
---|
1534 | n/a | return other |
---|
1535 | n/a | return other.__mod__(self, context=context) |
---|
1536 | n/a | |
---|
1537 | n/a | def remainder_near(self, other, context=None): |
---|
1538 | n/a | """ |
---|
1539 | n/a | Remainder nearest to 0- abs(remainder-near) <= other/2 |
---|
1540 | n/a | """ |
---|
1541 | n/a | if context is None: |
---|
1542 | n/a | context = getcontext() |
---|
1543 | n/a | |
---|
1544 | n/a | other = _convert_other(other, raiseit=True) |
---|
1545 | n/a | |
---|
1546 | n/a | ans = self._check_nans(other, context) |
---|
1547 | n/a | if ans: |
---|
1548 | n/a | return ans |
---|
1549 | n/a | |
---|
1550 | n/a | # self == +/-infinity -> InvalidOperation |
---|
1551 | n/a | if self._isinfinity(): |
---|
1552 | n/a | return context._raise_error(InvalidOperation, |
---|
1553 | n/a | 'remainder_near(infinity, x)') |
---|
1554 | n/a | |
---|
1555 | n/a | # other == 0 -> either InvalidOperation or DivisionUndefined |
---|
1556 | n/a | if not other: |
---|
1557 | n/a | if self: |
---|
1558 | n/a | return context._raise_error(InvalidOperation, |
---|
1559 | n/a | 'remainder_near(x, 0)') |
---|
1560 | n/a | else: |
---|
1561 | n/a | return context._raise_error(DivisionUndefined, |
---|
1562 | n/a | 'remainder_near(0, 0)') |
---|
1563 | n/a | |
---|
1564 | n/a | # other = +/-infinity -> remainder = self |
---|
1565 | n/a | if other._isinfinity(): |
---|
1566 | n/a | ans = Decimal(self) |
---|
1567 | n/a | return ans._fix(context) |
---|
1568 | n/a | |
---|
1569 | n/a | # self = 0 -> remainder = self, with ideal exponent |
---|
1570 | n/a | ideal_exponent = min(self._exp, other._exp) |
---|
1571 | n/a | if not self: |
---|
1572 | n/a | ans = _dec_from_triple(self._sign, '0', ideal_exponent) |
---|
1573 | n/a | return ans._fix(context) |
---|
1574 | n/a | |
---|
1575 | n/a | # catch most cases of large or small quotient |
---|
1576 | n/a | expdiff = self.adjusted() - other.adjusted() |
---|
1577 | n/a | if expdiff >= context.prec + 1: |
---|
1578 | n/a | # expdiff >= prec+1 => abs(self/other) > 10**prec |
---|
1579 | n/a | return context._raise_error(DivisionImpossible) |
---|
1580 | n/a | if expdiff <= -2: |
---|
1581 | n/a | # expdiff <= -2 => abs(self/other) < 0.1 |
---|
1582 | n/a | ans = self._rescale(ideal_exponent, context.rounding) |
---|
1583 | n/a | return ans._fix(context) |
---|
1584 | n/a | |
---|
1585 | n/a | # adjust both arguments to have the same exponent, then divide |
---|
1586 | n/a | op1 = _WorkRep(self) |
---|
1587 | n/a | op2 = _WorkRep(other) |
---|
1588 | n/a | if op1.exp >= op2.exp: |
---|
1589 | n/a | op1.int *= 10**(op1.exp - op2.exp) |
---|
1590 | n/a | else: |
---|
1591 | n/a | op2.int *= 10**(op2.exp - op1.exp) |
---|
1592 | n/a | q, r = divmod(op1.int, op2.int) |
---|
1593 | n/a | # remainder is r*10**ideal_exponent; other is +/-op2.int * |
---|
1594 | n/a | # 10**ideal_exponent. Apply correction to ensure that |
---|
1595 | n/a | # abs(remainder) <= abs(other)/2 |
---|
1596 | n/a | if 2*r + (q&1) > op2.int: |
---|
1597 | n/a | r -= op2.int |
---|
1598 | n/a | q += 1 |
---|
1599 | n/a | |
---|
1600 | n/a | if q >= 10**context.prec: |
---|
1601 | n/a | return context._raise_error(DivisionImpossible) |
---|
1602 | n/a | |
---|
1603 | n/a | # result has same sign as self unless r is negative |
---|
1604 | n/a | sign = self._sign |
---|
1605 | n/a | if r < 0: |
---|
1606 | n/a | sign = 1-sign |
---|
1607 | n/a | r = -r |
---|
1608 | n/a | |
---|
1609 | n/a | ans = _dec_from_triple(sign, str(r), ideal_exponent) |
---|
1610 | n/a | return ans._fix(context) |
---|
1611 | n/a | |
---|
1612 | n/a | def __floordiv__(self, other, context=None): |
---|
1613 | n/a | """self // other""" |
---|
1614 | n/a | other = _convert_other(other) |
---|
1615 | n/a | if other is NotImplemented: |
---|
1616 | n/a | return other |
---|
1617 | n/a | |
---|
1618 | n/a | if context is None: |
---|
1619 | n/a | context = getcontext() |
---|
1620 | n/a | |
---|
1621 | n/a | ans = self._check_nans(other, context) |
---|
1622 | n/a | if ans: |
---|
1623 | n/a | return ans |
---|
1624 | n/a | |
---|
1625 | n/a | if self._isinfinity(): |
---|
1626 | n/a | if other._isinfinity(): |
---|
1627 | n/a | return context._raise_error(InvalidOperation, 'INF // INF') |
---|
1628 | n/a | else: |
---|
1629 | n/a | return _SignedInfinity[self._sign ^ other._sign] |
---|
1630 | n/a | |
---|
1631 | n/a | if not other: |
---|
1632 | n/a | if self: |
---|
1633 | n/a | return context._raise_error(DivisionByZero, 'x // 0', |
---|
1634 | n/a | self._sign ^ other._sign) |
---|
1635 | n/a | else: |
---|
1636 | n/a | return context._raise_error(DivisionUndefined, '0 // 0') |
---|
1637 | n/a | |
---|
1638 | n/a | return self._divide(other, context)[0] |
---|
1639 | n/a | |
---|
1640 | n/a | def __rfloordiv__(self, other, context=None): |
---|
1641 | n/a | """Swaps self/other and returns __floordiv__.""" |
---|
1642 | n/a | other = _convert_other(other) |
---|
1643 | n/a | if other is NotImplemented: |
---|
1644 | n/a | return other |
---|
1645 | n/a | return other.__floordiv__(self, context=context) |
---|
1646 | n/a | |
---|
1647 | n/a | def __float__(self): |
---|
1648 | n/a | """Float representation.""" |
---|
1649 | n/a | if self._isnan(): |
---|
1650 | n/a | if self.is_snan(): |
---|
1651 | n/a | raise ValueError("Cannot convert signaling NaN to float") |
---|
1652 | n/a | s = "-nan" if self._sign else "nan" |
---|
1653 | n/a | else: |
---|
1654 | n/a | s = str(self) |
---|
1655 | n/a | return float(s) |
---|
1656 | n/a | |
---|
1657 | n/a | def __int__(self): |
---|
1658 | n/a | """Converts self to an int, truncating if necessary.""" |
---|
1659 | n/a | if self._is_special: |
---|
1660 | n/a | if self._isnan(): |
---|
1661 | n/a | raise ValueError("Cannot convert NaN to integer") |
---|
1662 | n/a | elif self._isinfinity(): |
---|
1663 | n/a | raise OverflowError("Cannot convert infinity to integer") |
---|
1664 | n/a | s = (-1)**self._sign |
---|
1665 | n/a | if self._exp >= 0: |
---|
1666 | n/a | return s*int(self._int)*10**self._exp |
---|
1667 | n/a | else: |
---|
1668 | n/a | return s*int(self._int[:self._exp] or '0') |
---|
1669 | n/a | |
---|
1670 | n/a | __trunc__ = __int__ |
---|
1671 | n/a | |
---|
1672 | n/a | def real(self): |
---|
1673 | n/a | return self |
---|
1674 | n/a | real = property(real) |
---|
1675 | n/a | |
---|
1676 | n/a | def imag(self): |
---|
1677 | n/a | return Decimal(0) |
---|
1678 | n/a | imag = property(imag) |
---|
1679 | n/a | |
---|
1680 | n/a | def conjugate(self): |
---|
1681 | n/a | return self |
---|
1682 | n/a | |
---|
1683 | n/a | def __complex__(self): |
---|
1684 | n/a | return complex(float(self)) |
---|
1685 | n/a | |
---|
1686 | n/a | def _fix_nan(self, context): |
---|
1687 | n/a | """Decapitate the payload of a NaN to fit the context""" |
---|
1688 | n/a | payload = self._int |
---|
1689 | n/a | |
---|
1690 | n/a | # maximum length of payload is precision if clamp=0, |
---|
1691 | n/a | # precision-1 if clamp=1. |
---|
1692 | n/a | max_payload_len = context.prec - context.clamp |
---|
1693 | n/a | if len(payload) > max_payload_len: |
---|
1694 | n/a | payload = payload[len(payload)-max_payload_len:].lstrip('0') |
---|
1695 | n/a | return _dec_from_triple(self._sign, payload, self._exp, True) |
---|
1696 | n/a | return Decimal(self) |
---|
1697 | n/a | |
---|
1698 | n/a | def _fix(self, context): |
---|
1699 | n/a | """Round if it is necessary to keep self within prec precision. |
---|
1700 | n/a | |
---|
1701 | n/a | Rounds and fixes the exponent. Does not raise on a sNaN. |
---|
1702 | n/a | |
---|
1703 | n/a | Arguments: |
---|
1704 | n/a | self - Decimal instance |
---|
1705 | n/a | context - context used. |
---|
1706 | n/a | """ |
---|
1707 | n/a | |
---|
1708 | n/a | if self._is_special: |
---|
1709 | n/a | if self._isnan(): |
---|
1710 | n/a | # decapitate payload if necessary |
---|
1711 | n/a | return self._fix_nan(context) |
---|
1712 | n/a | else: |
---|
1713 | n/a | # self is +/-Infinity; return unaltered |
---|
1714 | n/a | return Decimal(self) |
---|
1715 | n/a | |
---|
1716 | n/a | # if self is zero then exponent should be between Etiny and |
---|
1717 | n/a | # Emax if clamp==0, and between Etiny and Etop if clamp==1. |
---|
1718 | n/a | Etiny = context.Etiny() |
---|
1719 | n/a | Etop = context.Etop() |
---|
1720 | n/a | if not self: |
---|
1721 | n/a | exp_max = [context.Emax, Etop][context.clamp] |
---|
1722 | n/a | new_exp = min(max(self._exp, Etiny), exp_max) |
---|
1723 | n/a | if new_exp != self._exp: |
---|
1724 | n/a | context._raise_error(Clamped) |
---|
1725 | n/a | return _dec_from_triple(self._sign, '0', new_exp) |
---|
1726 | n/a | else: |
---|
1727 | n/a | return Decimal(self) |
---|
1728 | n/a | |
---|
1729 | n/a | # exp_min is the smallest allowable exponent of the result, |
---|
1730 | n/a | # equal to max(self.adjusted()-context.prec+1, Etiny) |
---|
1731 | n/a | exp_min = len(self._int) + self._exp - context.prec |
---|
1732 | n/a | if exp_min > Etop: |
---|
1733 | n/a | # overflow: exp_min > Etop iff self.adjusted() > Emax |
---|
1734 | n/a | ans = context._raise_error(Overflow, 'above Emax', self._sign) |
---|
1735 | n/a | context._raise_error(Inexact) |
---|
1736 | n/a | context._raise_error(Rounded) |
---|
1737 | n/a | return ans |
---|
1738 | n/a | |
---|
1739 | n/a | self_is_subnormal = exp_min < Etiny |
---|
1740 | n/a | if self_is_subnormal: |
---|
1741 | n/a | exp_min = Etiny |
---|
1742 | n/a | |
---|
1743 | n/a | # round if self has too many digits |
---|
1744 | n/a | if self._exp < exp_min: |
---|
1745 | n/a | digits = len(self._int) + self._exp - exp_min |
---|
1746 | n/a | if digits < 0: |
---|
1747 | n/a | self = _dec_from_triple(self._sign, '1', exp_min-1) |
---|
1748 | n/a | digits = 0 |
---|
1749 | n/a | rounding_method = self._pick_rounding_function[context.rounding] |
---|
1750 | n/a | changed = rounding_method(self, digits) |
---|
1751 | n/a | coeff = self._int[:digits] or '0' |
---|
1752 | n/a | if changed > 0: |
---|
1753 | n/a | coeff = str(int(coeff)+1) |
---|
1754 | n/a | if len(coeff) > context.prec: |
---|
1755 | n/a | coeff = coeff[:-1] |
---|
1756 | n/a | exp_min += 1 |
---|
1757 | n/a | |
---|
1758 | n/a | # check whether the rounding pushed the exponent out of range |
---|
1759 | n/a | if exp_min > Etop: |
---|
1760 | n/a | ans = context._raise_error(Overflow, 'above Emax', self._sign) |
---|
1761 | n/a | else: |
---|
1762 | n/a | ans = _dec_from_triple(self._sign, coeff, exp_min) |
---|
1763 | n/a | |
---|
1764 | n/a | # raise the appropriate signals, taking care to respect |
---|
1765 | n/a | # the precedence described in the specification |
---|
1766 | n/a | if changed and self_is_subnormal: |
---|
1767 | n/a | context._raise_error(Underflow) |
---|
1768 | n/a | if self_is_subnormal: |
---|
1769 | n/a | context._raise_error(Subnormal) |
---|
1770 | n/a | if changed: |
---|
1771 | n/a | context._raise_error(Inexact) |
---|
1772 | n/a | context._raise_error(Rounded) |
---|
1773 | n/a | if not ans: |
---|
1774 | n/a | # raise Clamped on underflow to 0 |
---|
1775 | n/a | context._raise_error(Clamped) |
---|
1776 | n/a | return ans |
---|
1777 | n/a | |
---|
1778 | n/a | if self_is_subnormal: |
---|
1779 | n/a | context._raise_error(Subnormal) |
---|
1780 | n/a | |
---|
1781 | n/a | # fold down if clamp == 1 and self has too few digits |
---|
1782 | n/a | if context.clamp == 1 and self._exp > Etop: |
---|
1783 | n/a | context._raise_error(Clamped) |
---|
1784 | n/a | self_padded = self._int + '0'*(self._exp - Etop) |
---|
1785 | n/a | return _dec_from_triple(self._sign, self_padded, Etop) |
---|
1786 | n/a | |
---|
1787 | n/a | # here self was representable to begin with; return unchanged |
---|
1788 | n/a | return Decimal(self) |
---|
1789 | n/a | |
---|
1790 | n/a | # for each of the rounding functions below: |
---|
1791 | n/a | # self is a finite, nonzero Decimal |
---|
1792 | n/a | # prec is an integer satisfying 0 <= prec < len(self._int) |
---|
1793 | n/a | # |
---|
1794 | n/a | # each function returns either -1, 0, or 1, as follows: |
---|
1795 | n/a | # 1 indicates that self should be rounded up (away from zero) |
---|
1796 | n/a | # 0 indicates that self should be truncated, and that all the |
---|
1797 | n/a | # digits to be truncated are zeros (so the value is unchanged) |
---|
1798 | n/a | # -1 indicates that there are nonzero digits to be truncated |
---|
1799 | n/a | |
---|
1800 | n/a | def _round_down(self, prec): |
---|
1801 | n/a | """Also known as round-towards-0, truncate.""" |
---|
1802 | n/a | if _all_zeros(self._int, prec): |
---|
1803 | n/a | return 0 |
---|
1804 | n/a | else: |
---|
1805 | n/a | return -1 |
---|
1806 | n/a | |
---|
1807 | n/a | def _round_up(self, prec): |
---|
1808 | n/a | """Rounds away from 0.""" |
---|
1809 | n/a | return -self._round_down(prec) |
---|
1810 | n/a | |
---|
1811 | n/a | def _round_half_up(self, prec): |
---|
1812 | n/a | """Rounds 5 up (away from 0)""" |
---|
1813 | n/a | if self._int[prec] in '56789': |
---|
1814 | n/a | return 1 |
---|
1815 | n/a | elif _all_zeros(self._int, prec): |
---|
1816 | n/a | return 0 |
---|
1817 | n/a | else: |
---|
1818 | n/a | return -1 |
---|
1819 | n/a | |
---|
1820 | n/a | def _round_half_down(self, prec): |
---|
1821 | n/a | """Round 5 down""" |
---|
1822 | n/a | if _exact_half(self._int, prec): |
---|
1823 | n/a | return -1 |
---|
1824 | n/a | else: |
---|
1825 | n/a | return self._round_half_up(prec) |
---|
1826 | n/a | |
---|
1827 | n/a | def _round_half_even(self, prec): |
---|
1828 | n/a | """Round 5 to even, rest to nearest.""" |
---|
1829 | n/a | if _exact_half(self._int, prec) and \ |
---|
1830 | n/a | (prec == 0 or self._int[prec-1] in '02468'): |
---|
1831 | n/a | return -1 |
---|
1832 | n/a | else: |
---|
1833 | n/a | return self._round_half_up(prec) |
---|
1834 | n/a | |
---|
1835 | n/a | def _round_ceiling(self, prec): |
---|
1836 | n/a | """Rounds up (not away from 0 if negative.)""" |
---|
1837 | n/a | if self._sign: |
---|
1838 | n/a | return self._round_down(prec) |
---|
1839 | n/a | else: |
---|
1840 | n/a | return -self._round_down(prec) |
---|
1841 | n/a | |
---|
1842 | n/a | def _round_floor(self, prec): |
---|
1843 | n/a | """Rounds down (not towards 0 if negative)""" |
---|
1844 | n/a | if not self._sign: |
---|
1845 | n/a | return self._round_down(prec) |
---|
1846 | n/a | else: |
---|
1847 | n/a | return -self._round_down(prec) |
---|
1848 | n/a | |
---|
1849 | n/a | def _round_05up(self, prec): |
---|
1850 | n/a | """Round down unless digit prec-1 is 0 or 5.""" |
---|
1851 | n/a | if prec and self._int[prec-1] not in '05': |
---|
1852 | n/a | return self._round_down(prec) |
---|
1853 | n/a | else: |
---|
1854 | n/a | return -self._round_down(prec) |
---|
1855 | n/a | |
---|
1856 | n/a | _pick_rounding_function = dict( |
---|
1857 | n/a | ROUND_DOWN = _round_down, |
---|
1858 | n/a | ROUND_UP = _round_up, |
---|
1859 | n/a | ROUND_HALF_UP = _round_half_up, |
---|
1860 | n/a | ROUND_HALF_DOWN = _round_half_down, |
---|
1861 | n/a | ROUND_HALF_EVEN = _round_half_even, |
---|
1862 | n/a | ROUND_CEILING = _round_ceiling, |
---|
1863 | n/a | ROUND_FLOOR = _round_floor, |
---|
1864 | n/a | ROUND_05UP = _round_05up, |
---|
1865 | n/a | ) |
---|
1866 | n/a | |
---|
1867 | n/a | def __round__(self, n=None): |
---|
1868 | n/a | """Round self to the nearest integer, or to a given precision. |
---|
1869 | n/a | |
---|
1870 | n/a | If only one argument is supplied, round a finite Decimal |
---|
1871 | n/a | instance self to the nearest integer. If self is infinite or |
---|
1872 | n/a | a NaN then a Python exception is raised. If self is finite |
---|
1873 | n/a | and lies exactly halfway between two integers then it is |
---|
1874 | n/a | rounded to the integer with even last digit. |
---|
1875 | n/a | |
---|
1876 | n/a | >>> round(Decimal('123.456')) |
---|
1877 | n/a | 123 |
---|
1878 | n/a | >>> round(Decimal('-456.789')) |
---|
1879 | n/a | -457 |
---|
1880 | n/a | >>> round(Decimal('-3.0')) |
---|
1881 | n/a | -3 |
---|
1882 | n/a | >>> round(Decimal('2.5')) |
---|
1883 | n/a | 2 |
---|
1884 | n/a | >>> round(Decimal('3.5')) |
---|
1885 | n/a | 4 |
---|
1886 | n/a | >>> round(Decimal('Inf')) |
---|
1887 | n/a | Traceback (most recent call last): |
---|
1888 | n/a | ... |
---|
1889 | n/a | OverflowError: cannot round an infinity |
---|
1890 | n/a | >>> round(Decimal('NaN')) |
---|
1891 | n/a | Traceback (most recent call last): |
---|
1892 | n/a | ... |
---|
1893 | n/a | ValueError: cannot round a NaN |
---|
1894 | n/a | |
---|
1895 | n/a | If a second argument n is supplied, self is rounded to n |
---|
1896 | n/a | decimal places using the rounding mode for the current |
---|
1897 | n/a | context. |
---|
1898 | n/a | |
---|
1899 | n/a | For an integer n, round(self, -n) is exactly equivalent to |
---|
1900 | n/a | self.quantize(Decimal('1En')). |
---|
1901 | n/a | |
---|
1902 | n/a | >>> round(Decimal('123.456'), 0) |
---|
1903 | n/a | Decimal('123') |
---|
1904 | n/a | >>> round(Decimal('123.456'), 2) |
---|
1905 | n/a | Decimal('123.46') |
---|
1906 | n/a | >>> round(Decimal('123.456'), -2) |
---|
1907 | n/a | Decimal('1E+2') |
---|
1908 | n/a | >>> round(Decimal('-Infinity'), 37) |
---|
1909 | n/a | Decimal('NaN') |
---|
1910 | n/a | >>> round(Decimal('sNaN123'), 0) |
---|
1911 | n/a | Decimal('NaN123') |
---|
1912 | n/a | |
---|
1913 | n/a | """ |
---|
1914 | n/a | if n is not None: |
---|
1915 | n/a | # two-argument form: use the equivalent quantize call |
---|
1916 | n/a | if not isinstance(n, int): |
---|
1917 | n/a | raise TypeError('Second argument to round should be integral') |
---|
1918 | n/a | exp = _dec_from_triple(0, '1', -n) |
---|
1919 | n/a | return self.quantize(exp) |
---|
1920 | n/a | |
---|
1921 | n/a | # one-argument form |
---|
1922 | n/a | if self._is_special: |
---|
1923 | n/a | if self.is_nan(): |
---|
1924 | n/a | raise ValueError("cannot round a NaN") |
---|
1925 | n/a | else: |
---|
1926 | n/a | raise OverflowError("cannot round an infinity") |
---|
1927 | n/a | return int(self._rescale(0, ROUND_HALF_EVEN)) |
---|
1928 | n/a | |
---|
1929 | n/a | def __floor__(self): |
---|
1930 | n/a | """Return the floor of self, as an integer. |
---|
1931 | n/a | |
---|
1932 | n/a | For a finite Decimal instance self, return the greatest |
---|
1933 | n/a | integer n such that n <= self. If self is infinite or a NaN |
---|
1934 | n/a | then a Python exception is raised. |
---|
1935 | n/a | |
---|
1936 | n/a | """ |
---|
1937 | n/a | if self._is_special: |
---|
1938 | n/a | if self.is_nan(): |
---|
1939 | n/a | raise ValueError("cannot round a NaN") |
---|
1940 | n/a | else: |
---|
1941 | n/a | raise OverflowError("cannot round an infinity") |
---|
1942 | n/a | return int(self._rescale(0, ROUND_FLOOR)) |
---|
1943 | n/a | |
---|
1944 | n/a | def __ceil__(self): |
---|
1945 | n/a | """Return the ceiling of self, as an integer. |
---|
1946 | n/a | |
---|
1947 | n/a | For a finite Decimal instance self, return the least integer n |
---|
1948 | n/a | such that n >= self. If self is infinite or a NaN then a |
---|
1949 | n/a | Python exception is raised. |
---|
1950 | n/a | |
---|
1951 | n/a | """ |
---|
1952 | n/a | if self._is_special: |
---|
1953 | n/a | if self.is_nan(): |
---|
1954 | n/a | raise ValueError("cannot round a NaN") |
---|
1955 | n/a | else: |
---|
1956 | n/a | raise OverflowError("cannot round an infinity") |
---|
1957 | n/a | return int(self._rescale(0, ROUND_CEILING)) |
---|
1958 | n/a | |
---|
1959 | n/a | def fma(self, other, third, context=None): |
---|
1960 | n/a | """Fused multiply-add. |
---|
1961 | n/a | |
---|
1962 | n/a | Returns self*other+third with no rounding of the intermediate |
---|
1963 | n/a | product self*other. |
---|
1964 | n/a | |
---|
1965 | n/a | self and other are multiplied together, with no rounding of |
---|
1966 | n/a | the result. The third operand is then added to the result, |
---|
1967 | n/a | and a single final rounding is performed. |
---|
1968 | n/a | """ |
---|
1969 | n/a | |
---|
1970 | n/a | other = _convert_other(other, raiseit=True) |
---|
1971 | n/a | third = _convert_other(third, raiseit=True) |
---|
1972 | n/a | |
---|
1973 | n/a | # compute product; raise InvalidOperation if either operand is |
---|
1974 | n/a | # a signaling NaN or if the product is zero times infinity. |
---|
1975 | n/a | if self._is_special or other._is_special: |
---|
1976 | n/a | if context is None: |
---|
1977 | n/a | context = getcontext() |
---|
1978 | n/a | if self._exp == 'N': |
---|
1979 | n/a | return context._raise_error(InvalidOperation, 'sNaN', self) |
---|
1980 | n/a | if other._exp == 'N': |
---|
1981 | n/a | return context._raise_error(InvalidOperation, 'sNaN', other) |
---|
1982 | n/a | if self._exp == 'n': |
---|
1983 | n/a | product = self |
---|
1984 | n/a | elif other._exp == 'n': |
---|
1985 | n/a | product = other |
---|
1986 | n/a | elif self._exp == 'F': |
---|
1987 | n/a | if not other: |
---|
1988 | n/a | return context._raise_error(InvalidOperation, |
---|
1989 | n/a | 'INF * 0 in fma') |
---|
1990 | n/a | product = _SignedInfinity[self._sign ^ other._sign] |
---|
1991 | n/a | elif other._exp == 'F': |
---|
1992 | n/a | if not self: |
---|
1993 | n/a | return context._raise_error(InvalidOperation, |
---|
1994 | n/a | '0 * INF in fma') |
---|
1995 | n/a | product = _SignedInfinity[self._sign ^ other._sign] |
---|
1996 | n/a | else: |
---|
1997 | n/a | product = _dec_from_triple(self._sign ^ other._sign, |
---|
1998 | n/a | str(int(self._int) * int(other._int)), |
---|
1999 | n/a | self._exp + other._exp) |
---|
2000 | n/a | |
---|
2001 | n/a | return product.__add__(third, context) |
---|
2002 | n/a | |
---|
2003 | n/a | def _power_modulo(self, other, modulo, context=None): |
---|
2004 | n/a | """Three argument version of __pow__""" |
---|
2005 | n/a | |
---|
2006 | n/a | other = _convert_other(other) |
---|
2007 | n/a | if other is NotImplemented: |
---|
2008 | n/a | return other |
---|
2009 | n/a | modulo = _convert_other(modulo) |
---|
2010 | n/a | if modulo is NotImplemented: |
---|
2011 | n/a | return modulo |
---|
2012 | n/a | |
---|
2013 | n/a | if context is None: |
---|
2014 | n/a | context = getcontext() |
---|
2015 | n/a | |
---|
2016 | n/a | # deal with NaNs: if there are any sNaNs then first one wins, |
---|
2017 | n/a | # (i.e. behaviour for NaNs is identical to that of fma) |
---|
2018 | n/a | self_is_nan = self._isnan() |
---|
2019 | n/a | other_is_nan = other._isnan() |
---|
2020 | n/a | modulo_is_nan = modulo._isnan() |
---|
2021 | n/a | if self_is_nan or other_is_nan or modulo_is_nan: |
---|
2022 | n/a | if self_is_nan == 2: |
---|
2023 | n/a | return context._raise_error(InvalidOperation, 'sNaN', |
---|
2024 | n/a | self) |
---|
2025 | n/a | if other_is_nan == 2: |
---|
2026 | n/a | return context._raise_error(InvalidOperation, 'sNaN', |
---|
2027 | n/a | other) |
---|
2028 | n/a | if modulo_is_nan == 2: |
---|
2029 | n/a | return context._raise_error(InvalidOperation, 'sNaN', |
---|
2030 | n/a | modulo) |
---|
2031 | n/a | if self_is_nan: |
---|
2032 | n/a | return self._fix_nan(context) |
---|
2033 | n/a | if other_is_nan: |
---|
2034 | n/a | return other._fix_nan(context) |
---|
2035 | n/a | return modulo._fix_nan(context) |
---|
2036 | n/a | |
---|
2037 | n/a | # check inputs: we apply same restrictions as Python's pow() |
---|
2038 | n/a | if not (self._isinteger() and |
---|
2039 | n/a | other._isinteger() and |
---|
2040 | n/a | modulo._isinteger()): |
---|
2041 | n/a | return context._raise_error(InvalidOperation, |
---|
2042 | n/a | 'pow() 3rd argument not allowed ' |
---|
2043 | n/a | 'unless all arguments are integers') |
---|
2044 | n/a | if other < 0: |
---|
2045 | n/a | return context._raise_error(InvalidOperation, |
---|
2046 | n/a | 'pow() 2nd argument cannot be ' |
---|
2047 | n/a | 'negative when 3rd argument specified') |
---|
2048 | n/a | if not modulo: |
---|
2049 | n/a | return context._raise_error(InvalidOperation, |
---|
2050 | n/a | 'pow() 3rd argument cannot be 0') |
---|
2051 | n/a | |
---|
2052 | n/a | # additional restriction for decimal: the modulus must be less |
---|
2053 | n/a | # than 10**prec in absolute value |
---|
2054 | n/a | if modulo.adjusted() >= context.prec: |
---|
2055 | n/a | return context._raise_error(InvalidOperation, |
---|
2056 | n/a | 'insufficient precision: pow() 3rd ' |
---|
2057 | n/a | 'argument must not have more than ' |
---|
2058 | n/a | 'precision digits') |
---|
2059 | n/a | |
---|
2060 | n/a | # define 0**0 == NaN, for consistency with two-argument pow |
---|
2061 | n/a | # (even though it hurts!) |
---|
2062 | n/a | if not other and not self: |
---|
2063 | n/a | return context._raise_error(InvalidOperation, |
---|
2064 | n/a | 'at least one of pow() 1st argument ' |
---|
2065 | n/a | 'and 2nd argument must be nonzero ;' |
---|
2066 | n/a | '0**0 is not defined') |
---|
2067 | n/a | |
---|
2068 | n/a | # compute sign of result |
---|
2069 | n/a | if other._iseven(): |
---|
2070 | n/a | sign = 0 |
---|
2071 | n/a | else: |
---|
2072 | n/a | sign = self._sign |
---|
2073 | n/a | |
---|
2074 | n/a | # convert modulo to a Python integer, and self and other to |
---|
2075 | n/a | # Decimal integers (i.e. force their exponents to be >= 0) |
---|
2076 | n/a | modulo = abs(int(modulo)) |
---|
2077 | n/a | base = _WorkRep(self.to_integral_value()) |
---|
2078 | n/a | exponent = _WorkRep(other.to_integral_value()) |
---|
2079 | n/a | |
---|
2080 | n/a | # compute result using integer pow() |
---|
2081 | n/a | base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo |
---|
2082 | n/a | for i in range(exponent.exp): |
---|
2083 | n/a | base = pow(base, 10, modulo) |
---|
2084 | n/a | base = pow(base, exponent.int, modulo) |
---|
2085 | n/a | |
---|
2086 | n/a | return _dec_from_triple(sign, str(base), 0) |
---|
2087 | n/a | |
---|
2088 | n/a | def _power_exact(self, other, p): |
---|
2089 | n/a | """Attempt to compute self**other exactly. |
---|
2090 | n/a | |
---|
2091 | n/a | Given Decimals self and other and an integer p, attempt to |
---|
2092 | n/a | compute an exact result for the power self**other, with p |
---|
2093 | n/a | digits of precision. Return None if self**other is not |
---|
2094 | n/a | exactly representable in p digits. |
---|
2095 | n/a | |
---|
2096 | n/a | Assumes that elimination of special cases has already been |
---|
2097 | n/a | performed: self and other must both be nonspecial; self must |
---|
2098 | n/a | be positive and not numerically equal to 1; other must be |
---|
2099 | n/a | nonzero. For efficiency, other._exp should not be too large, |
---|
2100 | n/a | so that 10**abs(other._exp) is a feasible calculation.""" |
---|
2101 | n/a | |
---|
2102 | n/a | # In the comments below, we write x for the value of self and y for the |
---|
2103 | n/a | # value of other. Write x = xc*10**xe and abs(y) = yc*10**ye, with xc |
---|
2104 | n/a | # and yc positive integers not divisible by 10. |
---|
2105 | n/a | |
---|
2106 | n/a | # The main purpose of this method is to identify the *failure* |
---|
2107 | n/a | # of x**y to be exactly representable with as little effort as |
---|
2108 | n/a | # possible. So we look for cheap and easy tests that |
---|
2109 | n/a | # eliminate the possibility of x**y being exact. Only if all |
---|
2110 | n/a | # these tests are passed do we go on to actually compute x**y. |
---|
2111 | n/a | |
---|
2112 | n/a | # Here's the main idea. Express y as a rational number m/n, with m and |
---|
2113 | n/a | # n relatively prime and n>0. Then for x**y to be exactly |
---|
2114 | n/a | # representable (at *any* precision), xc must be the nth power of a |
---|
2115 | n/a | # positive integer and xe must be divisible by n. If y is negative |
---|
2116 | n/a | # then additionally xc must be a power of either 2 or 5, hence a power |
---|
2117 | n/a | # of 2**n or 5**n. |
---|
2118 | n/a | # |
---|
2119 | n/a | # There's a limit to how small |y| can be: if y=m/n as above |
---|
2120 | n/a | # then: |
---|
2121 | n/a | # |
---|
2122 | n/a | # (1) if xc != 1 then for the result to be representable we |
---|
2123 | n/a | # need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So |
---|
2124 | n/a | # if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <= |
---|
2125 | n/a | # 2**(1/|y|), hence xc**|y| < 2 and the result is not |
---|
2126 | n/a | # representable. |
---|
2127 | n/a | # |
---|
2128 | n/a | # (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if |
---|
2129 | n/a | # |y| < 1/|xe| then the result is not representable. |
---|
2130 | n/a | # |
---|
2131 | n/a | # Note that since x is not equal to 1, at least one of (1) and |
---|
2132 | n/a | # (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) < |
---|
2133 | n/a | # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye. |
---|
2134 | n/a | # |
---|
2135 | n/a | # There's also a limit to how large y can be, at least if it's |
---|
2136 | n/a | # positive: the normalized result will have coefficient xc**y, |
---|
2137 | n/a | # so if it's representable then xc**y < 10**p, and y < |
---|
2138 | n/a | # p/log10(xc). Hence if y*log10(xc) >= p then the result is |
---|
2139 | n/a | # not exactly representable. |
---|
2140 | n/a | |
---|
2141 | n/a | # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye, |
---|
2142 | n/a | # so |y| < 1/xe and the result is not representable. |
---|
2143 | n/a | # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y| |
---|
2144 | n/a | # < 1/nbits(xc). |
---|
2145 | n/a | |
---|
2146 | n/a | x = _WorkRep(self) |
---|
2147 | n/a | xc, xe = x.int, x.exp |
---|
2148 | n/a | while xc % 10 == 0: |
---|
2149 | n/a | xc //= 10 |
---|
2150 | n/a | xe += 1 |
---|
2151 | n/a | |
---|
2152 | n/a | y = _WorkRep(other) |
---|
2153 | n/a | yc, ye = y.int, y.exp |
---|
2154 | n/a | while yc % 10 == 0: |
---|
2155 | n/a | yc //= 10 |
---|
2156 | n/a | ye += 1 |
---|
2157 | n/a | |
---|
2158 | n/a | # case where xc == 1: result is 10**(xe*y), with xe*y |
---|
2159 | n/a | # required to be an integer |
---|
2160 | n/a | if xc == 1: |
---|
2161 | n/a | xe *= yc |
---|
2162 | n/a | # result is now 10**(xe * 10**ye); xe * 10**ye must be integral |
---|
2163 | n/a | while xe % 10 == 0: |
---|
2164 | n/a | xe //= 10 |
---|
2165 | n/a | ye += 1 |
---|
2166 | n/a | if ye < 0: |
---|
2167 | n/a | return None |
---|
2168 | n/a | exponent = xe * 10**ye |
---|
2169 | n/a | if y.sign == 1: |
---|
2170 | n/a | exponent = -exponent |
---|
2171 | n/a | # if other is a nonnegative integer, use ideal exponent |
---|
2172 | n/a | if other._isinteger() and other._sign == 0: |
---|
2173 | n/a | ideal_exponent = self._exp*int(other) |
---|
2174 | n/a | zeros = min(exponent-ideal_exponent, p-1) |
---|
2175 | n/a | else: |
---|
2176 | n/a | zeros = 0 |
---|
2177 | n/a | return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros) |
---|
2178 | n/a | |
---|
2179 | n/a | # case where y is negative: xc must be either a power |
---|
2180 | n/a | # of 2 or a power of 5. |
---|
2181 | n/a | if y.sign == 1: |
---|
2182 | n/a | last_digit = xc % 10 |
---|
2183 | n/a | if last_digit in (2,4,6,8): |
---|
2184 | n/a | # quick test for power of 2 |
---|
2185 | n/a | if xc & -xc != xc: |
---|
2186 | n/a | return None |
---|
2187 | n/a | # now xc is a power of 2; e is its exponent |
---|
2188 | n/a | e = _nbits(xc)-1 |
---|
2189 | n/a | |
---|
2190 | n/a | # We now have: |
---|
2191 | n/a | # |
---|
2192 | n/a | # x = 2**e * 10**xe, e > 0, and y < 0. |
---|
2193 | n/a | # |
---|
2194 | n/a | # The exact result is: |
---|
2195 | n/a | # |
---|
2196 | n/a | # x**y = 5**(-e*y) * 10**(e*y + xe*y) |
---|
2197 | n/a | # |
---|
2198 | n/a | # provided that both e*y and xe*y are integers. Note that if |
---|
2199 | n/a | # 5**(-e*y) >= 10**p, then the result can't be expressed |
---|
2200 | n/a | # exactly with p digits of precision. |
---|
2201 | n/a | # |
---|
2202 | n/a | # Using the above, we can guard against large values of ye. |
---|
2203 | n/a | # 93/65 is an upper bound for log(10)/log(5), so if |
---|
2204 | n/a | # |
---|
2205 | n/a | # ye >= len(str(93*p//65)) |
---|
2206 | n/a | # |
---|
2207 | n/a | # then |
---|
2208 | n/a | # |
---|
2209 | n/a | # -e*y >= -y >= 10**ye > 93*p/65 > p*log(10)/log(5), |
---|
2210 | n/a | # |
---|
2211 | n/a | # so 5**(-e*y) >= 10**p, and the coefficient of the result |
---|
2212 | n/a | # can't be expressed in p digits. |
---|
2213 | n/a | |
---|
2214 | n/a | # emax >= largest e such that 5**e < 10**p. |
---|
2215 | n/a | emax = p*93//65 |
---|
2216 | n/a | if ye >= len(str(emax)): |
---|
2217 | n/a | return None |
---|
2218 | n/a | |
---|
2219 | n/a | # Find -e*y and -xe*y; both must be integers |
---|
2220 | n/a | e = _decimal_lshift_exact(e * yc, ye) |
---|
2221 | n/a | xe = _decimal_lshift_exact(xe * yc, ye) |
---|
2222 | n/a | if e is None or xe is None: |
---|
2223 | n/a | return None |
---|
2224 | n/a | |
---|
2225 | n/a | if e > emax: |
---|
2226 | n/a | return None |
---|
2227 | n/a | xc = 5**e |
---|
2228 | n/a | |
---|
2229 | n/a | elif last_digit == 5: |
---|
2230 | n/a | # e >= log_5(xc) if xc is a power of 5; we have |
---|
2231 | n/a | # equality all the way up to xc=5**2658 |
---|
2232 | n/a | e = _nbits(xc)*28//65 |
---|
2233 | n/a | xc, remainder = divmod(5**e, xc) |
---|
2234 | n/a | if remainder: |
---|
2235 | n/a | return None |
---|
2236 | n/a | while xc % 5 == 0: |
---|
2237 | n/a | xc //= 5 |
---|
2238 | n/a | e -= 1 |
---|
2239 | n/a | |
---|
2240 | n/a | # Guard against large values of ye, using the same logic as in |
---|
2241 | n/a | # the 'xc is a power of 2' branch. 10/3 is an upper bound for |
---|
2242 | n/a | # log(10)/log(2). |
---|
2243 | n/a | emax = p*10//3 |
---|
2244 | n/a | if ye >= len(str(emax)): |
---|
2245 | n/a | return None |
---|
2246 | n/a | |
---|
2247 | n/a | e = _decimal_lshift_exact(e * yc, ye) |
---|
2248 | n/a | xe = _decimal_lshift_exact(xe * yc, ye) |
---|
2249 | n/a | if e is None or xe is None: |
---|
2250 | n/a | return None |
---|
2251 | n/a | |
---|
2252 | n/a | if e > emax: |
---|
2253 | n/a | return None |
---|
2254 | n/a | xc = 2**e |
---|
2255 | n/a | else: |
---|
2256 | n/a | return None |
---|
2257 | n/a | |
---|
2258 | n/a | if xc >= 10**p: |
---|
2259 | n/a | return None |
---|
2260 | n/a | xe = -e-xe |
---|
2261 | n/a | return _dec_from_triple(0, str(xc), xe) |
---|
2262 | n/a | |
---|
2263 | n/a | # now y is positive; find m and n such that y = m/n |
---|
2264 | n/a | if ye >= 0: |
---|
2265 | n/a | m, n = yc*10**ye, 1 |
---|
2266 | n/a | else: |
---|
2267 | n/a | if xe != 0 and len(str(abs(yc*xe))) <= -ye: |
---|
2268 | n/a | return None |
---|
2269 | n/a | xc_bits = _nbits(xc) |
---|
2270 | n/a | if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye: |
---|
2271 | n/a | return None |
---|
2272 | n/a | m, n = yc, 10**(-ye) |
---|
2273 | n/a | while m % 2 == n % 2 == 0: |
---|
2274 | n/a | m //= 2 |
---|
2275 | n/a | n //= 2 |
---|
2276 | n/a | while m % 5 == n % 5 == 0: |
---|
2277 | n/a | m //= 5 |
---|
2278 | n/a | n //= 5 |
---|
2279 | n/a | |
---|
2280 | n/a | # compute nth root of xc*10**xe |
---|
2281 | n/a | if n > 1: |
---|
2282 | n/a | # if 1 < xc < 2**n then xc isn't an nth power |
---|
2283 | n/a | if xc != 1 and xc_bits <= n: |
---|
2284 | n/a | return None |
---|
2285 | n/a | |
---|
2286 | n/a | xe, rem = divmod(xe, n) |
---|
2287 | n/a | if rem != 0: |
---|
2288 | n/a | return None |
---|
2289 | n/a | |
---|
2290 | n/a | # compute nth root of xc using Newton's method |
---|
2291 | n/a | a = 1 << -(-_nbits(xc)//n) # initial estimate |
---|
2292 | n/a | while True: |
---|
2293 | n/a | q, r = divmod(xc, a**(n-1)) |
---|
2294 | n/a | if a <= q: |
---|
2295 | n/a | break |
---|
2296 | n/a | else: |
---|
2297 | n/a | a = (a*(n-1) + q)//n |
---|
2298 | n/a | if not (a == q and r == 0): |
---|
2299 | n/a | return None |
---|
2300 | n/a | xc = a |
---|
2301 | n/a | |
---|
2302 | n/a | # now xc*10**xe is the nth root of the original xc*10**xe |
---|
2303 | n/a | # compute mth power of xc*10**xe |
---|
2304 | n/a | |
---|
2305 | n/a | # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m > |
---|
2306 | n/a | # 10**p and the result is not representable. |
---|
2307 | n/a | if xc > 1 and m > p*100//_log10_lb(xc): |
---|
2308 | n/a | return None |
---|
2309 | n/a | xc = xc**m |
---|
2310 | n/a | xe *= m |
---|
2311 | n/a | if xc > 10**p: |
---|
2312 | n/a | return None |
---|
2313 | n/a | |
---|
2314 | n/a | # by this point the result *is* exactly representable |
---|
2315 | n/a | # adjust the exponent to get as close as possible to the ideal |
---|
2316 | n/a | # exponent, if necessary |
---|
2317 | n/a | str_xc = str(xc) |
---|
2318 | n/a | if other._isinteger() and other._sign == 0: |
---|
2319 | n/a | ideal_exponent = self._exp*int(other) |
---|
2320 | n/a | zeros = min(xe-ideal_exponent, p-len(str_xc)) |
---|
2321 | n/a | else: |
---|
2322 | n/a | zeros = 0 |
---|
2323 | n/a | return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros) |
---|
2324 | n/a | |
---|
2325 | n/a | def __pow__(self, other, modulo=None, context=None): |
---|
2326 | n/a | """Return self ** other [ % modulo]. |
---|
2327 | n/a | |
---|
2328 | n/a | With two arguments, compute self**other. |
---|
2329 | n/a | |
---|
2330 | n/a | With three arguments, compute (self**other) % modulo. For the |
---|
2331 | n/a | three argument form, the following restrictions on the |
---|
2332 | n/a | arguments hold: |
---|
2333 | n/a | |
---|
2334 | n/a | - all three arguments must be integral |
---|
2335 | n/a | - other must be nonnegative |
---|
2336 | n/a | - either self or other (or both) must be nonzero |
---|
2337 | n/a | - modulo must be nonzero and must have at most p digits, |
---|
2338 | n/a | where p is the context precision. |
---|
2339 | n/a | |
---|
2340 | n/a | If any of these restrictions is violated the InvalidOperation |
---|
2341 | n/a | flag is raised. |
---|
2342 | n/a | |
---|
2343 | n/a | The result of pow(self, other, modulo) is identical to the |
---|
2344 | n/a | result that would be obtained by computing (self**other) % |
---|
2345 | n/a | modulo with unbounded precision, but is computed more |
---|
2346 | n/a | efficiently. It is always exact. |
---|
2347 | n/a | """ |
---|
2348 | n/a | |
---|
2349 | n/a | if modulo is not None: |
---|
2350 | n/a | return self._power_modulo(other, modulo, context) |
---|
2351 | n/a | |
---|
2352 | n/a | other = _convert_other(other) |
---|
2353 | n/a | if other is NotImplemented: |
---|
2354 | n/a | return other |
---|
2355 | n/a | |
---|
2356 | n/a | if context is None: |
---|
2357 | n/a | context = getcontext() |
---|
2358 | n/a | |
---|
2359 | n/a | # either argument is a NaN => result is NaN |
---|
2360 | n/a | ans = self._check_nans(other, context) |
---|
2361 | n/a | if ans: |
---|
2362 | n/a | return ans |
---|
2363 | n/a | |
---|
2364 | n/a | # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity) |
---|
2365 | n/a | if not other: |
---|
2366 | n/a | if not self: |
---|
2367 | n/a | return context._raise_error(InvalidOperation, '0 ** 0') |
---|
2368 | n/a | else: |
---|
2369 | n/a | return _One |
---|
2370 | n/a | |
---|
2371 | n/a | # result has sign 1 iff self._sign is 1 and other is an odd integer |
---|
2372 | n/a | result_sign = 0 |
---|
2373 | n/a | if self._sign == 1: |
---|
2374 | n/a | if other._isinteger(): |
---|
2375 | n/a | if not other._iseven(): |
---|
2376 | n/a | result_sign = 1 |
---|
2377 | n/a | else: |
---|
2378 | n/a | # -ve**noninteger = NaN |
---|
2379 | n/a | # (-0)**noninteger = 0**noninteger |
---|
2380 | n/a | if self: |
---|
2381 | n/a | return context._raise_error(InvalidOperation, |
---|
2382 | n/a | 'x ** y with x negative and y not an integer') |
---|
2383 | n/a | # negate self, without doing any unwanted rounding |
---|
2384 | n/a | self = self.copy_negate() |
---|
2385 | n/a | |
---|
2386 | n/a | # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity |
---|
2387 | n/a | if not self: |
---|
2388 | n/a | if other._sign == 0: |
---|
2389 | n/a | return _dec_from_triple(result_sign, '0', 0) |
---|
2390 | n/a | else: |
---|
2391 | n/a | return _SignedInfinity[result_sign] |
---|
2392 | n/a | |
---|
2393 | n/a | # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0 |
---|
2394 | n/a | if self._isinfinity(): |
---|
2395 | n/a | if other._sign == 0: |
---|
2396 | n/a | return _SignedInfinity[result_sign] |
---|
2397 | n/a | else: |
---|
2398 | n/a | return _dec_from_triple(result_sign, '0', 0) |
---|
2399 | n/a | |
---|
2400 | n/a | # 1**other = 1, but the choice of exponent and the flags |
---|
2401 | n/a | # depend on the exponent of self, and on whether other is a |
---|
2402 | n/a | # positive integer, a negative integer, or neither |
---|
2403 | n/a | if self == _One: |
---|
2404 | n/a | if other._isinteger(): |
---|
2405 | n/a | # exp = max(self._exp*max(int(other), 0), |
---|
2406 | n/a | # 1-context.prec) but evaluating int(other) directly |
---|
2407 | n/a | # is dangerous until we know other is small (other |
---|
2408 | n/a | # could be 1e999999999) |
---|
2409 | n/a | if other._sign == 1: |
---|
2410 | n/a | multiplier = 0 |
---|
2411 | n/a | elif other > context.prec: |
---|
2412 | n/a | multiplier = context.prec |
---|
2413 | n/a | else: |
---|
2414 | n/a | multiplier = int(other) |
---|
2415 | n/a | |
---|
2416 | n/a | exp = self._exp * multiplier |
---|
2417 | n/a | if exp < 1-context.prec: |
---|
2418 | n/a | exp = 1-context.prec |
---|
2419 | n/a | context._raise_error(Rounded) |
---|
2420 | n/a | else: |
---|
2421 | n/a | context._raise_error(Inexact) |
---|
2422 | n/a | context._raise_error(Rounded) |
---|
2423 | n/a | exp = 1-context.prec |
---|
2424 | n/a | |
---|
2425 | n/a | return _dec_from_triple(result_sign, '1'+'0'*-exp, exp) |
---|
2426 | n/a | |
---|
2427 | n/a | # compute adjusted exponent of self |
---|
2428 | n/a | self_adj = self.adjusted() |
---|
2429 | n/a | |
---|
2430 | n/a | # self ** infinity is infinity if self > 1, 0 if self < 1 |
---|
2431 | n/a | # self ** -infinity is infinity if self < 1, 0 if self > 1 |
---|
2432 | n/a | if other._isinfinity(): |
---|
2433 | n/a | if (other._sign == 0) == (self_adj < 0): |
---|
2434 | n/a | return _dec_from_triple(result_sign, '0', 0) |
---|
2435 | n/a | else: |
---|
2436 | n/a | return _SignedInfinity[result_sign] |
---|
2437 | n/a | |
---|
2438 | n/a | # from here on, the result always goes through the call |
---|
2439 | n/a | # to _fix at the end of this function. |
---|
2440 | n/a | ans = None |
---|
2441 | n/a | exact = False |
---|
2442 | n/a | |
---|
2443 | n/a | # crude test to catch cases of extreme overflow/underflow. If |
---|
2444 | n/a | # log10(self)*other >= 10**bound and bound >= len(str(Emax)) |
---|
2445 | n/a | # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence |
---|
2446 | n/a | # self**other >= 10**(Emax+1), so overflow occurs. The test |
---|
2447 | n/a | # for underflow is similar. |
---|
2448 | n/a | bound = self._log10_exp_bound() + other.adjusted() |
---|
2449 | n/a | if (self_adj >= 0) == (other._sign == 0): |
---|
2450 | n/a | # self > 1 and other +ve, or self < 1 and other -ve |
---|
2451 | n/a | # possibility of overflow |
---|
2452 | n/a | if bound >= len(str(context.Emax)): |
---|
2453 | n/a | ans = _dec_from_triple(result_sign, '1', context.Emax+1) |
---|
2454 | n/a | else: |
---|
2455 | n/a | # self > 1 and other -ve, or self < 1 and other +ve |
---|
2456 | n/a | # possibility of underflow to 0 |
---|
2457 | n/a | Etiny = context.Etiny() |
---|
2458 | n/a | if bound >= len(str(-Etiny)): |
---|
2459 | n/a | ans = _dec_from_triple(result_sign, '1', Etiny-1) |
---|
2460 | n/a | |
---|
2461 | n/a | # try for an exact result with precision +1 |
---|
2462 | n/a | if ans is None: |
---|
2463 | n/a | ans = self._power_exact(other, context.prec + 1) |
---|
2464 | n/a | if ans is not None: |
---|
2465 | n/a | if result_sign == 1: |
---|
2466 | n/a | ans = _dec_from_triple(1, ans._int, ans._exp) |
---|
2467 | n/a | exact = True |
---|
2468 | n/a | |
---|
2469 | n/a | # usual case: inexact result, x**y computed directly as exp(y*log(x)) |
---|
2470 | n/a | if ans is None: |
---|
2471 | n/a | p = context.prec |
---|
2472 | n/a | x = _WorkRep(self) |
---|
2473 | n/a | xc, xe = x.int, x.exp |
---|
2474 | n/a | y = _WorkRep(other) |
---|
2475 | n/a | yc, ye = y.int, y.exp |
---|
2476 | n/a | if y.sign == 1: |
---|
2477 | n/a | yc = -yc |
---|
2478 | n/a | |
---|
2479 | n/a | # compute correctly rounded result: start with precision +3, |
---|
2480 | n/a | # then increase precision until result is unambiguously roundable |
---|
2481 | n/a | extra = 3 |
---|
2482 | n/a | while True: |
---|
2483 | n/a | coeff, exp = _dpower(xc, xe, yc, ye, p+extra) |
---|
2484 | n/a | if coeff % (5*10**(len(str(coeff))-p-1)): |
---|
2485 | n/a | break |
---|
2486 | n/a | extra += 3 |
---|
2487 | n/a | |
---|
2488 | n/a | ans = _dec_from_triple(result_sign, str(coeff), exp) |
---|
2489 | n/a | |
---|
2490 | n/a | # unlike exp, ln and log10, the power function respects the |
---|
2491 | n/a | # rounding mode; no need to switch to ROUND_HALF_EVEN here |
---|
2492 | n/a | |
---|
2493 | n/a | # There's a difficulty here when 'other' is not an integer and |
---|
2494 | n/a | # the result is exact. In this case, the specification |
---|
2495 | n/a | # requires that the Inexact flag be raised (in spite of |
---|
2496 | n/a | # exactness), but since the result is exact _fix won't do this |
---|
2497 | n/a | # for us. (Correspondingly, the Underflow signal should also |
---|
2498 | n/a | # be raised for subnormal results.) We can't directly raise |
---|
2499 | n/a | # these signals either before or after calling _fix, since |
---|
2500 | n/a | # that would violate the precedence for signals. So we wrap |
---|
2501 | n/a | # the ._fix call in a temporary context, and reraise |
---|
2502 | n/a | # afterwards. |
---|
2503 | n/a | if exact and not other._isinteger(): |
---|
2504 | n/a | # pad with zeros up to length context.prec+1 if necessary; this |
---|
2505 | n/a | # ensures that the Rounded signal will be raised. |
---|
2506 | n/a | if len(ans._int) <= context.prec: |
---|
2507 | n/a | expdiff = context.prec + 1 - len(ans._int) |
---|
2508 | n/a | ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff, |
---|
2509 | n/a | ans._exp-expdiff) |
---|
2510 | n/a | |
---|
2511 | n/a | # create a copy of the current context, with cleared flags/traps |
---|
2512 | n/a | newcontext = context.copy() |
---|
2513 | n/a | newcontext.clear_flags() |
---|
2514 | n/a | for exception in _signals: |
---|
2515 | n/a | newcontext.traps[exception] = 0 |
---|
2516 | n/a | |
---|
2517 | n/a | # round in the new context |
---|
2518 | n/a | ans = ans._fix(newcontext) |
---|
2519 | n/a | |
---|
2520 | n/a | # raise Inexact, and if necessary, Underflow |
---|
2521 | n/a | newcontext._raise_error(Inexact) |
---|
2522 | n/a | if newcontext.flags[Subnormal]: |
---|
2523 | n/a | newcontext._raise_error(Underflow) |
---|
2524 | n/a | |
---|
2525 | n/a | # propagate signals to the original context; _fix could |
---|
2526 | n/a | # have raised any of Overflow, Underflow, Subnormal, |
---|
2527 | n/a | # Inexact, Rounded, Clamped. Overflow needs the correct |
---|
2528 | n/a | # arguments. Note that the order of the exceptions is |
---|
2529 | n/a | # important here. |
---|
2530 | n/a | if newcontext.flags[Overflow]: |
---|
2531 | n/a | context._raise_error(Overflow, 'above Emax', ans._sign) |
---|
2532 | n/a | for exception in Underflow, Subnormal, Inexact, Rounded, Clamped: |
---|
2533 | n/a | if newcontext.flags[exception]: |
---|
2534 | n/a | context._raise_error(exception) |
---|
2535 | n/a | |
---|
2536 | n/a | else: |
---|
2537 | n/a | ans = ans._fix(context) |
---|
2538 | n/a | |
---|
2539 | n/a | return ans |
---|
2540 | n/a | |
---|
2541 | n/a | def __rpow__(self, other, context=None): |
---|
2542 | n/a | """Swaps self/other and returns __pow__.""" |
---|
2543 | n/a | other = _convert_other(other) |
---|
2544 | n/a | if other is NotImplemented: |
---|
2545 | n/a | return other |
---|
2546 | n/a | return other.__pow__(self, context=context) |
---|
2547 | n/a | |
---|
2548 | n/a | def normalize(self, context=None): |
---|
2549 | n/a | """Normalize- strip trailing 0s, change anything equal to 0 to 0e0""" |
---|
2550 | n/a | |
---|
2551 | n/a | if context is None: |
---|
2552 | n/a | context = getcontext() |
---|
2553 | n/a | |
---|
2554 | n/a | if self._is_special: |
---|
2555 | n/a | ans = self._check_nans(context=context) |
---|
2556 | n/a | if ans: |
---|
2557 | n/a | return ans |
---|
2558 | n/a | |
---|
2559 | n/a | dup = self._fix(context) |
---|
2560 | n/a | if dup._isinfinity(): |
---|
2561 | n/a | return dup |
---|
2562 | n/a | |
---|
2563 | n/a | if not dup: |
---|
2564 | n/a | return _dec_from_triple(dup._sign, '0', 0) |
---|
2565 | n/a | exp_max = [context.Emax, context.Etop()][context.clamp] |
---|
2566 | n/a | end = len(dup._int) |
---|
2567 | n/a | exp = dup._exp |
---|
2568 | n/a | while dup._int[end-1] == '0' and exp < exp_max: |
---|
2569 | n/a | exp += 1 |
---|
2570 | n/a | end -= 1 |
---|
2571 | n/a | return _dec_from_triple(dup._sign, dup._int[:end], exp) |
---|
2572 | n/a | |
---|
2573 | n/a | def quantize(self, exp, rounding=None, context=None): |
---|
2574 | n/a | """Quantize self so its exponent is the same as that of exp. |
---|
2575 | n/a | |
---|
2576 | n/a | Similar to self._rescale(exp._exp) but with error checking. |
---|
2577 | n/a | """ |
---|
2578 | n/a | exp = _convert_other(exp, raiseit=True) |
---|
2579 | n/a | |
---|
2580 | n/a | if context is None: |
---|
2581 | n/a | context = getcontext() |
---|
2582 | n/a | if rounding is None: |
---|
2583 | n/a | rounding = context.rounding |
---|
2584 | n/a | |
---|
2585 | n/a | if self._is_special or exp._is_special: |
---|
2586 | n/a | ans = self._check_nans(exp, context) |
---|
2587 | n/a | if ans: |
---|
2588 | n/a | return ans |
---|
2589 | n/a | |
---|
2590 | n/a | if exp._isinfinity() or self._isinfinity(): |
---|
2591 | n/a | if exp._isinfinity() and self._isinfinity(): |
---|
2592 | n/a | return Decimal(self) # if both are inf, it is OK |
---|
2593 | n/a | return context._raise_error(InvalidOperation, |
---|
2594 | n/a | 'quantize with one INF') |
---|
2595 | n/a | |
---|
2596 | n/a | # exp._exp should be between Etiny and Emax |
---|
2597 | n/a | if not (context.Etiny() <= exp._exp <= context.Emax): |
---|
2598 | n/a | return context._raise_error(InvalidOperation, |
---|
2599 | n/a | 'target exponent out of bounds in quantize') |
---|
2600 | n/a | |
---|
2601 | n/a | if not self: |
---|
2602 | n/a | ans = _dec_from_triple(self._sign, '0', exp._exp) |
---|
2603 | n/a | return ans._fix(context) |
---|
2604 | n/a | |
---|
2605 | n/a | self_adjusted = self.adjusted() |
---|
2606 | n/a | if self_adjusted > context.Emax: |
---|
2607 | n/a | return context._raise_error(InvalidOperation, |
---|
2608 | n/a | 'exponent of quantize result too large for current context') |
---|
2609 | n/a | if self_adjusted - exp._exp + 1 > context.prec: |
---|
2610 | n/a | return context._raise_error(InvalidOperation, |
---|
2611 | n/a | 'quantize result has too many digits for current context') |
---|
2612 | n/a | |
---|
2613 | n/a | ans = self._rescale(exp._exp, rounding) |
---|
2614 | n/a | if ans.adjusted() > context.Emax: |
---|
2615 | n/a | return context._raise_error(InvalidOperation, |
---|
2616 | n/a | 'exponent of quantize result too large for current context') |
---|
2617 | n/a | if len(ans._int) > context.prec: |
---|
2618 | n/a | return context._raise_error(InvalidOperation, |
---|
2619 | n/a | 'quantize result has too many digits for current context') |
---|
2620 | n/a | |
---|
2621 | n/a | # raise appropriate flags |
---|
2622 | n/a | if ans and ans.adjusted() < context.Emin: |
---|
2623 | n/a | context._raise_error(Subnormal) |
---|
2624 | n/a | if ans._exp > self._exp: |
---|
2625 | n/a | if ans != self: |
---|
2626 | n/a | context._raise_error(Inexact) |
---|
2627 | n/a | context._raise_error(Rounded) |
---|
2628 | n/a | |
---|
2629 | n/a | # call to fix takes care of any necessary folddown, and |
---|
2630 | n/a | # signals Clamped if necessary |
---|
2631 | n/a | ans = ans._fix(context) |
---|
2632 | n/a | return ans |
---|
2633 | n/a | |
---|
2634 | n/a | def same_quantum(self, other, context=None): |
---|
2635 | n/a | """Return True if self and other have the same exponent; otherwise |
---|
2636 | n/a | return False. |
---|
2637 | n/a | |
---|
2638 | n/a | If either operand is a special value, the following rules are used: |
---|
2639 | n/a | * return True if both operands are infinities |
---|
2640 | n/a | * return True if both operands are NaNs |
---|
2641 | n/a | * otherwise, return False. |
---|
2642 | n/a | """ |
---|
2643 | n/a | other = _convert_other(other, raiseit=True) |
---|
2644 | n/a | if self._is_special or other._is_special: |
---|
2645 | n/a | return (self.is_nan() and other.is_nan() or |
---|
2646 | n/a | self.is_infinite() and other.is_infinite()) |
---|
2647 | n/a | return self._exp == other._exp |
---|
2648 | n/a | |
---|
2649 | n/a | def _rescale(self, exp, rounding): |
---|
2650 | n/a | """Rescale self so that the exponent is exp, either by padding with zeros |
---|
2651 | n/a | or by truncating digits, using the given rounding mode. |
---|
2652 | n/a | |
---|
2653 | n/a | Specials are returned without change. This operation is |
---|
2654 | n/a | quiet: it raises no flags, and uses no information from the |
---|
2655 | n/a | context. |
---|
2656 | n/a | |
---|
2657 | n/a | exp = exp to scale to (an integer) |
---|
2658 | n/a | rounding = rounding mode |
---|
2659 | n/a | """ |
---|
2660 | n/a | if self._is_special: |
---|
2661 | n/a | return Decimal(self) |
---|
2662 | n/a | if not self: |
---|
2663 | n/a | return _dec_from_triple(self._sign, '0', exp) |
---|
2664 | n/a | |
---|
2665 | n/a | if self._exp >= exp: |
---|
2666 | n/a | # pad answer with zeros if necessary |
---|
2667 | n/a | return _dec_from_triple(self._sign, |
---|
2668 | n/a | self._int + '0'*(self._exp - exp), exp) |
---|
2669 | n/a | |
---|
2670 | n/a | # too many digits; round and lose data. If self.adjusted() < |
---|
2671 | n/a | # exp-1, replace self by 10**(exp-1) before rounding |
---|
2672 | n/a | digits = len(self._int) + self._exp - exp |
---|
2673 | n/a | if digits < 0: |
---|
2674 | n/a | self = _dec_from_triple(self._sign, '1', exp-1) |
---|
2675 | n/a | digits = 0 |
---|
2676 | n/a | this_function = self._pick_rounding_function[rounding] |
---|
2677 | n/a | changed = this_function(self, digits) |
---|
2678 | n/a | coeff = self._int[:digits] or '0' |
---|
2679 | n/a | if changed == 1: |
---|
2680 | n/a | coeff = str(int(coeff)+1) |
---|
2681 | n/a | return _dec_from_triple(self._sign, coeff, exp) |
---|
2682 | n/a | |
---|
2683 | n/a | def _round(self, places, rounding): |
---|
2684 | n/a | """Round a nonzero, nonspecial Decimal to a fixed number of |
---|
2685 | n/a | significant figures, using the given rounding mode. |
---|
2686 | n/a | |
---|
2687 | n/a | Infinities, NaNs and zeros are returned unaltered. |
---|
2688 | n/a | |
---|
2689 | n/a | This operation is quiet: it raises no flags, and uses no |
---|
2690 | n/a | information from the context. |
---|
2691 | n/a | |
---|
2692 | n/a | """ |
---|
2693 | n/a | if places <= 0: |
---|
2694 | n/a | raise ValueError("argument should be at least 1 in _round") |
---|
2695 | n/a | if self._is_special or not self: |
---|
2696 | n/a | return Decimal(self) |
---|
2697 | n/a | ans = self._rescale(self.adjusted()+1-places, rounding) |
---|
2698 | n/a | # it can happen that the rescale alters the adjusted exponent; |
---|
2699 | n/a | # for example when rounding 99.97 to 3 significant figures. |
---|
2700 | n/a | # When this happens we end up with an extra 0 at the end of |
---|
2701 | n/a | # the number; a second rescale fixes this. |
---|
2702 | n/a | if ans.adjusted() != self.adjusted(): |
---|
2703 | n/a | ans = ans._rescale(ans.adjusted()+1-places, rounding) |
---|
2704 | n/a | return ans |
---|
2705 | n/a | |
---|
2706 | n/a | def to_integral_exact(self, rounding=None, context=None): |
---|
2707 | n/a | """Rounds to a nearby integer. |
---|
2708 | n/a | |
---|
2709 | n/a | If no rounding mode is specified, take the rounding mode from |
---|
2710 | n/a | the context. This method raises the Rounded and Inexact flags |
---|
2711 | n/a | when appropriate. |
---|
2712 | n/a | |
---|
2713 | n/a | See also: to_integral_value, which does exactly the same as |
---|
2714 | n/a | this method except that it doesn't raise Inexact or Rounded. |
---|
2715 | n/a | """ |
---|
2716 | n/a | if self._is_special: |
---|
2717 | n/a | ans = self._check_nans(context=context) |
---|
2718 | n/a | if ans: |
---|
2719 | n/a | return ans |
---|
2720 | n/a | return Decimal(self) |
---|
2721 | n/a | if self._exp >= 0: |
---|
2722 | n/a | return Decimal(self) |
---|
2723 | n/a | if not self: |
---|
2724 | n/a | return _dec_from_triple(self._sign, '0', 0) |
---|
2725 | n/a | if context is None: |
---|
2726 | n/a | context = getcontext() |
---|
2727 | n/a | if rounding is None: |
---|
2728 | n/a | rounding = context.rounding |
---|
2729 | n/a | ans = self._rescale(0, rounding) |
---|
2730 | n/a | if ans != self: |
---|
2731 | n/a | context._raise_error(Inexact) |
---|
2732 | n/a | context._raise_error(Rounded) |
---|
2733 | n/a | return ans |
---|
2734 | n/a | |
---|
2735 | n/a | def to_integral_value(self, rounding=None, context=None): |
---|
2736 | n/a | """Rounds to the nearest integer, without raising inexact, rounded.""" |
---|
2737 | n/a | if context is None: |
---|
2738 | n/a | context = getcontext() |
---|
2739 | n/a | if rounding is None: |
---|
2740 | n/a | rounding = context.rounding |
---|
2741 | n/a | if self._is_special: |
---|
2742 | n/a | ans = self._check_nans(context=context) |
---|
2743 | n/a | if ans: |
---|
2744 | n/a | return ans |
---|
2745 | n/a | return Decimal(self) |
---|
2746 | n/a | if self._exp >= 0: |
---|
2747 | n/a | return Decimal(self) |
---|
2748 | n/a | else: |
---|
2749 | n/a | return self._rescale(0, rounding) |
---|
2750 | n/a | |
---|
2751 | n/a | # the method name changed, but we provide also the old one, for compatibility |
---|
2752 | n/a | to_integral = to_integral_value |
---|
2753 | n/a | |
---|
2754 | n/a | def sqrt(self, context=None): |
---|
2755 | n/a | """Return the square root of self.""" |
---|
2756 | n/a | if context is None: |
---|
2757 | n/a | context = getcontext() |
---|
2758 | n/a | |
---|
2759 | n/a | if self._is_special: |
---|
2760 | n/a | ans = self._check_nans(context=context) |
---|
2761 | n/a | if ans: |
---|
2762 | n/a | return ans |
---|
2763 | n/a | |
---|
2764 | n/a | if self._isinfinity() and self._sign == 0: |
---|
2765 | n/a | return Decimal(self) |
---|
2766 | n/a | |
---|
2767 | n/a | if not self: |
---|
2768 | n/a | # exponent = self._exp // 2. sqrt(-0) = -0 |
---|
2769 | n/a | ans = _dec_from_triple(self._sign, '0', self._exp // 2) |
---|
2770 | n/a | return ans._fix(context) |
---|
2771 | n/a | |
---|
2772 | n/a | if self._sign == 1: |
---|
2773 | n/a | return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0') |
---|
2774 | n/a | |
---|
2775 | n/a | # At this point self represents a positive number. Let p be |
---|
2776 | n/a | # the desired precision and express self in the form c*100**e |
---|
2777 | n/a | # with c a positive real number and e an integer, c and e |
---|
2778 | n/a | # being chosen so that 100**(p-1) <= c < 100**p. Then the |
---|
2779 | n/a | # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1) |
---|
2780 | n/a | # <= sqrt(c) < 10**p, so the closest representable Decimal at |
---|
2781 | n/a | # precision p is n*10**e where n = round_half_even(sqrt(c)), |
---|
2782 | n/a | # the closest integer to sqrt(c) with the even integer chosen |
---|
2783 | n/a | # in the case of a tie. |
---|
2784 | n/a | # |
---|
2785 | n/a | # To ensure correct rounding in all cases, we use the |
---|
2786 | n/a | # following trick: we compute the square root to an extra |
---|
2787 | n/a | # place (precision p+1 instead of precision p), rounding down. |
---|
2788 | n/a | # Then, if the result is inexact and its last digit is 0 or 5, |
---|
2789 | n/a | # we increase the last digit to 1 or 6 respectively; if it's |
---|
2790 | n/a | # exact we leave the last digit alone. Now the final round to |
---|
2791 | n/a | # p places (or fewer in the case of underflow) will round |
---|
2792 | n/a | # correctly and raise the appropriate flags. |
---|
2793 | n/a | |
---|
2794 | n/a | # use an extra digit of precision |
---|
2795 | n/a | prec = context.prec+1 |
---|
2796 | n/a | |
---|
2797 | n/a | # write argument in the form c*100**e where e = self._exp//2 |
---|
2798 | n/a | # is the 'ideal' exponent, to be used if the square root is |
---|
2799 | n/a | # exactly representable. l is the number of 'digits' of c in |
---|
2800 | n/a | # base 100, so that 100**(l-1) <= c < 100**l. |
---|
2801 | n/a | op = _WorkRep(self) |
---|
2802 | n/a | e = op.exp >> 1 |
---|
2803 | n/a | if op.exp & 1: |
---|
2804 | n/a | c = op.int * 10 |
---|
2805 | n/a | l = (len(self._int) >> 1) + 1 |
---|
2806 | n/a | else: |
---|
2807 | n/a | c = op.int |
---|
2808 | n/a | l = len(self._int)+1 >> 1 |
---|
2809 | n/a | |
---|
2810 | n/a | # rescale so that c has exactly prec base 100 'digits' |
---|
2811 | n/a | shift = prec-l |
---|
2812 | n/a | if shift >= 0: |
---|
2813 | n/a | c *= 100**shift |
---|
2814 | n/a | exact = True |
---|
2815 | n/a | else: |
---|
2816 | n/a | c, remainder = divmod(c, 100**-shift) |
---|
2817 | n/a | exact = not remainder |
---|
2818 | n/a | e -= shift |
---|
2819 | n/a | |
---|
2820 | n/a | # find n = floor(sqrt(c)) using Newton's method |
---|
2821 | n/a | n = 10**prec |
---|
2822 | n/a | while True: |
---|
2823 | n/a | q = c//n |
---|
2824 | n/a | if n <= q: |
---|
2825 | n/a | break |
---|
2826 | n/a | else: |
---|
2827 | n/a | n = n + q >> 1 |
---|
2828 | n/a | exact = exact and n*n == c |
---|
2829 | n/a | |
---|
2830 | n/a | if exact: |
---|
2831 | n/a | # result is exact; rescale to use ideal exponent e |
---|
2832 | n/a | if shift >= 0: |
---|
2833 | n/a | # assert n % 10**shift == 0 |
---|
2834 | n/a | n //= 10**shift |
---|
2835 | n/a | else: |
---|
2836 | n/a | n *= 10**-shift |
---|
2837 | n/a | e += shift |
---|
2838 | n/a | else: |
---|
2839 | n/a | # result is not exact; fix last digit as described above |
---|
2840 | n/a | if n % 5 == 0: |
---|
2841 | n/a | n += 1 |
---|
2842 | n/a | |
---|
2843 | n/a | ans = _dec_from_triple(0, str(n), e) |
---|
2844 | n/a | |
---|
2845 | n/a | # round, and fit to current context |
---|
2846 | n/a | context = context._shallow_copy() |
---|
2847 | n/a | rounding = context._set_rounding(ROUND_HALF_EVEN) |
---|
2848 | n/a | ans = ans._fix(context) |
---|
2849 | n/a | context.rounding = rounding |
---|
2850 | n/a | |
---|
2851 | n/a | return ans |
---|
2852 | n/a | |
---|
2853 | n/a | def max(self, other, context=None): |
---|
2854 | n/a | """Returns the larger value. |
---|
2855 | n/a | |
---|
2856 | n/a | Like max(self, other) except if one is not a number, returns |
---|
2857 | n/a | NaN (and signals if one is sNaN). Also rounds. |
---|
2858 | n/a | """ |
---|
2859 | n/a | other = _convert_other(other, raiseit=True) |
---|
2860 | n/a | |
---|
2861 | n/a | if context is None: |
---|
2862 | n/a | context = getcontext() |
---|
2863 | n/a | |
---|
2864 | n/a | if self._is_special or other._is_special: |
---|
2865 | n/a | # If one operand is a quiet NaN and the other is number, then the |
---|
2866 | n/a | # number is always returned |
---|
2867 | n/a | sn = self._isnan() |
---|
2868 | n/a | on = other._isnan() |
---|
2869 | n/a | if sn or on: |
---|
2870 | n/a | if on == 1 and sn == 0: |
---|
2871 | n/a | return self._fix(context) |
---|
2872 | n/a | if sn == 1 and on == 0: |
---|
2873 | n/a | return other._fix(context) |
---|
2874 | n/a | return self._check_nans(other, context) |
---|
2875 | n/a | |
---|
2876 | n/a | c = self._cmp(other) |
---|
2877 | n/a | if c == 0: |
---|
2878 | n/a | # If both operands are finite and equal in numerical value |
---|
2879 | n/a | # then an ordering is applied: |
---|
2880 | n/a | # |
---|
2881 | n/a | # If the signs differ then max returns the operand with the |
---|
2882 | n/a | # positive sign and min returns the operand with the negative sign |
---|
2883 | n/a | # |
---|
2884 | n/a | # If the signs are the same then the exponent is used to select |
---|
2885 | n/a | # the result. This is exactly the ordering used in compare_total. |
---|
2886 | n/a | c = self.compare_total(other) |
---|
2887 | n/a | |
---|
2888 | n/a | if c == -1: |
---|
2889 | n/a | ans = other |
---|
2890 | n/a | else: |
---|
2891 | n/a | ans = self |
---|
2892 | n/a | |
---|
2893 | n/a | return ans._fix(context) |
---|
2894 | n/a | |
---|
2895 | n/a | def min(self, other, context=None): |
---|
2896 | n/a | """Returns the smaller value. |
---|
2897 | n/a | |
---|
2898 | n/a | Like min(self, other) except if one is not a number, returns |
---|
2899 | n/a | NaN (and signals if one is sNaN). Also rounds. |
---|
2900 | n/a | """ |
---|
2901 | n/a | other = _convert_other(other, raiseit=True) |
---|
2902 | n/a | |
---|
2903 | n/a | if context is None: |
---|
2904 | n/a | context = getcontext() |
---|
2905 | n/a | |
---|
2906 | n/a | if self._is_special or other._is_special: |
---|
2907 | n/a | # If one operand is a quiet NaN and the other is number, then the |
---|
2908 | n/a | # number is always returned |
---|
2909 | n/a | sn = self._isnan() |
---|
2910 | n/a | on = other._isnan() |
---|
2911 | n/a | if sn or on: |
---|
2912 | n/a | if on == 1 and sn == 0: |
---|
2913 | n/a | return self._fix(context) |
---|
2914 | n/a | if sn == 1 and on == 0: |
---|
2915 | n/a | return other._fix(context) |
---|
2916 | n/a | return self._check_nans(other, context) |
---|
2917 | n/a | |
---|
2918 | n/a | c = self._cmp(other) |
---|
2919 | n/a | if c == 0: |
---|
2920 | n/a | c = self.compare_total(other) |
---|
2921 | n/a | |
---|
2922 | n/a | if c == -1: |
---|
2923 | n/a | ans = self |
---|
2924 | n/a | else: |
---|
2925 | n/a | ans = other |
---|
2926 | n/a | |
---|
2927 | n/a | return ans._fix(context) |
---|
2928 | n/a | |
---|
2929 | n/a | def _isinteger(self): |
---|
2930 | n/a | """Returns whether self is an integer""" |
---|
2931 | n/a | if self._is_special: |
---|
2932 | n/a | return False |
---|
2933 | n/a | if self._exp >= 0: |
---|
2934 | n/a | return True |
---|
2935 | n/a | rest = self._int[self._exp:] |
---|
2936 | n/a | return rest == '0'*len(rest) |
---|
2937 | n/a | |
---|
2938 | n/a | def _iseven(self): |
---|
2939 | n/a | """Returns True if self is even. Assumes self is an integer.""" |
---|
2940 | n/a | if not self or self._exp > 0: |
---|
2941 | n/a | return True |
---|
2942 | n/a | return self._int[-1+self._exp] in '02468' |
---|
2943 | n/a | |
---|
2944 | n/a | def adjusted(self): |
---|
2945 | n/a | """Return the adjusted exponent of self""" |
---|
2946 | n/a | try: |
---|
2947 | n/a | return self._exp + len(self._int) - 1 |
---|
2948 | n/a | # If NaN or Infinity, self._exp is string |
---|
2949 | n/a | except TypeError: |
---|
2950 | n/a | return 0 |
---|
2951 | n/a | |
---|
2952 | n/a | def canonical(self): |
---|
2953 | n/a | """Returns the same Decimal object. |
---|
2954 | n/a | |
---|
2955 | n/a | As we do not have different encodings for the same number, the |
---|
2956 | n/a | received object already is in its canonical form. |
---|
2957 | n/a | """ |
---|
2958 | n/a | return self |
---|
2959 | n/a | |
---|
2960 | n/a | def compare_signal(self, other, context=None): |
---|
2961 | n/a | """Compares self to the other operand numerically. |
---|
2962 | n/a | |
---|
2963 | n/a | It's pretty much like compare(), but all NaNs signal, with signaling |
---|
2964 | n/a | NaNs taking precedence over quiet NaNs. |
---|
2965 | n/a | """ |
---|
2966 | n/a | other = _convert_other(other, raiseit = True) |
---|
2967 | n/a | ans = self._compare_check_nans(other, context) |
---|
2968 | n/a | if ans: |
---|
2969 | n/a | return ans |
---|
2970 | n/a | return self.compare(other, context=context) |
---|
2971 | n/a | |
---|
2972 | n/a | def compare_total(self, other, context=None): |
---|
2973 | n/a | """Compares self to other using the abstract representations. |
---|
2974 | n/a | |
---|
2975 | n/a | This is not like the standard compare, which use their numerical |
---|
2976 | n/a | value. Note that a total ordering is defined for all possible abstract |
---|
2977 | n/a | representations. |
---|
2978 | n/a | """ |
---|
2979 | n/a | other = _convert_other(other, raiseit=True) |
---|
2980 | n/a | |
---|
2981 | n/a | # if one is negative and the other is positive, it's easy |
---|
2982 | n/a | if self._sign and not other._sign: |
---|
2983 | n/a | return _NegativeOne |
---|
2984 | n/a | if not self._sign and other._sign: |
---|
2985 | n/a | return _One |
---|
2986 | n/a | sign = self._sign |
---|
2987 | n/a | |
---|
2988 | n/a | # let's handle both NaN types |
---|
2989 | n/a | self_nan = self._isnan() |
---|
2990 | n/a | other_nan = other._isnan() |
---|
2991 | n/a | if self_nan or other_nan: |
---|
2992 | n/a | if self_nan == other_nan: |
---|
2993 | n/a | # compare payloads as though they're integers |
---|
2994 | n/a | self_key = len(self._int), self._int |
---|
2995 | n/a | other_key = len(other._int), other._int |
---|
2996 | n/a | if self_key < other_key: |
---|
2997 | n/a | if sign: |
---|
2998 | n/a | return _One |
---|
2999 | n/a | else: |
---|
3000 | n/a | return _NegativeOne |
---|
3001 | n/a | if self_key > other_key: |
---|
3002 | n/a | if sign: |
---|
3003 | n/a | return _NegativeOne |
---|
3004 | n/a | else: |
---|
3005 | n/a | return _One |
---|
3006 | n/a | return _Zero |
---|
3007 | n/a | |
---|
3008 | n/a | if sign: |
---|
3009 | n/a | if self_nan == 1: |
---|
3010 | n/a | return _NegativeOne |
---|
3011 | n/a | if other_nan == 1: |
---|
3012 | n/a | return _One |
---|
3013 | n/a | if self_nan == 2: |
---|
3014 | n/a | return _NegativeOne |
---|
3015 | n/a | if other_nan == 2: |
---|
3016 | n/a | return _One |
---|
3017 | n/a | else: |
---|
3018 | n/a | if self_nan == 1: |
---|
3019 | n/a | return _One |
---|
3020 | n/a | if other_nan == 1: |
---|
3021 | n/a | return _NegativeOne |
---|
3022 | n/a | if self_nan == 2: |
---|
3023 | n/a | return _One |
---|
3024 | n/a | if other_nan == 2: |
---|
3025 | n/a | return _NegativeOne |
---|
3026 | n/a | |
---|
3027 | n/a | if self < other: |
---|
3028 | n/a | return _NegativeOne |
---|
3029 | n/a | if self > other: |
---|
3030 | n/a | return _One |
---|
3031 | n/a | |
---|
3032 | n/a | if self._exp < other._exp: |
---|
3033 | n/a | if sign: |
---|
3034 | n/a | return _One |
---|
3035 | n/a | else: |
---|
3036 | n/a | return _NegativeOne |
---|
3037 | n/a | if self._exp > other._exp: |
---|
3038 | n/a | if sign: |
---|
3039 | n/a | return _NegativeOne |
---|
3040 | n/a | else: |
---|
3041 | n/a | return _One |
---|
3042 | n/a | return _Zero |
---|
3043 | n/a | |
---|
3044 | n/a | |
---|
3045 | n/a | def compare_total_mag(self, other, context=None): |
---|
3046 | n/a | """Compares self to other using abstract repr., ignoring sign. |
---|
3047 | n/a | |
---|
3048 | n/a | Like compare_total, but with operand's sign ignored and assumed to be 0. |
---|
3049 | n/a | """ |
---|
3050 | n/a | other = _convert_other(other, raiseit=True) |
---|
3051 | n/a | |
---|
3052 | n/a | s = self.copy_abs() |
---|
3053 | n/a | o = other.copy_abs() |
---|
3054 | n/a | return s.compare_total(o) |
---|
3055 | n/a | |
---|
3056 | n/a | def copy_abs(self): |
---|
3057 | n/a | """Returns a copy with the sign set to 0. """ |
---|
3058 | n/a | return _dec_from_triple(0, self._int, self._exp, self._is_special) |
---|
3059 | n/a | |
---|
3060 | n/a | def copy_negate(self): |
---|
3061 | n/a | """Returns a copy with the sign inverted.""" |
---|
3062 | n/a | if self._sign: |
---|
3063 | n/a | return _dec_from_triple(0, self._int, self._exp, self._is_special) |
---|
3064 | n/a | else: |
---|
3065 | n/a | return _dec_from_triple(1, self._int, self._exp, self._is_special) |
---|
3066 | n/a | |
---|
3067 | n/a | def copy_sign(self, other, context=None): |
---|
3068 | n/a | """Returns self with the sign of other.""" |
---|
3069 | n/a | other = _convert_other(other, raiseit=True) |
---|
3070 | n/a | return _dec_from_triple(other._sign, self._int, |
---|
3071 | n/a | self._exp, self._is_special) |
---|
3072 | n/a | |
---|
3073 | n/a | def exp(self, context=None): |
---|
3074 | n/a | """Returns e ** self.""" |
---|
3075 | n/a | |
---|
3076 | n/a | if context is None: |
---|
3077 | n/a | context = getcontext() |
---|
3078 | n/a | |
---|
3079 | n/a | # exp(NaN) = NaN |
---|
3080 | n/a | ans = self._check_nans(context=context) |
---|
3081 | n/a | if ans: |
---|
3082 | n/a | return ans |
---|
3083 | n/a | |
---|
3084 | n/a | # exp(-Infinity) = 0 |
---|
3085 | n/a | if self._isinfinity() == -1: |
---|
3086 | n/a | return _Zero |
---|
3087 | n/a | |
---|
3088 | n/a | # exp(0) = 1 |
---|
3089 | n/a | if not self: |
---|
3090 | n/a | return _One |
---|
3091 | n/a | |
---|
3092 | n/a | # exp(Infinity) = Infinity |
---|
3093 | n/a | if self._isinfinity() == 1: |
---|
3094 | n/a | return Decimal(self) |
---|
3095 | n/a | |
---|
3096 | n/a | # the result is now guaranteed to be inexact (the true |
---|
3097 | n/a | # mathematical result is transcendental). There's no need to |
---|
3098 | n/a | # raise Rounded and Inexact here---they'll always be raised as |
---|
3099 | n/a | # a result of the call to _fix. |
---|
3100 | n/a | p = context.prec |
---|
3101 | n/a | adj = self.adjusted() |
---|
3102 | n/a | |
---|
3103 | n/a | # we only need to do any computation for quite a small range |
---|
3104 | n/a | # of adjusted exponents---for example, -29 <= adj <= 10 for |
---|
3105 | n/a | # the default context. For smaller exponent the result is |
---|
3106 | n/a | # indistinguishable from 1 at the given precision, while for |
---|
3107 | n/a | # larger exponent the result either overflows or underflows. |
---|
3108 | n/a | if self._sign == 0 and adj > len(str((context.Emax+1)*3)): |
---|
3109 | n/a | # overflow |
---|
3110 | n/a | ans = _dec_from_triple(0, '1', context.Emax+1) |
---|
3111 | n/a | elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)): |
---|
3112 | n/a | # underflow to 0 |
---|
3113 | n/a | ans = _dec_from_triple(0, '1', context.Etiny()-1) |
---|
3114 | n/a | elif self._sign == 0 and adj < -p: |
---|
3115 | n/a | # p+1 digits; final round will raise correct flags |
---|
3116 | n/a | ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p) |
---|
3117 | n/a | elif self._sign == 1 and adj < -p-1: |
---|
3118 | n/a | # p+1 digits; final round will raise correct flags |
---|
3119 | n/a | ans = _dec_from_triple(0, '9'*(p+1), -p-1) |
---|
3120 | n/a | # general case |
---|
3121 | n/a | else: |
---|
3122 | n/a | op = _WorkRep(self) |
---|
3123 | n/a | c, e = op.int, op.exp |
---|
3124 | n/a | if op.sign == 1: |
---|
3125 | n/a | c = -c |
---|
3126 | n/a | |
---|
3127 | n/a | # compute correctly rounded result: increase precision by |
---|
3128 | n/a | # 3 digits at a time until we get an unambiguously |
---|
3129 | n/a | # roundable result |
---|
3130 | n/a | extra = 3 |
---|
3131 | n/a | while True: |
---|
3132 | n/a | coeff, exp = _dexp(c, e, p+extra) |
---|
3133 | n/a | if coeff % (5*10**(len(str(coeff))-p-1)): |
---|
3134 | n/a | break |
---|
3135 | n/a | extra += 3 |
---|
3136 | n/a | |
---|
3137 | n/a | ans = _dec_from_triple(0, str(coeff), exp) |
---|
3138 | n/a | |
---|
3139 | n/a | # at this stage, ans should round correctly with *any* |
---|
3140 | n/a | # rounding mode, not just with ROUND_HALF_EVEN |
---|
3141 | n/a | context = context._shallow_copy() |
---|
3142 | n/a | rounding = context._set_rounding(ROUND_HALF_EVEN) |
---|
3143 | n/a | ans = ans._fix(context) |
---|
3144 | n/a | context.rounding = rounding |
---|
3145 | n/a | |
---|
3146 | n/a | return ans |
---|
3147 | n/a | |
---|
3148 | n/a | def is_canonical(self): |
---|
3149 | n/a | """Return True if self is canonical; otherwise return False. |
---|
3150 | n/a | |
---|
3151 | n/a | Currently, the encoding of a Decimal instance is always |
---|
3152 | n/a | canonical, so this method returns True for any Decimal. |
---|
3153 | n/a | """ |
---|
3154 | n/a | return True |
---|
3155 | n/a | |
---|
3156 | n/a | def is_finite(self): |
---|
3157 | n/a | """Return True if self is finite; otherwise return False. |
---|
3158 | n/a | |
---|
3159 | n/a | A Decimal instance is considered finite if it is neither |
---|
3160 | n/a | infinite nor a NaN. |
---|
3161 | n/a | """ |
---|
3162 | n/a | return not self._is_special |
---|
3163 | n/a | |
---|
3164 | n/a | def is_infinite(self): |
---|
3165 | n/a | """Return True if self is infinite; otherwise return False.""" |
---|
3166 | n/a | return self._exp == 'F' |
---|
3167 | n/a | |
---|
3168 | n/a | def is_nan(self): |
---|
3169 | n/a | """Return True if self is a qNaN or sNaN; otherwise return False.""" |
---|
3170 | n/a | return self._exp in ('n', 'N') |
---|
3171 | n/a | |
---|
3172 | n/a | def is_normal(self, context=None): |
---|
3173 | n/a | """Return True if self is a normal number; otherwise return False.""" |
---|
3174 | n/a | if self._is_special or not self: |
---|
3175 | n/a | return False |
---|
3176 | n/a | if context is None: |
---|
3177 | n/a | context = getcontext() |
---|
3178 | n/a | return context.Emin <= self.adjusted() |
---|
3179 | n/a | |
---|
3180 | n/a | def is_qnan(self): |
---|
3181 | n/a | """Return True if self is a quiet NaN; otherwise return False.""" |
---|
3182 | n/a | return self._exp == 'n' |
---|
3183 | n/a | |
---|
3184 | n/a | def is_signed(self): |
---|
3185 | n/a | """Return True if self is negative; otherwise return False.""" |
---|
3186 | n/a | return self._sign == 1 |
---|
3187 | n/a | |
---|
3188 | n/a | def is_snan(self): |
---|
3189 | n/a | """Return True if self is a signaling NaN; otherwise return False.""" |
---|
3190 | n/a | return self._exp == 'N' |
---|
3191 | n/a | |
---|
3192 | n/a | def is_subnormal(self, context=None): |
---|
3193 | n/a | """Return True if self is subnormal; otherwise return False.""" |
---|
3194 | n/a | if self._is_special or not self: |
---|
3195 | n/a | return False |
---|
3196 | n/a | if context is None: |
---|
3197 | n/a | context = getcontext() |
---|
3198 | n/a | return self.adjusted() < context.Emin |
---|
3199 | n/a | |
---|
3200 | n/a | def is_zero(self): |
---|
3201 | n/a | """Return True if self is a zero; otherwise return False.""" |
---|
3202 | n/a | return not self._is_special and self._int == '0' |
---|
3203 | n/a | |
---|
3204 | n/a | def _ln_exp_bound(self): |
---|
3205 | n/a | """Compute a lower bound for the adjusted exponent of self.ln(). |
---|
3206 | n/a | In other words, compute r such that self.ln() >= 10**r. Assumes |
---|
3207 | n/a | that self is finite and positive and that self != 1. |
---|
3208 | n/a | """ |
---|
3209 | n/a | |
---|
3210 | n/a | # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1 |
---|
3211 | n/a | adj = self._exp + len(self._int) - 1 |
---|
3212 | n/a | if adj >= 1: |
---|
3213 | n/a | # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10) |
---|
3214 | n/a | return len(str(adj*23//10)) - 1 |
---|
3215 | n/a | if adj <= -2: |
---|
3216 | n/a | # argument <= 0.1 |
---|
3217 | n/a | return len(str((-1-adj)*23//10)) - 1 |
---|
3218 | n/a | op = _WorkRep(self) |
---|
3219 | n/a | c, e = op.int, op.exp |
---|
3220 | n/a | if adj == 0: |
---|
3221 | n/a | # 1 < self < 10 |
---|
3222 | n/a | num = str(c-10**-e) |
---|
3223 | n/a | den = str(c) |
---|
3224 | n/a | return len(num) - len(den) - (num < den) |
---|
3225 | n/a | # adj == -1, 0.1 <= self < 1 |
---|
3226 | n/a | return e + len(str(10**-e - c)) - 1 |
---|
3227 | n/a | |
---|
3228 | n/a | |
---|
3229 | n/a | def ln(self, context=None): |
---|
3230 | n/a | """Returns the natural (base e) logarithm of self.""" |
---|
3231 | n/a | |
---|
3232 | n/a | if context is None: |
---|
3233 | n/a | context = getcontext() |
---|
3234 | n/a | |
---|
3235 | n/a | # ln(NaN) = NaN |
---|
3236 | n/a | ans = self._check_nans(context=context) |
---|
3237 | n/a | if ans: |
---|
3238 | n/a | return ans |
---|
3239 | n/a | |
---|
3240 | n/a | # ln(0.0) == -Infinity |
---|
3241 | n/a | if not self: |
---|
3242 | n/a | return _NegativeInfinity |
---|
3243 | n/a | |
---|
3244 | n/a | # ln(Infinity) = Infinity |
---|
3245 | n/a | if self._isinfinity() == 1: |
---|
3246 | n/a | return _Infinity |
---|
3247 | n/a | |
---|
3248 | n/a | # ln(1.0) == 0.0 |
---|
3249 | n/a | if self == _One: |
---|
3250 | n/a | return _Zero |
---|
3251 | n/a | |
---|
3252 | n/a | # ln(negative) raises InvalidOperation |
---|
3253 | n/a | if self._sign == 1: |
---|
3254 | n/a | return context._raise_error(InvalidOperation, |
---|
3255 | n/a | 'ln of a negative value') |
---|
3256 | n/a | |
---|
3257 | n/a | # result is irrational, so necessarily inexact |
---|
3258 | n/a | op = _WorkRep(self) |
---|
3259 | n/a | c, e = op.int, op.exp |
---|
3260 | n/a | p = context.prec |
---|
3261 | n/a | |
---|
3262 | n/a | # correctly rounded result: repeatedly increase precision by 3 |
---|
3263 | n/a | # until we get an unambiguously roundable result |
---|
3264 | n/a | places = p - self._ln_exp_bound() + 2 # at least p+3 places |
---|
3265 | n/a | while True: |
---|
3266 | n/a | coeff = _dlog(c, e, places) |
---|
3267 | n/a | # assert len(str(abs(coeff)))-p >= 1 |
---|
3268 | n/a | if coeff % (5*10**(len(str(abs(coeff)))-p-1)): |
---|
3269 | n/a | break |
---|
3270 | n/a | places += 3 |
---|
3271 | n/a | ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places) |
---|
3272 | n/a | |
---|
3273 | n/a | context = context._shallow_copy() |
---|
3274 | n/a | rounding = context._set_rounding(ROUND_HALF_EVEN) |
---|
3275 | n/a | ans = ans._fix(context) |
---|
3276 | n/a | context.rounding = rounding |
---|
3277 | n/a | return ans |
---|
3278 | n/a | |
---|
3279 | n/a | def _log10_exp_bound(self): |
---|
3280 | n/a | """Compute a lower bound for the adjusted exponent of self.log10(). |
---|
3281 | n/a | In other words, find r such that self.log10() >= 10**r. |
---|
3282 | n/a | Assumes that self is finite and positive and that self != 1. |
---|
3283 | n/a | """ |
---|
3284 | n/a | |
---|
3285 | n/a | # For x >= 10 or x < 0.1 we only need a bound on the integer |
---|
3286 | n/a | # part of log10(self), and this comes directly from the |
---|
3287 | n/a | # exponent of x. For 0.1 <= x <= 10 we use the inequalities |
---|
3288 | n/a | # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| > |
---|
3289 | n/a | # (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0 |
---|
3290 | n/a | |
---|
3291 | n/a | adj = self._exp + len(self._int) - 1 |
---|
3292 | n/a | if adj >= 1: |
---|
3293 | n/a | # self >= 10 |
---|
3294 | n/a | return len(str(adj))-1 |
---|
3295 | n/a | if adj <= -2: |
---|
3296 | n/a | # self < 0.1 |
---|
3297 | n/a | return len(str(-1-adj))-1 |
---|
3298 | n/a | op = _WorkRep(self) |
---|
3299 | n/a | c, e = op.int, op.exp |
---|
3300 | n/a | if adj == 0: |
---|
3301 | n/a | # 1 < self < 10 |
---|
3302 | n/a | num = str(c-10**-e) |
---|
3303 | n/a | den = str(231*c) |
---|
3304 | n/a | return len(num) - len(den) - (num < den) + 2 |
---|
3305 | n/a | # adj == -1, 0.1 <= self < 1 |
---|
3306 | n/a | num = str(10**-e-c) |
---|
3307 | n/a | return len(num) + e - (num < "231") - 1 |
---|
3308 | n/a | |
---|
3309 | n/a | def log10(self, context=None): |
---|
3310 | n/a | """Returns the base 10 logarithm of self.""" |
---|
3311 | n/a | |
---|
3312 | n/a | if context is None: |
---|
3313 | n/a | context = getcontext() |
---|
3314 | n/a | |
---|
3315 | n/a | # log10(NaN) = NaN |
---|
3316 | n/a | ans = self._check_nans(context=context) |
---|
3317 | n/a | if ans: |
---|
3318 | n/a | return ans |
---|
3319 | n/a | |
---|
3320 | n/a | # log10(0.0) == -Infinity |
---|
3321 | n/a | if not self: |
---|
3322 | n/a | return _NegativeInfinity |
---|
3323 | n/a | |
---|
3324 | n/a | # log10(Infinity) = Infinity |
---|
3325 | n/a | if self._isinfinity() == 1: |
---|
3326 | n/a | return _Infinity |
---|
3327 | n/a | |
---|
3328 | n/a | # log10(negative or -Infinity) raises InvalidOperation |
---|
3329 | n/a | if self._sign == 1: |
---|
3330 | n/a | return context._raise_error(InvalidOperation, |
---|
3331 | n/a | 'log10 of a negative value') |
---|
3332 | n/a | |
---|
3333 | n/a | # log10(10**n) = n |
---|
3334 | n/a | if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1): |
---|
3335 | n/a | # answer may need rounding |
---|
3336 | n/a | ans = Decimal(self._exp + len(self._int) - 1) |
---|
3337 | n/a | else: |
---|
3338 | n/a | # result is irrational, so necessarily inexact |
---|
3339 | n/a | op = _WorkRep(self) |
---|
3340 | n/a | c, e = op.int, op.exp |
---|
3341 | n/a | p = context.prec |
---|
3342 | n/a | |
---|
3343 | n/a | # correctly rounded result: repeatedly increase precision |
---|
3344 | n/a | # until result is unambiguously roundable |
---|
3345 | n/a | places = p-self._log10_exp_bound()+2 |
---|
3346 | n/a | while True: |
---|
3347 | n/a | coeff = _dlog10(c, e, places) |
---|
3348 | n/a | # assert len(str(abs(coeff)))-p >= 1 |
---|
3349 | n/a | if coeff % (5*10**(len(str(abs(coeff)))-p-1)): |
---|
3350 | n/a | break |
---|
3351 | n/a | places += 3 |
---|
3352 | n/a | ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places) |
---|
3353 | n/a | |
---|
3354 | n/a | context = context._shallow_copy() |
---|
3355 | n/a | rounding = context._set_rounding(ROUND_HALF_EVEN) |
---|
3356 | n/a | ans = ans._fix(context) |
---|
3357 | n/a | context.rounding = rounding |
---|
3358 | n/a | return ans |
---|
3359 | n/a | |
---|
3360 | n/a | def logb(self, context=None): |
---|
3361 | n/a | """ Returns the exponent of the magnitude of self's MSD. |
---|
3362 | n/a | |
---|
3363 | n/a | The result is the integer which is the exponent of the magnitude |
---|
3364 | n/a | of the most significant digit of self (as though it were truncated |
---|
3365 | n/a | to a single digit while maintaining the value of that digit and |
---|
3366 | n/a | without limiting the resulting exponent). |
---|
3367 | n/a | """ |
---|
3368 | n/a | # logb(NaN) = NaN |
---|
3369 | n/a | ans = self._check_nans(context=context) |
---|
3370 | n/a | if ans: |
---|
3371 | n/a | return ans |
---|
3372 | n/a | |
---|
3373 | n/a | if context is None: |
---|
3374 | n/a | context = getcontext() |
---|
3375 | n/a | |
---|
3376 | n/a | # logb(+/-Inf) = +Inf |
---|
3377 | n/a | if self._isinfinity(): |
---|
3378 | n/a | return _Infinity |
---|
3379 | n/a | |
---|
3380 | n/a | # logb(0) = -Inf, DivisionByZero |
---|
3381 | n/a | if not self: |
---|
3382 | n/a | return context._raise_error(DivisionByZero, 'logb(0)', 1) |
---|
3383 | n/a | |
---|
3384 | n/a | # otherwise, simply return the adjusted exponent of self, as a |
---|
3385 | n/a | # Decimal. Note that no attempt is made to fit the result |
---|
3386 | n/a | # into the current context. |
---|
3387 | n/a | ans = Decimal(self.adjusted()) |
---|
3388 | n/a | return ans._fix(context) |
---|
3389 | n/a | |
---|
3390 | n/a | def _islogical(self): |
---|
3391 | n/a | """Return True if self is a logical operand. |
---|
3392 | n/a | |
---|
3393 | n/a | For being logical, it must be a finite number with a sign of 0, |
---|
3394 | n/a | an exponent of 0, and a coefficient whose digits must all be |
---|
3395 | n/a | either 0 or 1. |
---|
3396 | n/a | """ |
---|
3397 | n/a | if self._sign != 0 or self._exp != 0: |
---|
3398 | n/a | return False |
---|
3399 | n/a | for dig in self._int: |
---|
3400 | n/a | if dig not in '01': |
---|
3401 | n/a | return False |
---|
3402 | n/a | return True |
---|
3403 | n/a | |
---|
3404 | n/a | def _fill_logical(self, context, opa, opb): |
---|
3405 | n/a | dif = context.prec - len(opa) |
---|
3406 | n/a | if dif > 0: |
---|
3407 | n/a | opa = '0'*dif + opa |
---|
3408 | n/a | elif dif < 0: |
---|
3409 | n/a | opa = opa[-context.prec:] |
---|
3410 | n/a | dif = context.prec - len(opb) |
---|
3411 | n/a | if dif > 0: |
---|
3412 | n/a | opb = '0'*dif + opb |
---|
3413 | n/a | elif dif < 0: |
---|
3414 | n/a | opb = opb[-context.prec:] |
---|
3415 | n/a | return opa, opb |
---|
3416 | n/a | |
---|
3417 | n/a | def logical_and(self, other, context=None): |
---|
3418 | n/a | """Applies an 'and' operation between self and other's digits.""" |
---|
3419 | n/a | if context is None: |
---|
3420 | n/a | context = getcontext() |
---|
3421 | n/a | |
---|
3422 | n/a | other = _convert_other(other, raiseit=True) |
---|
3423 | n/a | |
---|
3424 | n/a | if not self._islogical() or not other._islogical(): |
---|
3425 | n/a | return context._raise_error(InvalidOperation) |
---|
3426 | n/a | |
---|
3427 | n/a | # fill to context.prec |
---|
3428 | n/a | (opa, opb) = self._fill_logical(context, self._int, other._int) |
---|
3429 | n/a | |
---|
3430 | n/a | # make the operation, and clean starting zeroes |
---|
3431 | n/a | result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)]) |
---|
3432 | n/a | return _dec_from_triple(0, result.lstrip('0') or '0', 0) |
---|
3433 | n/a | |
---|
3434 | n/a | def logical_invert(self, context=None): |
---|
3435 | n/a | """Invert all its digits.""" |
---|
3436 | n/a | if context is None: |
---|
3437 | n/a | context = getcontext() |
---|
3438 | n/a | return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0), |
---|
3439 | n/a | context) |
---|
3440 | n/a | |
---|
3441 | n/a | def logical_or(self, other, context=None): |
---|
3442 | n/a | """Applies an 'or' operation between self and other's digits.""" |
---|
3443 | n/a | if context is None: |
---|
3444 | n/a | context = getcontext() |
---|
3445 | n/a | |
---|
3446 | n/a | other = _convert_other(other, raiseit=True) |
---|
3447 | n/a | |
---|
3448 | n/a | if not self._islogical() or not other._islogical(): |
---|
3449 | n/a | return context._raise_error(InvalidOperation) |
---|
3450 | n/a | |
---|
3451 | n/a | # fill to context.prec |
---|
3452 | n/a | (opa, opb) = self._fill_logical(context, self._int, other._int) |
---|
3453 | n/a | |
---|
3454 | n/a | # make the operation, and clean starting zeroes |
---|
3455 | n/a | result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)]) |
---|
3456 | n/a | return _dec_from_triple(0, result.lstrip('0') or '0', 0) |
---|
3457 | n/a | |
---|
3458 | n/a | def logical_xor(self, other, context=None): |
---|
3459 | n/a | """Applies an 'xor' operation between self and other's digits.""" |
---|
3460 | n/a | if context is None: |
---|
3461 | n/a | context = getcontext() |
---|
3462 | n/a | |
---|
3463 | n/a | other = _convert_other(other, raiseit=True) |
---|
3464 | n/a | |
---|
3465 | n/a | if not self._islogical() or not other._islogical(): |
---|
3466 | n/a | return context._raise_error(InvalidOperation) |
---|
3467 | n/a | |
---|
3468 | n/a | # fill to context.prec |
---|
3469 | n/a | (opa, opb) = self._fill_logical(context, self._int, other._int) |
---|
3470 | n/a | |
---|
3471 | n/a | # make the operation, and clean starting zeroes |
---|
3472 | n/a | result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)]) |
---|
3473 | n/a | return _dec_from_triple(0, result.lstrip('0') or '0', 0) |
---|
3474 | n/a | |
---|
3475 | n/a | def max_mag(self, other, context=None): |
---|
3476 | n/a | """Compares the values numerically with their sign ignored.""" |
---|
3477 | n/a | other = _convert_other(other, raiseit=True) |
---|
3478 | n/a | |
---|
3479 | n/a | if context is None: |
---|
3480 | n/a | context = getcontext() |
---|
3481 | n/a | |
---|
3482 | n/a | if self._is_special or other._is_special: |
---|
3483 | n/a | # If one operand is a quiet NaN and the other is number, then the |
---|
3484 | n/a | # number is always returned |
---|
3485 | n/a | sn = self._isnan() |
---|
3486 | n/a | on = other._isnan() |
---|
3487 | n/a | if sn or on: |
---|
3488 | n/a | if on == 1 and sn == 0: |
---|
3489 | n/a | return self._fix(context) |
---|
3490 | n/a | if sn == 1 and on == 0: |
---|
3491 | n/a | return other._fix(context) |
---|
3492 | n/a | return self._check_nans(other, context) |
---|
3493 | n/a | |
---|
3494 | n/a | c = self.copy_abs()._cmp(other.copy_abs()) |
---|
3495 | n/a | if c == 0: |
---|
3496 | n/a | c = self.compare_total(other) |
---|
3497 | n/a | |
---|
3498 | n/a | if c == -1: |
---|
3499 | n/a | ans = other |
---|
3500 | n/a | else: |
---|
3501 | n/a | ans = self |
---|
3502 | n/a | |
---|
3503 | n/a | return ans._fix(context) |
---|
3504 | n/a | |
---|
3505 | n/a | def min_mag(self, other, context=None): |
---|
3506 | n/a | """Compares the values numerically with their sign ignored.""" |
---|
3507 | n/a | other = _convert_other(other, raiseit=True) |
---|
3508 | n/a | |
---|
3509 | n/a | if context is None: |
---|
3510 | n/a | context = getcontext() |
---|
3511 | n/a | |
---|
3512 | n/a | if self._is_special or other._is_special: |
---|
3513 | n/a | # If one operand is a quiet NaN and the other is number, then the |
---|
3514 | n/a | # number is always returned |
---|
3515 | n/a | sn = self._isnan() |
---|
3516 | n/a | on = other._isnan() |
---|
3517 | n/a | if sn or on: |
---|
3518 | n/a | if on == 1 and sn == 0: |
---|
3519 | n/a | return self._fix(context) |
---|
3520 | n/a | if sn == 1 and on == 0: |
---|
3521 | n/a | return other._fix(context) |
---|
3522 | n/a | return self._check_nans(other, context) |
---|
3523 | n/a | |
---|
3524 | n/a | c = self.copy_abs()._cmp(other.copy_abs()) |
---|
3525 | n/a | if c == 0: |
---|
3526 | n/a | c = self.compare_total(other) |
---|
3527 | n/a | |
---|
3528 | n/a | if c == -1: |
---|
3529 | n/a | ans = self |
---|
3530 | n/a | else: |
---|
3531 | n/a | ans = other |
---|
3532 | n/a | |
---|
3533 | n/a | return ans._fix(context) |
---|
3534 | n/a | |
---|
3535 | n/a | def next_minus(self, context=None): |
---|
3536 | n/a | """Returns the largest representable number smaller than itself.""" |
---|
3537 | n/a | if context is None: |
---|
3538 | n/a | context = getcontext() |
---|
3539 | n/a | |
---|
3540 | n/a | ans = self._check_nans(context=context) |
---|
3541 | n/a | if ans: |
---|
3542 | n/a | return ans |
---|
3543 | n/a | |
---|
3544 | n/a | if self._isinfinity() == -1: |
---|
3545 | n/a | return _NegativeInfinity |
---|
3546 | n/a | if self._isinfinity() == 1: |
---|
3547 | n/a | return _dec_from_triple(0, '9'*context.prec, context.Etop()) |
---|
3548 | n/a | |
---|
3549 | n/a | context = context.copy() |
---|
3550 | n/a | context._set_rounding(ROUND_FLOOR) |
---|
3551 | n/a | context._ignore_all_flags() |
---|
3552 | n/a | new_self = self._fix(context) |
---|
3553 | n/a | if new_self != self: |
---|
3554 | n/a | return new_self |
---|
3555 | n/a | return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1), |
---|
3556 | n/a | context) |
---|
3557 | n/a | |
---|
3558 | n/a | def next_plus(self, context=None): |
---|
3559 | n/a | """Returns the smallest representable number larger than itself.""" |
---|
3560 | n/a | if context is None: |
---|
3561 | n/a | context = getcontext() |
---|
3562 | n/a | |
---|
3563 | n/a | ans = self._check_nans(context=context) |
---|
3564 | n/a | if ans: |
---|
3565 | n/a | return ans |
---|
3566 | n/a | |
---|
3567 | n/a | if self._isinfinity() == 1: |
---|
3568 | n/a | return _Infinity |
---|
3569 | n/a | if self._isinfinity() == -1: |
---|
3570 | n/a | return _dec_from_triple(1, '9'*context.prec, context.Etop()) |
---|
3571 | n/a | |
---|
3572 | n/a | context = context.copy() |
---|
3573 | n/a | context._set_rounding(ROUND_CEILING) |
---|
3574 | n/a | context._ignore_all_flags() |
---|
3575 | n/a | new_self = self._fix(context) |
---|
3576 | n/a | if new_self != self: |
---|
3577 | n/a | return new_self |
---|
3578 | n/a | return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1), |
---|
3579 | n/a | context) |
---|
3580 | n/a | |
---|
3581 | n/a | def next_toward(self, other, context=None): |
---|
3582 | n/a | """Returns the number closest to self, in the direction towards other. |
---|
3583 | n/a | |
---|
3584 | n/a | The result is the closest representable number to self |
---|
3585 | n/a | (excluding self) that is in the direction towards other, |
---|
3586 | n/a | unless both have the same value. If the two operands are |
---|
3587 | n/a | numerically equal, then the result is a copy of self with the |
---|
3588 | n/a | sign set to be the same as the sign of other. |
---|
3589 | n/a | """ |
---|
3590 | n/a | other = _convert_other(other, raiseit=True) |
---|
3591 | n/a | |
---|
3592 | n/a | if context is None: |
---|
3593 | n/a | context = getcontext() |
---|
3594 | n/a | |
---|
3595 | n/a | ans = self._check_nans(other, context) |
---|
3596 | n/a | if ans: |
---|
3597 | n/a | return ans |
---|
3598 | n/a | |
---|
3599 | n/a | comparison = self._cmp(other) |
---|
3600 | n/a | if comparison == 0: |
---|
3601 | n/a | return self.copy_sign(other) |
---|
3602 | n/a | |
---|
3603 | n/a | if comparison == -1: |
---|
3604 | n/a | ans = self.next_plus(context) |
---|
3605 | n/a | else: # comparison == 1 |
---|
3606 | n/a | ans = self.next_minus(context) |
---|
3607 | n/a | |
---|
3608 | n/a | # decide which flags to raise using value of ans |
---|
3609 | n/a | if ans._isinfinity(): |
---|
3610 | n/a | context._raise_error(Overflow, |
---|
3611 | n/a | 'Infinite result from next_toward', |
---|
3612 | n/a | ans._sign) |
---|
3613 | n/a | context._raise_error(Inexact) |
---|
3614 | n/a | context._raise_error(Rounded) |
---|
3615 | n/a | elif ans.adjusted() < context.Emin: |
---|
3616 | n/a | context._raise_error(Underflow) |
---|
3617 | n/a | context._raise_error(Subnormal) |
---|
3618 | n/a | context._raise_error(Inexact) |
---|
3619 | n/a | context._raise_error(Rounded) |
---|
3620 | n/a | # if precision == 1 then we don't raise Clamped for a |
---|
3621 | n/a | # result 0E-Etiny. |
---|
3622 | n/a | if not ans: |
---|
3623 | n/a | context._raise_error(Clamped) |
---|
3624 | n/a | |
---|
3625 | n/a | return ans |
---|
3626 | n/a | |
---|
3627 | n/a | def number_class(self, context=None): |
---|
3628 | n/a | """Returns an indication of the class of self. |
---|
3629 | n/a | |
---|
3630 | n/a | The class is one of the following strings: |
---|
3631 | n/a | sNaN |
---|
3632 | n/a | NaN |
---|
3633 | n/a | -Infinity |
---|
3634 | n/a | -Normal |
---|
3635 | n/a | -Subnormal |
---|
3636 | n/a | -Zero |
---|
3637 | n/a | +Zero |
---|
3638 | n/a | +Subnormal |
---|
3639 | n/a | +Normal |
---|
3640 | n/a | +Infinity |
---|
3641 | n/a | """ |
---|
3642 | n/a | if self.is_snan(): |
---|
3643 | n/a | return "sNaN" |
---|
3644 | n/a | if self.is_qnan(): |
---|
3645 | n/a | return "NaN" |
---|
3646 | n/a | inf = self._isinfinity() |
---|
3647 | n/a | if inf == 1: |
---|
3648 | n/a | return "+Infinity" |
---|
3649 | n/a | if inf == -1: |
---|
3650 | n/a | return "-Infinity" |
---|
3651 | n/a | if self.is_zero(): |
---|
3652 | n/a | if self._sign: |
---|
3653 | n/a | return "-Zero" |
---|
3654 | n/a | else: |
---|
3655 | n/a | return "+Zero" |
---|
3656 | n/a | if context is None: |
---|
3657 | n/a | context = getcontext() |
---|
3658 | n/a | if self.is_subnormal(context=context): |
---|
3659 | n/a | if self._sign: |
---|
3660 | n/a | return "-Subnormal" |
---|
3661 | n/a | else: |
---|
3662 | n/a | return "+Subnormal" |
---|
3663 | n/a | # just a normal, regular, boring number, :) |
---|
3664 | n/a | if self._sign: |
---|
3665 | n/a | return "-Normal" |
---|
3666 | n/a | else: |
---|
3667 | n/a | return "+Normal" |
---|
3668 | n/a | |
---|
3669 | n/a | def radix(self): |
---|
3670 | n/a | """Just returns 10, as this is Decimal, :)""" |
---|
3671 | n/a | return Decimal(10) |
---|
3672 | n/a | |
---|
3673 | n/a | def rotate(self, other, context=None): |
---|
3674 | n/a | """Returns a rotated copy of self, value-of-other times.""" |
---|
3675 | n/a | if context is None: |
---|
3676 | n/a | context = getcontext() |
---|
3677 | n/a | |
---|
3678 | n/a | other = _convert_other(other, raiseit=True) |
---|
3679 | n/a | |
---|
3680 | n/a | ans = self._check_nans(other, context) |
---|
3681 | n/a | if ans: |
---|
3682 | n/a | return ans |
---|
3683 | n/a | |
---|
3684 | n/a | if other._exp != 0: |
---|
3685 | n/a | return context._raise_error(InvalidOperation) |
---|
3686 | n/a | if not (-context.prec <= int(other) <= context.prec): |
---|
3687 | n/a | return context._raise_error(InvalidOperation) |
---|
3688 | n/a | |
---|
3689 | n/a | if self._isinfinity(): |
---|
3690 | n/a | return Decimal(self) |
---|
3691 | n/a | |
---|
3692 | n/a | # get values, pad if necessary |
---|
3693 | n/a | torot = int(other) |
---|
3694 | n/a | rotdig = self._int |
---|
3695 | n/a | topad = context.prec - len(rotdig) |
---|
3696 | n/a | if topad > 0: |
---|
3697 | n/a | rotdig = '0'*topad + rotdig |
---|
3698 | n/a | elif topad < 0: |
---|
3699 | n/a | rotdig = rotdig[-topad:] |
---|
3700 | n/a | |
---|
3701 | n/a | # let's rotate! |
---|
3702 | n/a | rotated = rotdig[torot:] + rotdig[:torot] |
---|
3703 | n/a | return _dec_from_triple(self._sign, |
---|
3704 | n/a | rotated.lstrip('0') or '0', self._exp) |
---|
3705 | n/a | |
---|
3706 | n/a | def scaleb(self, other, context=None): |
---|
3707 | n/a | """Returns self operand after adding the second value to its exp.""" |
---|
3708 | n/a | if context is None: |
---|
3709 | n/a | context = getcontext() |
---|
3710 | n/a | |
---|
3711 | n/a | other = _convert_other(other, raiseit=True) |
---|
3712 | n/a | |
---|
3713 | n/a | ans = self._check_nans(other, context) |
---|
3714 | n/a | if ans: |
---|
3715 | n/a | return ans |
---|
3716 | n/a | |
---|
3717 | n/a | if other._exp != 0: |
---|
3718 | n/a | return context._raise_error(InvalidOperation) |
---|
3719 | n/a | liminf = -2 * (context.Emax + context.prec) |
---|
3720 | n/a | limsup = 2 * (context.Emax + context.prec) |
---|
3721 | n/a | if not (liminf <= int(other) <= limsup): |
---|
3722 | n/a | return context._raise_error(InvalidOperation) |
---|
3723 | n/a | |
---|
3724 | n/a | if self._isinfinity(): |
---|
3725 | n/a | return Decimal(self) |
---|
3726 | n/a | |
---|
3727 | n/a | d = _dec_from_triple(self._sign, self._int, self._exp + int(other)) |
---|
3728 | n/a | d = d._fix(context) |
---|
3729 | n/a | return d |
---|
3730 | n/a | |
---|
3731 | n/a | def shift(self, other, context=None): |
---|
3732 | n/a | """Returns a shifted copy of self, value-of-other times.""" |
---|
3733 | n/a | if context is None: |
---|
3734 | n/a | context = getcontext() |
---|
3735 | n/a | |
---|
3736 | n/a | other = _convert_other(other, raiseit=True) |
---|
3737 | n/a | |
---|
3738 | n/a | ans = self._check_nans(other, context) |
---|
3739 | n/a | if ans: |
---|
3740 | n/a | return ans |
---|
3741 | n/a | |
---|
3742 | n/a | if other._exp != 0: |
---|
3743 | n/a | return context._raise_error(InvalidOperation) |
---|
3744 | n/a | if not (-context.prec <= int(other) <= context.prec): |
---|
3745 | n/a | return context._raise_error(InvalidOperation) |
---|
3746 | n/a | |
---|
3747 | n/a | if self._isinfinity(): |
---|
3748 | n/a | return Decimal(self) |
---|
3749 | n/a | |
---|
3750 | n/a | # get values, pad if necessary |
---|
3751 | n/a | torot = int(other) |
---|
3752 | n/a | rotdig = self._int |
---|
3753 | n/a | topad = context.prec - len(rotdig) |
---|
3754 | n/a | if topad > 0: |
---|
3755 | n/a | rotdig = '0'*topad + rotdig |
---|
3756 | n/a | elif topad < 0: |
---|
3757 | n/a | rotdig = rotdig[-topad:] |
---|
3758 | n/a | |
---|
3759 | n/a | # let's shift! |
---|
3760 | n/a | if torot < 0: |
---|
3761 | n/a | shifted = rotdig[:torot] |
---|
3762 | n/a | else: |
---|
3763 | n/a | shifted = rotdig + '0'*torot |
---|
3764 | n/a | shifted = shifted[-context.prec:] |
---|
3765 | n/a | |
---|
3766 | n/a | return _dec_from_triple(self._sign, |
---|
3767 | n/a | shifted.lstrip('0') or '0', self._exp) |
---|
3768 | n/a | |
---|
3769 | n/a | # Support for pickling, copy, and deepcopy |
---|
3770 | n/a | def __reduce__(self): |
---|
3771 | n/a | return (self.__class__, (str(self),)) |
---|
3772 | n/a | |
---|
3773 | n/a | def __copy__(self): |
---|
3774 | n/a | if type(self) is Decimal: |
---|
3775 | n/a | return self # I'm immutable; therefore I am my own clone |
---|
3776 | n/a | return self.__class__(str(self)) |
---|
3777 | n/a | |
---|
3778 | n/a | def __deepcopy__(self, memo): |
---|
3779 | n/a | if type(self) is Decimal: |
---|
3780 | n/a | return self # My components are also immutable |
---|
3781 | n/a | return self.__class__(str(self)) |
---|
3782 | n/a | |
---|
3783 | n/a | # PEP 3101 support. the _localeconv keyword argument should be |
---|
3784 | n/a | # considered private: it's provided for ease of testing only. |
---|
3785 | n/a | def __format__(self, specifier, context=None, _localeconv=None): |
---|
3786 | n/a | """Format a Decimal instance according to the given specifier. |
---|
3787 | n/a | |
---|
3788 | n/a | The specifier should be a standard format specifier, with the |
---|
3789 | n/a | form described in PEP 3101. Formatting types 'e', 'E', 'f', |
---|
3790 | n/a | 'F', 'g', 'G', 'n' and '%' are supported. If the formatting |
---|
3791 | n/a | type is omitted it defaults to 'g' or 'G', depending on the |
---|
3792 | n/a | value of context.capitals. |
---|
3793 | n/a | """ |
---|
3794 | n/a | |
---|
3795 | n/a | # Note: PEP 3101 says that if the type is not present then |
---|
3796 | n/a | # there should be at least one digit after the decimal point. |
---|
3797 | n/a | # We take the liberty of ignoring this requirement for |
---|
3798 | n/a | # Decimal---it's presumably there to make sure that |
---|
3799 | n/a | # format(float, '') behaves similarly to str(float). |
---|
3800 | n/a | if context is None: |
---|
3801 | n/a | context = getcontext() |
---|
3802 | n/a | |
---|
3803 | n/a | spec = _parse_format_specifier(specifier, _localeconv=_localeconv) |
---|
3804 | n/a | |
---|
3805 | n/a | # special values don't care about the type or precision |
---|
3806 | n/a | if self._is_special: |
---|
3807 | n/a | sign = _format_sign(self._sign, spec) |
---|
3808 | n/a | body = str(self.copy_abs()) |
---|
3809 | n/a | if spec['type'] == '%': |
---|
3810 | n/a | body += '%' |
---|
3811 | n/a | return _format_align(sign, body, spec) |
---|
3812 | n/a | |
---|
3813 | n/a | # a type of None defaults to 'g' or 'G', depending on context |
---|
3814 | n/a | if spec['type'] is None: |
---|
3815 | n/a | spec['type'] = ['g', 'G'][context.capitals] |
---|
3816 | n/a | |
---|
3817 | n/a | # if type is '%', adjust exponent of self accordingly |
---|
3818 | n/a | if spec['type'] == '%': |
---|
3819 | n/a | self = _dec_from_triple(self._sign, self._int, self._exp+2) |
---|
3820 | n/a | |
---|
3821 | n/a | # round if necessary, taking rounding mode from the context |
---|
3822 | n/a | rounding = context.rounding |
---|
3823 | n/a | precision = spec['precision'] |
---|
3824 | n/a | if precision is not None: |
---|
3825 | n/a | if spec['type'] in 'eE': |
---|
3826 | n/a | self = self._round(precision+1, rounding) |
---|
3827 | n/a | elif spec['type'] in 'fF%': |
---|
3828 | n/a | self = self._rescale(-precision, rounding) |
---|
3829 | n/a | elif spec['type'] in 'gG' and len(self._int) > precision: |
---|
3830 | n/a | self = self._round(precision, rounding) |
---|
3831 | n/a | # special case: zeros with a positive exponent can't be |
---|
3832 | n/a | # represented in fixed point; rescale them to 0e0. |
---|
3833 | n/a | if not self and self._exp > 0 and spec['type'] in 'fF%': |
---|
3834 | n/a | self = self._rescale(0, rounding) |
---|
3835 | n/a | |
---|
3836 | n/a | # figure out placement of the decimal point |
---|
3837 | n/a | leftdigits = self._exp + len(self._int) |
---|
3838 | n/a | if spec['type'] in 'eE': |
---|
3839 | n/a | if not self and precision is not None: |
---|
3840 | n/a | dotplace = 1 - precision |
---|
3841 | n/a | else: |
---|
3842 | n/a | dotplace = 1 |
---|
3843 | n/a | elif spec['type'] in 'fF%': |
---|
3844 | n/a | dotplace = leftdigits |
---|
3845 | n/a | elif spec['type'] in 'gG': |
---|
3846 | n/a | if self._exp <= 0 and leftdigits > -6: |
---|
3847 | n/a | dotplace = leftdigits |
---|
3848 | n/a | else: |
---|
3849 | n/a | dotplace = 1 |
---|
3850 | n/a | |
---|
3851 | n/a | # find digits before and after decimal point, and get exponent |
---|
3852 | n/a | if dotplace < 0: |
---|
3853 | n/a | intpart = '0' |
---|
3854 | n/a | fracpart = '0'*(-dotplace) + self._int |
---|
3855 | n/a | elif dotplace > len(self._int): |
---|
3856 | n/a | intpart = self._int + '0'*(dotplace-len(self._int)) |
---|
3857 | n/a | fracpart = '' |
---|
3858 | n/a | else: |
---|
3859 | n/a | intpart = self._int[:dotplace] or '0' |
---|
3860 | n/a | fracpart = self._int[dotplace:] |
---|
3861 | n/a | exp = leftdigits-dotplace |
---|
3862 | n/a | |
---|
3863 | n/a | # done with the decimal-specific stuff; hand over the rest |
---|
3864 | n/a | # of the formatting to the _format_number function |
---|
3865 | n/a | return _format_number(self._sign, intpart, fracpart, exp, spec) |
---|
3866 | n/a | |
---|
3867 | n/a | def _dec_from_triple(sign, coefficient, exponent, special=False): |
---|
3868 | n/a | """Create a decimal instance directly, without any validation, |
---|
3869 | n/a | normalization (e.g. removal of leading zeros) or argument |
---|
3870 | n/a | conversion. |
---|
3871 | n/a | |
---|
3872 | n/a | This function is for *internal use only*. |
---|
3873 | n/a | """ |
---|
3874 | n/a | |
---|
3875 | n/a | self = object.__new__(Decimal) |
---|
3876 | n/a | self._sign = sign |
---|
3877 | n/a | self._int = coefficient |
---|
3878 | n/a | self._exp = exponent |
---|
3879 | n/a | self._is_special = special |
---|
3880 | n/a | |
---|
3881 | n/a | return self |
---|
3882 | n/a | |
---|
3883 | n/a | # Register Decimal as a kind of Number (an abstract base class). |
---|
3884 | n/a | # However, do not register it as Real (because Decimals are not |
---|
3885 | n/a | # interoperable with floats). |
---|
3886 | n/a | _numbers.Number.register(Decimal) |
---|
3887 | n/a | |
---|
3888 | n/a | |
---|
3889 | n/a | ##### Context class ####################################################### |
---|
3890 | n/a | |
---|
3891 | n/a | class _ContextManager(object): |
---|
3892 | n/a | """Context manager class to support localcontext(). |
---|
3893 | n/a | |
---|
3894 | n/a | Sets a copy of the supplied context in __enter__() and restores |
---|
3895 | n/a | the previous decimal context in __exit__() |
---|
3896 | n/a | """ |
---|
3897 | n/a | def __init__(self, new_context): |
---|
3898 | n/a | self.new_context = new_context.copy() |
---|
3899 | n/a | def __enter__(self): |
---|
3900 | n/a | self.saved_context = getcontext() |
---|
3901 | n/a | setcontext(self.new_context) |
---|
3902 | n/a | return self.new_context |
---|
3903 | n/a | def __exit__(self, t, v, tb): |
---|
3904 | n/a | setcontext(self.saved_context) |
---|
3905 | n/a | |
---|
3906 | n/a | class Context(object): |
---|
3907 | n/a | """Contains the context for a Decimal instance. |
---|
3908 | n/a | |
---|
3909 | n/a | Contains: |
---|
3910 | n/a | prec - precision (for use in rounding, division, square roots..) |
---|
3911 | n/a | rounding - rounding type (how you round) |
---|
3912 | n/a | traps - If traps[exception] = 1, then the exception is |
---|
3913 | n/a | raised when it is caused. Otherwise, a value is |
---|
3914 | n/a | substituted in. |
---|
3915 | n/a | flags - When an exception is caused, flags[exception] is set. |
---|
3916 | n/a | (Whether or not the trap_enabler is set) |
---|
3917 | n/a | Should be reset by user of Decimal instance. |
---|
3918 | n/a | Emin - Minimum exponent |
---|
3919 | n/a | Emax - Maximum exponent |
---|
3920 | n/a | capitals - If 1, 1*10^1 is printed as 1E+1. |
---|
3921 | n/a | If 0, printed as 1e1 |
---|
3922 | n/a | clamp - If 1, change exponents if too high (Default 0) |
---|
3923 | n/a | """ |
---|
3924 | n/a | |
---|
3925 | n/a | def __init__(self, prec=None, rounding=None, Emin=None, Emax=None, |
---|
3926 | n/a | capitals=None, clamp=None, flags=None, traps=None, |
---|
3927 | n/a | _ignored_flags=None): |
---|
3928 | n/a | # Set defaults; for everything except flags and _ignored_flags, |
---|
3929 | n/a | # inherit from DefaultContext. |
---|
3930 | n/a | try: |
---|
3931 | n/a | dc = DefaultContext |
---|
3932 | n/a | except NameError: |
---|
3933 | n/a | pass |
---|
3934 | n/a | |
---|
3935 | n/a | self.prec = prec if prec is not None else dc.prec |
---|
3936 | n/a | self.rounding = rounding if rounding is not None else dc.rounding |
---|
3937 | n/a | self.Emin = Emin if Emin is not None else dc.Emin |
---|
3938 | n/a | self.Emax = Emax if Emax is not None else dc.Emax |
---|
3939 | n/a | self.capitals = capitals if capitals is not None else dc.capitals |
---|
3940 | n/a | self.clamp = clamp if clamp is not None else dc.clamp |
---|
3941 | n/a | |
---|
3942 | n/a | if _ignored_flags is None: |
---|
3943 | n/a | self._ignored_flags = [] |
---|
3944 | n/a | else: |
---|
3945 | n/a | self._ignored_flags = _ignored_flags |
---|
3946 | n/a | |
---|
3947 | n/a | if traps is None: |
---|
3948 | n/a | self.traps = dc.traps.copy() |
---|
3949 | n/a | elif not isinstance(traps, dict): |
---|
3950 | n/a | self.traps = dict((s, int(s in traps)) for s in _signals + traps) |
---|
3951 | n/a | else: |
---|
3952 | n/a | self.traps = traps |
---|
3953 | n/a | |
---|
3954 | n/a | if flags is None: |
---|
3955 | n/a | self.flags = dict.fromkeys(_signals, 0) |
---|
3956 | n/a | elif not isinstance(flags, dict): |
---|
3957 | n/a | self.flags = dict((s, int(s in flags)) for s in _signals + flags) |
---|
3958 | n/a | else: |
---|
3959 | n/a | self.flags = flags |
---|
3960 | n/a | |
---|
3961 | n/a | def _set_integer_check(self, name, value, vmin, vmax): |
---|
3962 | n/a | if not isinstance(value, int): |
---|
3963 | n/a | raise TypeError("%s must be an integer" % name) |
---|
3964 | n/a | if vmin == '-inf': |
---|
3965 | n/a | if value > vmax: |
---|
3966 | n/a | raise ValueError("%s must be in [%s, %d]. got: %s" % (name, vmin, vmax, value)) |
---|
3967 | n/a | elif vmax == 'inf': |
---|
3968 | n/a | if value < vmin: |
---|
3969 | n/a | raise ValueError("%s must be in [%d, %s]. got: %s" % (name, vmin, vmax, value)) |
---|
3970 | n/a | else: |
---|
3971 | n/a | if value < vmin or value > vmax: |
---|
3972 | n/a | raise ValueError("%s must be in [%d, %d]. got %s" % (name, vmin, vmax, value)) |
---|
3973 | n/a | return object.__setattr__(self, name, value) |
---|
3974 | n/a | |
---|
3975 | n/a | def _set_signal_dict(self, name, d): |
---|
3976 | n/a | if not isinstance(d, dict): |
---|
3977 | n/a | raise TypeError("%s must be a signal dict" % d) |
---|
3978 | n/a | for key in d: |
---|
3979 | n/a | if not key in _signals: |
---|
3980 | n/a | raise KeyError("%s is not a valid signal dict" % d) |
---|
3981 | n/a | for key in _signals: |
---|
3982 | n/a | if not key in d: |
---|
3983 | n/a | raise KeyError("%s is not a valid signal dict" % d) |
---|
3984 | n/a | return object.__setattr__(self, name, d) |
---|
3985 | n/a | |
---|
3986 | n/a | def __setattr__(self, name, value): |
---|
3987 | n/a | if name == 'prec': |
---|
3988 | n/a | return self._set_integer_check(name, value, 1, 'inf') |
---|
3989 | n/a | elif name == 'Emin': |
---|
3990 | n/a | return self._set_integer_check(name, value, '-inf', 0) |
---|
3991 | n/a | elif name == 'Emax': |
---|
3992 | n/a | return self._set_integer_check(name, value, 0, 'inf') |
---|
3993 | n/a | elif name == 'capitals': |
---|
3994 | n/a | return self._set_integer_check(name, value, 0, 1) |
---|
3995 | n/a | elif name == 'clamp': |
---|
3996 | n/a | return self._set_integer_check(name, value, 0, 1) |
---|
3997 | n/a | elif name == 'rounding': |
---|
3998 | n/a | if not value in _rounding_modes: |
---|
3999 | n/a | # raise TypeError even for strings to have consistency |
---|
4000 | n/a | # among various implementations. |
---|
4001 | n/a | raise TypeError("%s: invalid rounding mode" % value) |
---|
4002 | n/a | return object.__setattr__(self, name, value) |
---|
4003 | n/a | elif name == 'flags' or name == 'traps': |
---|
4004 | n/a | return self._set_signal_dict(name, value) |
---|
4005 | n/a | elif name == '_ignored_flags': |
---|
4006 | n/a | return object.__setattr__(self, name, value) |
---|
4007 | n/a | else: |
---|
4008 | n/a | raise AttributeError( |
---|
4009 | n/a | "'decimal.Context' object has no attribute '%s'" % name) |
---|
4010 | n/a | |
---|
4011 | n/a | def __delattr__(self, name): |
---|
4012 | n/a | raise AttributeError("%s cannot be deleted" % name) |
---|
4013 | n/a | |
---|
4014 | n/a | # Support for pickling, copy, and deepcopy |
---|
4015 | n/a | def __reduce__(self): |
---|
4016 | n/a | flags = [sig for sig, v in self.flags.items() if v] |
---|
4017 | n/a | traps = [sig for sig, v in self.traps.items() if v] |
---|
4018 | n/a | return (self.__class__, |
---|
4019 | n/a | (self.prec, self.rounding, self.Emin, self.Emax, |
---|
4020 | n/a | self.capitals, self.clamp, flags, traps)) |
---|
4021 | n/a | |
---|
4022 | n/a | def __repr__(self): |
---|
4023 | n/a | """Show the current context.""" |
---|
4024 | n/a | s = [] |
---|
4025 | n/a | s.append('Context(prec=%(prec)d, rounding=%(rounding)s, ' |
---|
4026 | n/a | 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d, ' |
---|
4027 | n/a | 'clamp=%(clamp)d' |
---|
4028 | n/a | % vars(self)) |
---|
4029 | n/a | names = [f.__name__ for f, v in self.flags.items() if v] |
---|
4030 | n/a | s.append('flags=[' + ', '.join(names) + ']') |
---|
4031 | n/a | names = [t.__name__ for t, v in self.traps.items() if v] |
---|
4032 | n/a | s.append('traps=[' + ', '.join(names) + ']') |
---|
4033 | n/a | return ', '.join(s) + ')' |
---|
4034 | n/a | |
---|
4035 | n/a | def clear_flags(self): |
---|
4036 | n/a | """Reset all flags to zero""" |
---|
4037 | n/a | for flag in self.flags: |
---|
4038 | n/a | self.flags[flag] = 0 |
---|
4039 | n/a | |
---|
4040 | n/a | def clear_traps(self): |
---|
4041 | n/a | """Reset all traps to zero""" |
---|
4042 | n/a | for flag in self.traps: |
---|
4043 | n/a | self.traps[flag] = 0 |
---|
4044 | n/a | |
---|
4045 | n/a | def _shallow_copy(self): |
---|
4046 | n/a | """Returns a shallow copy from self.""" |
---|
4047 | n/a | nc = Context(self.prec, self.rounding, self.Emin, self.Emax, |
---|
4048 | n/a | self.capitals, self.clamp, self.flags, self.traps, |
---|
4049 | n/a | self._ignored_flags) |
---|
4050 | n/a | return nc |
---|
4051 | n/a | |
---|
4052 | n/a | def copy(self): |
---|
4053 | n/a | """Returns a deep copy from self.""" |
---|
4054 | n/a | nc = Context(self.prec, self.rounding, self.Emin, self.Emax, |
---|
4055 | n/a | self.capitals, self.clamp, |
---|
4056 | n/a | self.flags.copy(), self.traps.copy(), |
---|
4057 | n/a | self._ignored_flags) |
---|
4058 | n/a | return nc |
---|
4059 | n/a | __copy__ = copy |
---|
4060 | n/a | |
---|
4061 | n/a | def _raise_error(self, condition, explanation = None, *args): |
---|
4062 | n/a | """Handles an error |
---|
4063 | n/a | |
---|
4064 | n/a | If the flag is in _ignored_flags, returns the default response. |
---|
4065 | n/a | Otherwise, it sets the flag, then, if the corresponding |
---|
4066 | n/a | trap_enabler is set, it reraises the exception. Otherwise, it returns |
---|
4067 | n/a | the default value after setting the flag. |
---|
4068 | n/a | """ |
---|
4069 | n/a | error = _condition_map.get(condition, condition) |
---|
4070 | n/a | if error in self._ignored_flags: |
---|
4071 | n/a | # Don't touch the flag |
---|
4072 | n/a | return error().handle(self, *args) |
---|
4073 | n/a | |
---|
4074 | n/a | self.flags[error] = 1 |
---|
4075 | n/a | if not self.traps[error]: |
---|
4076 | n/a | # The errors define how to handle themselves. |
---|
4077 | n/a | return condition().handle(self, *args) |
---|
4078 | n/a | |
---|
4079 | n/a | # Errors should only be risked on copies of the context |
---|
4080 | n/a | # self._ignored_flags = [] |
---|
4081 | n/a | raise error(explanation) |
---|
4082 | n/a | |
---|
4083 | n/a | def _ignore_all_flags(self): |
---|
4084 | n/a | """Ignore all flags, if they are raised""" |
---|
4085 | n/a | return self._ignore_flags(*_signals) |
---|
4086 | n/a | |
---|
4087 | n/a | def _ignore_flags(self, *flags): |
---|
4088 | n/a | """Ignore the flags, if they are raised""" |
---|
4089 | n/a | # Do not mutate-- This way, copies of a context leave the original |
---|
4090 | n/a | # alone. |
---|
4091 | n/a | self._ignored_flags = (self._ignored_flags + list(flags)) |
---|
4092 | n/a | return list(flags) |
---|
4093 | n/a | |
---|
4094 | n/a | def _regard_flags(self, *flags): |
---|
4095 | n/a | """Stop ignoring the flags, if they are raised""" |
---|
4096 | n/a | if flags and isinstance(flags[0], (tuple,list)): |
---|
4097 | n/a | flags = flags[0] |
---|
4098 | n/a | for flag in flags: |
---|
4099 | n/a | self._ignored_flags.remove(flag) |
---|
4100 | n/a | |
---|
4101 | n/a | # We inherit object.__hash__, so we must deny this explicitly |
---|
4102 | n/a | __hash__ = None |
---|
4103 | n/a | |
---|
4104 | n/a | def Etiny(self): |
---|
4105 | n/a | """Returns Etiny (= Emin - prec + 1)""" |
---|
4106 | n/a | return int(self.Emin - self.prec + 1) |
---|
4107 | n/a | |
---|
4108 | n/a | def Etop(self): |
---|
4109 | n/a | """Returns maximum exponent (= Emax - prec + 1)""" |
---|
4110 | n/a | return int(self.Emax - self.prec + 1) |
---|
4111 | n/a | |
---|
4112 | n/a | def _set_rounding(self, type): |
---|
4113 | n/a | """Sets the rounding type. |
---|
4114 | n/a | |
---|
4115 | n/a | Sets the rounding type, and returns the current (previous) |
---|
4116 | n/a | rounding type. Often used like: |
---|
4117 | n/a | |
---|
4118 | n/a | context = context.copy() |
---|
4119 | n/a | # so you don't change the calling context |
---|
4120 | n/a | # if an error occurs in the middle. |
---|
4121 | n/a | rounding = context._set_rounding(ROUND_UP) |
---|
4122 | n/a | val = self.__sub__(other, context=context) |
---|
4123 | n/a | context._set_rounding(rounding) |
---|
4124 | n/a | |
---|
4125 | n/a | This will make it round up for that operation. |
---|
4126 | n/a | """ |
---|
4127 | n/a | rounding = self.rounding |
---|
4128 | n/a | self.rounding = type |
---|
4129 | n/a | return rounding |
---|
4130 | n/a | |
---|
4131 | n/a | def create_decimal(self, num='0'): |
---|
4132 | n/a | """Creates a new Decimal instance but using self as context. |
---|
4133 | n/a | |
---|
4134 | n/a | This method implements the to-number operation of the |
---|
4135 | n/a | IBM Decimal specification.""" |
---|
4136 | n/a | |
---|
4137 | n/a | if isinstance(num, str) and (num != num.strip() or '_' in num): |
---|
4138 | n/a | return self._raise_error(ConversionSyntax, |
---|
4139 | n/a | "trailing or leading whitespace and " |
---|
4140 | n/a | "underscores are not permitted.") |
---|
4141 | n/a | |
---|
4142 | n/a | d = Decimal(num, context=self) |
---|
4143 | n/a | if d._isnan() and len(d._int) > self.prec - self.clamp: |
---|
4144 | n/a | return self._raise_error(ConversionSyntax, |
---|
4145 | n/a | "diagnostic info too long in NaN") |
---|
4146 | n/a | return d._fix(self) |
---|
4147 | n/a | |
---|
4148 | n/a | def create_decimal_from_float(self, f): |
---|
4149 | n/a | """Creates a new Decimal instance from a float but rounding using self |
---|
4150 | n/a | as the context. |
---|
4151 | n/a | |
---|
4152 | n/a | >>> context = Context(prec=5, rounding=ROUND_DOWN) |
---|
4153 | n/a | >>> context.create_decimal_from_float(3.1415926535897932) |
---|
4154 | n/a | Decimal('3.1415') |
---|
4155 | n/a | >>> context = Context(prec=5, traps=[Inexact]) |
---|
4156 | n/a | >>> context.create_decimal_from_float(3.1415926535897932) |
---|
4157 | n/a | Traceback (most recent call last): |
---|
4158 | n/a | ... |
---|
4159 | n/a | decimal.Inexact: None |
---|
4160 | n/a | |
---|
4161 | n/a | """ |
---|
4162 | n/a | d = Decimal.from_float(f) # An exact conversion |
---|
4163 | n/a | return d._fix(self) # Apply the context rounding |
---|
4164 | n/a | |
---|
4165 | n/a | # Methods |
---|
4166 | n/a | def abs(self, a): |
---|
4167 | n/a | """Returns the absolute value of the operand. |
---|
4168 | n/a | |
---|
4169 | n/a | If the operand is negative, the result is the same as using the minus |
---|
4170 | n/a | operation on the operand. Otherwise, the result is the same as using |
---|
4171 | n/a | the plus operation on the operand. |
---|
4172 | n/a | |
---|
4173 | n/a | >>> ExtendedContext.abs(Decimal('2.1')) |
---|
4174 | n/a | Decimal('2.1') |
---|
4175 | n/a | >>> ExtendedContext.abs(Decimal('-100')) |
---|
4176 | n/a | Decimal('100') |
---|
4177 | n/a | >>> ExtendedContext.abs(Decimal('101.5')) |
---|
4178 | n/a | Decimal('101.5') |
---|
4179 | n/a | >>> ExtendedContext.abs(Decimal('-101.5')) |
---|
4180 | n/a | Decimal('101.5') |
---|
4181 | n/a | >>> ExtendedContext.abs(-1) |
---|
4182 | n/a | Decimal('1') |
---|
4183 | n/a | """ |
---|
4184 | n/a | a = _convert_other(a, raiseit=True) |
---|
4185 | n/a | return a.__abs__(context=self) |
---|
4186 | n/a | |
---|
4187 | n/a | def add(self, a, b): |
---|
4188 | n/a | """Return the sum of the two operands. |
---|
4189 | n/a | |
---|
4190 | n/a | >>> ExtendedContext.add(Decimal('12'), Decimal('7.00')) |
---|
4191 | n/a | Decimal('19.00') |
---|
4192 | n/a | >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4')) |
---|
4193 | n/a | Decimal('1.02E+4') |
---|
4194 | n/a | >>> ExtendedContext.add(1, Decimal(2)) |
---|
4195 | n/a | Decimal('3') |
---|
4196 | n/a | >>> ExtendedContext.add(Decimal(8), 5) |
---|
4197 | n/a | Decimal('13') |
---|
4198 | n/a | >>> ExtendedContext.add(5, 5) |
---|
4199 | n/a | Decimal('10') |
---|
4200 | n/a | """ |
---|
4201 | n/a | a = _convert_other(a, raiseit=True) |
---|
4202 | n/a | r = a.__add__(b, context=self) |
---|
4203 | n/a | if r is NotImplemented: |
---|
4204 | n/a | raise TypeError("Unable to convert %s to Decimal" % b) |
---|
4205 | n/a | else: |
---|
4206 | n/a | return r |
---|
4207 | n/a | |
---|
4208 | n/a | def _apply(self, a): |
---|
4209 | n/a | return str(a._fix(self)) |
---|
4210 | n/a | |
---|
4211 | n/a | def canonical(self, a): |
---|
4212 | n/a | """Returns the same Decimal object. |
---|
4213 | n/a | |
---|
4214 | n/a | As we do not have different encodings for the same number, the |
---|
4215 | n/a | received object already is in its canonical form. |
---|
4216 | n/a | |
---|
4217 | n/a | >>> ExtendedContext.canonical(Decimal('2.50')) |
---|
4218 | n/a | Decimal('2.50') |
---|
4219 | n/a | """ |
---|
4220 | n/a | if not isinstance(a, Decimal): |
---|
4221 | n/a | raise TypeError("canonical requires a Decimal as an argument.") |
---|
4222 | n/a | return a.canonical() |
---|
4223 | n/a | |
---|
4224 | n/a | def compare(self, a, b): |
---|
4225 | n/a | """Compares values numerically. |
---|
4226 | n/a | |
---|
4227 | n/a | If the signs of the operands differ, a value representing each operand |
---|
4228 | n/a | ('-1' if the operand is less than zero, '0' if the operand is zero or |
---|
4229 | n/a | negative zero, or '1' if the operand is greater than zero) is used in |
---|
4230 | n/a | place of that operand for the comparison instead of the actual |
---|
4231 | n/a | operand. |
---|
4232 | n/a | |
---|
4233 | n/a | The comparison is then effected by subtracting the second operand from |
---|
4234 | n/a | the first and then returning a value according to the result of the |
---|
4235 | n/a | subtraction: '-1' if the result is less than zero, '0' if the result is |
---|
4236 | n/a | zero or negative zero, or '1' if the result is greater than zero. |
---|
4237 | n/a | |
---|
4238 | n/a | >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3')) |
---|
4239 | n/a | Decimal('-1') |
---|
4240 | n/a | >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1')) |
---|
4241 | n/a | Decimal('0') |
---|
4242 | n/a | >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10')) |
---|
4243 | n/a | Decimal('0') |
---|
4244 | n/a | >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1')) |
---|
4245 | n/a | Decimal('1') |
---|
4246 | n/a | >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3')) |
---|
4247 | n/a | Decimal('1') |
---|
4248 | n/a | >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1')) |
---|
4249 | n/a | Decimal('-1') |
---|
4250 | n/a | >>> ExtendedContext.compare(1, 2) |
---|
4251 | n/a | Decimal('-1') |
---|
4252 | n/a | >>> ExtendedContext.compare(Decimal(1), 2) |
---|
4253 | n/a | Decimal('-1') |
---|
4254 | n/a | >>> ExtendedContext.compare(1, Decimal(2)) |
---|
4255 | n/a | Decimal('-1') |
---|
4256 | n/a | """ |
---|
4257 | n/a | a = _convert_other(a, raiseit=True) |
---|
4258 | n/a | return a.compare(b, context=self) |
---|
4259 | n/a | |
---|
4260 | n/a | def compare_signal(self, a, b): |
---|
4261 | n/a | """Compares the values of the two operands numerically. |
---|
4262 | n/a | |
---|
4263 | n/a | It's pretty much like compare(), but all NaNs signal, with signaling |
---|
4264 | n/a | NaNs taking precedence over quiet NaNs. |
---|
4265 | n/a | |
---|
4266 | n/a | >>> c = ExtendedContext |
---|
4267 | n/a | >>> c.compare_signal(Decimal('2.1'), Decimal('3')) |
---|
4268 | n/a | Decimal('-1') |
---|
4269 | n/a | >>> c.compare_signal(Decimal('2.1'), Decimal('2.1')) |
---|
4270 | n/a | Decimal('0') |
---|
4271 | n/a | >>> c.flags[InvalidOperation] = 0 |
---|
4272 | n/a | >>> print(c.flags[InvalidOperation]) |
---|
4273 | n/a | 0 |
---|
4274 | n/a | >>> c.compare_signal(Decimal('NaN'), Decimal('2.1')) |
---|
4275 | n/a | Decimal('NaN') |
---|
4276 | n/a | >>> print(c.flags[InvalidOperation]) |
---|
4277 | n/a | 1 |
---|
4278 | n/a | >>> c.flags[InvalidOperation] = 0 |
---|
4279 | n/a | >>> print(c.flags[InvalidOperation]) |
---|
4280 | n/a | 0 |
---|
4281 | n/a | >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1')) |
---|
4282 | n/a | Decimal('NaN') |
---|
4283 | n/a | >>> print(c.flags[InvalidOperation]) |
---|
4284 | n/a | 1 |
---|
4285 | n/a | >>> c.compare_signal(-1, 2) |
---|
4286 | n/a | Decimal('-1') |
---|
4287 | n/a | >>> c.compare_signal(Decimal(-1), 2) |
---|
4288 | n/a | Decimal('-1') |
---|
4289 | n/a | >>> c.compare_signal(-1, Decimal(2)) |
---|
4290 | n/a | Decimal('-1') |
---|
4291 | n/a | """ |
---|
4292 | n/a | a = _convert_other(a, raiseit=True) |
---|
4293 | n/a | return a.compare_signal(b, context=self) |
---|
4294 | n/a | |
---|
4295 | n/a | def compare_total(self, a, b): |
---|
4296 | n/a | """Compares two operands using their abstract representation. |
---|
4297 | n/a | |
---|
4298 | n/a | This is not like the standard compare, which use their numerical |
---|
4299 | n/a | value. Note that a total ordering is defined for all possible abstract |
---|
4300 | n/a | representations. |
---|
4301 | n/a | |
---|
4302 | n/a | >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9')) |
---|
4303 | n/a | Decimal('-1') |
---|
4304 | n/a | >>> ExtendedContext.compare_total(Decimal('-127'), Decimal('12')) |
---|
4305 | n/a | Decimal('-1') |
---|
4306 | n/a | >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3')) |
---|
4307 | n/a | Decimal('-1') |
---|
4308 | n/a | >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30')) |
---|
4309 | n/a | Decimal('0') |
---|
4310 | n/a | >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('12.300')) |
---|
4311 | n/a | Decimal('1') |
---|
4312 | n/a | >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('NaN')) |
---|
4313 | n/a | Decimal('-1') |
---|
4314 | n/a | >>> ExtendedContext.compare_total(1, 2) |
---|
4315 | n/a | Decimal('-1') |
---|
4316 | n/a | >>> ExtendedContext.compare_total(Decimal(1), 2) |
---|
4317 | n/a | Decimal('-1') |
---|
4318 | n/a | >>> ExtendedContext.compare_total(1, Decimal(2)) |
---|
4319 | n/a | Decimal('-1') |
---|
4320 | n/a | """ |
---|
4321 | n/a | a = _convert_other(a, raiseit=True) |
---|
4322 | n/a | return a.compare_total(b) |
---|
4323 | n/a | |
---|
4324 | n/a | def compare_total_mag(self, a, b): |
---|
4325 | n/a | """Compares two operands using their abstract representation ignoring sign. |
---|
4326 | n/a | |
---|
4327 | n/a | Like compare_total, but with operand's sign ignored and assumed to be 0. |
---|
4328 | n/a | """ |
---|
4329 | n/a | a = _convert_other(a, raiseit=True) |
---|
4330 | n/a | return a.compare_total_mag(b) |
---|
4331 | n/a | |
---|
4332 | n/a | def copy_abs(self, a): |
---|
4333 | n/a | """Returns a copy of the operand with the sign set to 0. |
---|
4334 | n/a | |
---|
4335 | n/a | >>> ExtendedContext.copy_abs(Decimal('2.1')) |
---|
4336 | n/a | Decimal('2.1') |
---|
4337 | n/a | >>> ExtendedContext.copy_abs(Decimal('-100')) |
---|
4338 | n/a | Decimal('100') |
---|
4339 | n/a | >>> ExtendedContext.copy_abs(-1) |
---|
4340 | n/a | Decimal('1') |
---|
4341 | n/a | """ |
---|
4342 | n/a | a = _convert_other(a, raiseit=True) |
---|
4343 | n/a | return a.copy_abs() |
---|
4344 | n/a | |
---|
4345 | n/a | def copy_decimal(self, a): |
---|
4346 | n/a | """Returns a copy of the decimal object. |
---|
4347 | n/a | |
---|
4348 | n/a | >>> ExtendedContext.copy_decimal(Decimal('2.1')) |
---|
4349 | n/a | Decimal('2.1') |
---|
4350 | n/a | >>> ExtendedContext.copy_decimal(Decimal('-1.00')) |
---|
4351 | n/a | Decimal('-1.00') |
---|
4352 | n/a | >>> ExtendedContext.copy_decimal(1) |
---|
4353 | n/a | Decimal('1') |
---|
4354 | n/a | """ |
---|
4355 | n/a | a = _convert_other(a, raiseit=True) |
---|
4356 | n/a | return Decimal(a) |
---|
4357 | n/a | |
---|
4358 | n/a | def copy_negate(self, a): |
---|
4359 | n/a | """Returns a copy of the operand with the sign inverted. |
---|
4360 | n/a | |
---|
4361 | n/a | >>> ExtendedContext.copy_negate(Decimal('101.5')) |
---|
4362 | n/a | Decimal('-101.5') |
---|
4363 | n/a | >>> ExtendedContext.copy_negate(Decimal('-101.5')) |
---|
4364 | n/a | Decimal('101.5') |
---|
4365 | n/a | >>> ExtendedContext.copy_negate(1) |
---|
4366 | n/a | Decimal('-1') |
---|
4367 | n/a | """ |
---|
4368 | n/a | a = _convert_other(a, raiseit=True) |
---|
4369 | n/a | return a.copy_negate() |
---|
4370 | n/a | |
---|
4371 | n/a | def copy_sign(self, a, b): |
---|
4372 | n/a | """Copies the second operand's sign to the first one. |
---|
4373 | n/a | |
---|
4374 | n/a | In detail, it returns a copy of the first operand with the sign |
---|
4375 | n/a | equal to the sign of the second operand. |
---|
4376 | n/a | |
---|
4377 | n/a | >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33')) |
---|
4378 | n/a | Decimal('1.50') |
---|
4379 | n/a | >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33')) |
---|
4380 | n/a | Decimal('1.50') |
---|
4381 | n/a | >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33')) |
---|
4382 | n/a | Decimal('-1.50') |
---|
4383 | n/a | >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33')) |
---|
4384 | n/a | Decimal('-1.50') |
---|
4385 | n/a | >>> ExtendedContext.copy_sign(1, -2) |
---|
4386 | n/a | Decimal('-1') |
---|
4387 | n/a | >>> ExtendedContext.copy_sign(Decimal(1), -2) |
---|
4388 | n/a | Decimal('-1') |
---|
4389 | n/a | >>> ExtendedContext.copy_sign(1, Decimal(-2)) |
---|
4390 | n/a | Decimal('-1') |
---|
4391 | n/a | """ |
---|
4392 | n/a | a = _convert_other(a, raiseit=True) |
---|
4393 | n/a | return a.copy_sign(b) |
---|
4394 | n/a | |
---|
4395 | n/a | def divide(self, a, b): |
---|
4396 | n/a | """Decimal division in a specified context. |
---|
4397 | n/a | |
---|
4398 | n/a | >>> ExtendedContext.divide(Decimal('1'), Decimal('3')) |
---|
4399 | n/a | Decimal('0.333333333') |
---|
4400 | n/a | >>> ExtendedContext.divide(Decimal('2'), Decimal('3')) |
---|
4401 | n/a | Decimal('0.666666667') |
---|
4402 | n/a | >>> ExtendedContext.divide(Decimal('5'), Decimal('2')) |
---|
4403 | n/a | Decimal('2.5') |
---|
4404 | n/a | >>> ExtendedContext.divide(Decimal('1'), Decimal('10')) |
---|
4405 | n/a | Decimal('0.1') |
---|
4406 | n/a | >>> ExtendedContext.divide(Decimal('12'), Decimal('12')) |
---|
4407 | n/a | Decimal('1') |
---|
4408 | n/a | >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2')) |
---|
4409 | n/a | Decimal('4.00') |
---|
4410 | n/a | >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0')) |
---|
4411 | n/a | Decimal('1.20') |
---|
4412 | n/a | >>> ExtendedContext.divide(Decimal('1000'), Decimal('100')) |
---|
4413 | n/a | Decimal('10') |
---|
4414 | n/a | >>> ExtendedContext.divide(Decimal('1000'), Decimal('1')) |
---|
4415 | n/a | Decimal('1000') |
---|
4416 | n/a | >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2')) |
---|
4417 | n/a | Decimal('1.20E+6') |
---|
4418 | n/a | >>> ExtendedContext.divide(5, 5) |
---|
4419 | n/a | Decimal('1') |
---|
4420 | n/a | >>> ExtendedContext.divide(Decimal(5), 5) |
---|
4421 | n/a | Decimal('1') |
---|
4422 | n/a | >>> ExtendedContext.divide(5, Decimal(5)) |
---|
4423 | n/a | Decimal('1') |
---|
4424 | n/a | """ |
---|
4425 | n/a | a = _convert_other(a, raiseit=True) |
---|
4426 | n/a | r = a.__truediv__(b, context=self) |
---|
4427 | n/a | if r is NotImplemented: |
---|
4428 | n/a | raise TypeError("Unable to convert %s to Decimal" % b) |
---|
4429 | n/a | else: |
---|
4430 | n/a | return r |
---|
4431 | n/a | |
---|
4432 | n/a | def divide_int(self, a, b): |
---|
4433 | n/a | """Divides two numbers and returns the integer part of the result. |
---|
4434 | n/a | |
---|
4435 | n/a | >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3')) |
---|
4436 | n/a | Decimal('0') |
---|
4437 | n/a | >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3')) |
---|
4438 | n/a | Decimal('3') |
---|
4439 | n/a | >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3')) |
---|
4440 | n/a | Decimal('3') |
---|
4441 | n/a | >>> ExtendedContext.divide_int(10, 3) |
---|
4442 | n/a | Decimal('3') |
---|
4443 | n/a | >>> ExtendedContext.divide_int(Decimal(10), 3) |
---|
4444 | n/a | Decimal('3') |
---|
4445 | n/a | >>> ExtendedContext.divide_int(10, Decimal(3)) |
---|
4446 | n/a | Decimal('3') |
---|
4447 | n/a | """ |
---|
4448 | n/a | a = _convert_other(a, raiseit=True) |
---|
4449 | n/a | r = a.__floordiv__(b, context=self) |
---|
4450 | n/a | if r is NotImplemented: |
---|
4451 | n/a | raise TypeError("Unable to convert %s to Decimal" % b) |
---|
4452 | n/a | else: |
---|
4453 | n/a | return r |
---|
4454 | n/a | |
---|
4455 | n/a | def divmod(self, a, b): |
---|
4456 | n/a | """Return (a // b, a % b). |
---|
4457 | n/a | |
---|
4458 | n/a | >>> ExtendedContext.divmod(Decimal(8), Decimal(3)) |
---|
4459 | n/a | (Decimal('2'), Decimal('2')) |
---|
4460 | n/a | >>> ExtendedContext.divmod(Decimal(8), Decimal(4)) |
---|
4461 | n/a | (Decimal('2'), Decimal('0')) |
---|
4462 | n/a | >>> ExtendedContext.divmod(8, 4) |
---|
4463 | n/a | (Decimal('2'), Decimal('0')) |
---|
4464 | n/a | >>> ExtendedContext.divmod(Decimal(8), 4) |
---|
4465 | n/a | (Decimal('2'), Decimal('0')) |
---|
4466 | n/a | >>> ExtendedContext.divmod(8, Decimal(4)) |
---|
4467 | n/a | (Decimal('2'), Decimal('0')) |
---|
4468 | n/a | """ |
---|
4469 | n/a | a = _convert_other(a, raiseit=True) |
---|
4470 | n/a | r = a.__divmod__(b, context=self) |
---|
4471 | n/a | if r is NotImplemented: |
---|
4472 | n/a | raise TypeError("Unable to convert %s to Decimal" % b) |
---|
4473 | n/a | else: |
---|
4474 | n/a | return r |
---|
4475 | n/a | |
---|
4476 | n/a | def exp(self, a): |
---|
4477 | n/a | """Returns e ** a. |
---|
4478 | n/a | |
---|
4479 | n/a | >>> c = ExtendedContext.copy() |
---|
4480 | n/a | >>> c.Emin = -999 |
---|
4481 | n/a | >>> c.Emax = 999 |
---|
4482 | n/a | >>> c.exp(Decimal('-Infinity')) |
---|
4483 | n/a | Decimal('0') |
---|
4484 | n/a | >>> c.exp(Decimal('-1')) |
---|
4485 | n/a | Decimal('0.367879441') |
---|
4486 | n/a | >>> c.exp(Decimal('0')) |
---|
4487 | n/a | Decimal('1') |
---|
4488 | n/a | >>> c.exp(Decimal('1')) |
---|
4489 | n/a | Decimal('2.71828183') |
---|
4490 | n/a | >>> c.exp(Decimal('0.693147181')) |
---|
4491 | n/a | Decimal('2.00000000') |
---|
4492 | n/a | >>> c.exp(Decimal('+Infinity')) |
---|
4493 | n/a | Decimal('Infinity') |
---|
4494 | n/a | >>> c.exp(10) |
---|
4495 | n/a | Decimal('22026.4658') |
---|
4496 | n/a | """ |
---|
4497 | n/a | a =_convert_other(a, raiseit=True) |
---|
4498 | n/a | return a.exp(context=self) |
---|
4499 | n/a | |
---|
4500 | n/a | def fma(self, a, b, c): |
---|
4501 | n/a | """Returns a multiplied by b, plus c. |
---|
4502 | n/a | |
---|
4503 | n/a | The first two operands are multiplied together, using multiply, |
---|
4504 | n/a | the third operand is then added to the result of that |
---|
4505 | n/a | multiplication, using add, all with only one final rounding. |
---|
4506 | n/a | |
---|
4507 | n/a | >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7')) |
---|
4508 | n/a | Decimal('22') |
---|
4509 | n/a | >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7')) |
---|
4510 | n/a | Decimal('-8') |
---|
4511 | n/a | >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578')) |
---|
4512 | n/a | Decimal('1.38435736E+12') |
---|
4513 | n/a | >>> ExtendedContext.fma(1, 3, 4) |
---|
4514 | n/a | Decimal('7') |
---|
4515 | n/a | >>> ExtendedContext.fma(1, Decimal(3), 4) |
---|
4516 | n/a | Decimal('7') |
---|
4517 | n/a | >>> ExtendedContext.fma(1, 3, Decimal(4)) |
---|
4518 | n/a | Decimal('7') |
---|
4519 | n/a | """ |
---|
4520 | n/a | a = _convert_other(a, raiseit=True) |
---|
4521 | n/a | return a.fma(b, c, context=self) |
---|
4522 | n/a | |
---|
4523 | n/a | def is_canonical(self, a): |
---|
4524 | n/a | """Return True if the operand is canonical; otherwise return False. |
---|
4525 | n/a | |
---|
4526 | n/a | Currently, the encoding of a Decimal instance is always |
---|
4527 | n/a | canonical, so this method returns True for any Decimal. |
---|
4528 | n/a | |
---|
4529 | n/a | >>> ExtendedContext.is_canonical(Decimal('2.50')) |
---|
4530 | n/a | True |
---|
4531 | n/a | """ |
---|
4532 | n/a | if not isinstance(a, Decimal): |
---|
4533 | n/a | raise TypeError("is_canonical requires a Decimal as an argument.") |
---|
4534 | n/a | return a.is_canonical() |
---|
4535 | n/a | |
---|
4536 | n/a | def is_finite(self, a): |
---|
4537 | n/a | """Return True if the operand is finite; otherwise return False. |
---|
4538 | n/a | |
---|
4539 | n/a | A Decimal instance is considered finite if it is neither |
---|
4540 | n/a | infinite nor a NaN. |
---|
4541 | n/a | |
---|
4542 | n/a | >>> ExtendedContext.is_finite(Decimal('2.50')) |
---|
4543 | n/a | True |
---|
4544 | n/a | >>> ExtendedContext.is_finite(Decimal('-0.3')) |
---|
4545 | n/a | True |
---|
4546 | n/a | >>> ExtendedContext.is_finite(Decimal('0')) |
---|
4547 | n/a | True |
---|
4548 | n/a | >>> ExtendedContext.is_finite(Decimal('Inf')) |
---|
4549 | n/a | False |
---|
4550 | n/a | >>> ExtendedContext.is_finite(Decimal('NaN')) |
---|
4551 | n/a | False |
---|
4552 | n/a | >>> ExtendedContext.is_finite(1) |
---|
4553 | n/a | True |
---|
4554 | n/a | """ |
---|
4555 | n/a | a = _convert_other(a, raiseit=True) |
---|
4556 | n/a | return a.is_finite() |
---|
4557 | n/a | |
---|
4558 | n/a | def is_infinite(self, a): |
---|
4559 | n/a | """Return True if the operand is infinite; otherwise return False. |
---|
4560 | n/a | |
---|
4561 | n/a | >>> ExtendedContext.is_infinite(Decimal('2.50')) |
---|
4562 | n/a | False |
---|
4563 | n/a | >>> ExtendedContext.is_infinite(Decimal('-Inf')) |
---|
4564 | n/a | True |
---|
4565 | n/a | >>> ExtendedContext.is_infinite(Decimal('NaN')) |
---|
4566 | n/a | False |
---|
4567 | n/a | >>> ExtendedContext.is_infinite(1) |
---|
4568 | n/a | False |
---|
4569 | n/a | """ |
---|
4570 | n/a | a = _convert_other(a, raiseit=True) |
---|
4571 | n/a | return a.is_infinite() |
---|
4572 | n/a | |
---|
4573 | n/a | def is_nan(self, a): |
---|
4574 | n/a | """Return True if the operand is a qNaN or sNaN; |
---|
4575 | n/a | otherwise return False. |
---|
4576 | n/a | |
---|
4577 | n/a | >>> ExtendedContext.is_nan(Decimal('2.50')) |
---|
4578 | n/a | False |
---|
4579 | n/a | >>> ExtendedContext.is_nan(Decimal('NaN')) |
---|
4580 | n/a | True |
---|
4581 | n/a | >>> ExtendedContext.is_nan(Decimal('-sNaN')) |
---|
4582 | n/a | True |
---|
4583 | n/a | >>> ExtendedContext.is_nan(1) |
---|
4584 | n/a | False |
---|
4585 | n/a | """ |
---|
4586 | n/a | a = _convert_other(a, raiseit=True) |
---|
4587 | n/a | return a.is_nan() |
---|
4588 | n/a | |
---|
4589 | n/a | def is_normal(self, a): |
---|
4590 | n/a | """Return True if the operand is a normal number; |
---|
4591 | n/a | otherwise return False. |
---|
4592 | n/a | |
---|
4593 | n/a | >>> c = ExtendedContext.copy() |
---|
4594 | n/a | >>> c.Emin = -999 |
---|
4595 | n/a | >>> c.Emax = 999 |
---|
4596 | n/a | >>> c.is_normal(Decimal('2.50')) |
---|
4597 | n/a | True |
---|
4598 | n/a | >>> c.is_normal(Decimal('0.1E-999')) |
---|
4599 | n/a | False |
---|
4600 | n/a | >>> c.is_normal(Decimal('0.00')) |
---|
4601 | n/a | False |
---|
4602 | n/a | >>> c.is_normal(Decimal('-Inf')) |
---|
4603 | n/a | False |
---|
4604 | n/a | >>> c.is_normal(Decimal('NaN')) |
---|
4605 | n/a | False |
---|
4606 | n/a | >>> c.is_normal(1) |
---|
4607 | n/a | True |
---|
4608 | n/a | """ |
---|
4609 | n/a | a = _convert_other(a, raiseit=True) |
---|
4610 | n/a | return a.is_normal(context=self) |
---|
4611 | n/a | |
---|
4612 | n/a | def is_qnan(self, a): |
---|
4613 | n/a | """Return True if the operand is a quiet NaN; otherwise return False. |
---|
4614 | n/a | |
---|
4615 | n/a | >>> ExtendedContext.is_qnan(Decimal('2.50')) |
---|
4616 | n/a | False |
---|
4617 | n/a | >>> ExtendedContext.is_qnan(Decimal('NaN')) |
---|
4618 | n/a | True |
---|
4619 | n/a | >>> ExtendedContext.is_qnan(Decimal('sNaN')) |
---|
4620 | n/a | False |
---|
4621 | n/a | >>> ExtendedContext.is_qnan(1) |
---|
4622 | n/a | False |
---|
4623 | n/a | """ |
---|
4624 | n/a | a = _convert_other(a, raiseit=True) |
---|
4625 | n/a | return a.is_qnan() |
---|
4626 | n/a | |
---|
4627 | n/a | def is_signed(self, a): |
---|
4628 | n/a | """Return True if the operand is negative; otherwise return False. |
---|
4629 | n/a | |
---|
4630 | n/a | >>> ExtendedContext.is_signed(Decimal('2.50')) |
---|
4631 | n/a | False |
---|
4632 | n/a | >>> ExtendedContext.is_signed(Decimal('-12')) |
---|
4633 | n/a | True |
---|
4634 | n/a | >>> ExtendedContext.is_signed(Decimal('-0')) |
---|
4635 | n/a | True |
---|
4636 | n/a | >>> ExtendedContext.is_signed(8) |
---|
4637 | n/a | False |
---|
4638 | n/a | >>> ExtendedContext.is_signed(-8) |
---|
4639 | n/a | True |
---|
4640 | n/a | """ |
---|
4641 | n/a | a = _convert_other(a, raiseit=True) |
---|
4642 | n/a | return a.is_signed() |
---|
4643 | n/a | |
---|
4644 | n/a | def is_snan(self, a): |
---|
4645 | n/a | """Return True if the operand is a signaling NaN; |
---|
4646 | n/a | otherwise return False. |
---|
4647 | n/a | |
---|
4648 | n/a | >>> ExtendedContext.is_snan(Decimal('2.50')) |
---|
4649 | n/a | False |
---|
4650 | n/a | >>> ExtendedContext.is_snan(Decimal('NaN')) |
---|
4651 | n/a | False |
---|
4652 | n/a | >>> ExtendedContext.is_snan(Decimal('sNaN')) |
---|
4653 | n/a | True |
---|
4654 | n/a | >>> ExtendedContext.is_snan(1) |
---|
4655 | n/a | False |
---|
4656 | n/a | """ |
---|
4657 | n/a | a = _convert_other(a, raiseit=True) |
---|
4658 | n/a | return a.is_snan() |
---|
4659 | n/a | |
---|
4660 | n/a | def is_subnormal(self, a): |
---|
4661 | n/a | """Return True if the operand is subnormal; otherwise return False. |
---|
4662 | n/a | |
---|
4663 | n/a | >>> c = ExtendedContext.copy() |
---|
4664 | n/a | >>> c.Emin = -999 |
---|
4665 | n/a | >>> c.Emax = 999 |
---|
4666 | n/a | >>> c.is_subnormal(Decimal('2.50')) |
---|
4667 | n/a | False |
---|
4668 | n/a | >>> c.is_subnormal(Decimal('0.1E-999')) |
---|
4669 | n/a | True |
---|
4670 | n/a | >>> c.is_subnormal(Decimal('0.00')) |
---|
4671 | n/a | False |
---|
4672 | n/a | >>> c.is_subnormal(Decimal('-Inf')) |
---|
4673 | n/a | False |
---|
4674 | n/a | >>> c.is_subnormal(Decimal('NaN')) |
---|
4675 | n/a | False |
---|
4676 | n/a | >>> c.is_subnormal(1) |
---|
4677 | n/a | False |
---|
4678 | n/a | """ |
---|
4679 | n/a | a = _convert_other(a, raiseit=True) |
---|
4680 | n/a | return a.is_subnormal(context=self) |
---|
4681 | n/a | |
---|
4682 | n/a | def is_zero(self, a): |
---|
4683 | n/a | """Return True if the operand is a zero; otherwise return False. |
---|
4684 | n/a | |
---|
4685 | n/a | >>> ExtendedContext.is_zero(Decimal('0')) |
---|
4686 | n/a | True |
---|
4687 | n/a | >>> ExtendedContext.is_zero(Decimal('2.50')) |
---|
4688 | n/a | False |
---|
4689 | n/a | >>> ExtendedContext.is_zero(Decimal('-0E+2')) |
---|
4690 | n/a | True |
---|
4691 | n/a | >>> ExtendedContext.is_zero(1) |
---|
4692 | n/a | False |
---|
4693 | n/a | >>> ExtendedContext.is_zero(0) |
---|
4694 | n/a | True |
---|
4695 | n/a | """ |
---|
4696 | n/a | a = _convert_other(a, raiseit=True) |
---|
4697 | n/a | return a.is_zero() |
---|
4698 | n/a | |
---|
4699 | n/a | def ln(self, a): |
---|
4700 | n/a | """Returns the natural (base e) logarithm of the operand. |
---|
4701 | n/a | |
---|
4702 | n/a | >>> c = ExtendedContext.copy() |
---|
4703 | n/a | >>> c.Emin = -999 |
---|
4704 | n/a | >>> c.Emax = 999 |
---|
4705 | n/a | >>> c.ln(Decimal('0')) |
---|
4706 | n/a | Decimal('-Infinity') |
---|
4707 | n/a | >>> c.ln(Decimal('1.000')) |
---|
4708 | n/a | Decimal('0') |
---|
4709 | n/a | >>> c.ln(Decimal('2.71828183')) |
---|
4710 | n/a | Decimal('1.00000000') |
---|
4711 | n/a | >>> c.ln(Decimal('10')) |
---|
4712 | n/a | Decimal('2.30258509') |
---|
4713 | n/a | >>> c.ln(Decimal('+Infinity')) |
---|
4714 | n/a | Decimal('Infinity') |
---|
4715 | n/a | >>> c.ln(1) |
---|
4716 | n/a | Decimal('0') |
---|
4717 | n/a | """ |
---|
4718 | n/a | a = _convert_other(a, raiseit=True) |
---|
4719 | n/a | return a.ln(context=self) |
---|
4720 | n/a | |
---|
4721 | n/a | def log10(self, a): |
---|
4722 | n/a | """Returns the base 10 logarithm of the operand. |
---|
4723 | n/a | |
---|
4724 | n/a | >>> c = ExtendedContext.copy() |
---|
4725 | n/a | >>> c.Emin = -999 |
---|
4726 | n/a | >>> c.Emax = 999 |
---|
4727 | n/a | >>> c.log10(Decimal('0')) |
---|
4728 | n/a | Decimal('-Infinity') |
---|
4729 | n/a | >>> c.log10(Decimal('0.001')) |
---|
4730 | n/a | Decimal('-3') |
---|
4731 | n/a | >>> c.log10(Decimal('1.000')) |
---|
4732 | n/a | Decimal('0') |
---|
4733 | n/a | >>> c.log10(Decimal('2')) |
---|
4734 | n/a | Decimal('0.301029996') |
---|
4735 | n/a | >>> c.log10(Decimal('10')) |
---|
4736 | n/a | Decimal('1') |
---|
4737 | n/a | >>> c.log10(Decimal('70')) |
---|
4738 | n/a | Decimal('1.84509804') |
---|
4739 | n/a | >>> c.log10(Decimal('+Infinity')) |
---|
4740 | n/a | Decimal('Infinity') |
---|
4741 | n/a | >>> c.log10(0) |
---|
4742 | n/a | Decimal('-Infinity') |
---|
4743 | n/a | >>> c.log10(1) |
---|
4744 | n/a | Decimal('0') |
---|
4745 | n/a | """ |
---|
4746 | n/a | a = _convert_other(a, raiseit=True) |
---|
4747 | n/a | return a.log10(context=self) |
---|
4748 | n/a | |
---|
4749 | n/a | def logb(self, a): |
---|
4750 | n/a | """ Returns the exponent of the magnitude of the operand's MSD. |
---|
4751 | n/a | |
---|
4752 | n/a | The result is the integer which is the exponent of the magnitude |
---|
4753 | n/a | of the most significant digit of the operand (as though the |
---|
4754 | n/a | operand were truncated to a single digit while maintaining the |
---|
4755 | n/a | value of that digit and without limiting the resulting exponent). |
---|
4756 | n/a | |
---|
4757 | n/a | >>> ExtendedContext.logb(Decimal('250')) |
---|
4758 | n/a | Decimal('2') |
---|
4759 | n/a | >>> ExtendedContext.logb(Decimal('2.50')) |
---|
4760 | n/a | Decimal('0') |
---|
4761 | n/a | >>> ExtendedContext.logb(Decimal('0.03')) |
---|
4762 | n/a | Decimal('-2') |
---|
4763 | n/a | >>> ExtendedContext.logb(Decimal('0')) |
---|
4764 | n/a | Decimal('-Infinity') |
---|
4765 | n/a | >>> ExtendedContext.logb(1) |
---|
4766 | n/a | Decimal('0') |
---|
4767 | n/a | >>> ExtendedContext.logb(10) |
---|
4768 | n/a | Decimal('1') |
---|
4769 | n/a | >>> ExtendedContext.logb(100) |
---|
4770 | n/a | Decimal('2') |
---|
4771 | n/a | """ |
---|
4772 | n/a | a = _convert_other(a, raiseit=True) |
---|
4773 | n/a | return a.logb(context=self) |
---|
4774 | n/a | |
---|
4775 | n/a | def logical_and(self, a, b): |
---|
4776 | n/a | """Applies the logical operation 'and' between each operand's digits. |
---|
4777 | n/a | |
---|
4778 | n/a | The operands must be both logical numbers. |
---|
4779 | n/a | |
---|
4780 | n/a | >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0')) |
---|
4781 | n/a | Decimal('0') |
---|
4782 | n/a | >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1')) |
---|
4783 | n/a | Decimal('0') |
---|
4784 | n/a | >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0')) |
---|
4785 | n/a | Decimal('0') |
---|
4786 | n/a | >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1')) |
---|
4787 | n/a | Decimal('1') |
---|
4788 | n/a | >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010')) |
---|
4789 | n/a | Decimal('1000') |
---|
4790 | n/a | >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10')) |
---|
4791 | n/a | Decimal('10') |
---|
4792 | n/a | >>> ExtendedContext.logical_and(110, 1101) |
---|
4793 | n/a | Decimal('100') |
---|
4794 | n/a | >>> ExtendedContext.logical_and(Decimal(110), 1101) |
---|
4795 | n/a | Decimal('100') |
---|
4796 | n/a | >>> ExtendedContext.logical_and(110, Decimal(1101)) |
---|
4797 | n/a | Decimal('100') |
---|
4798 | n/a | """ |
---|
4799 | n/a | a = _convert_other(a, raiseit=True) |
---|
4800 | n/a | return a.logical_and(b, context=self) |
---|
4801 | n/a | |
---|
4802 | n/a | def logical_invert(self, a): |
---|
4803 | n/a | """Invert all the digits in the operand. |
---|
4804 | n/a | |
---|
4805 | n/a | The operand must be a logical number. |
---|
4806 | n/a | |
---|
4807 | n/a | >>> ExtendedContext.logical_invert(Decimal('0')) |
---|
4808 | n/a | Decimal('111111111') |
---|
4809 | n/a | >>> ExtendedContext.logical_invert(Decimal('1')) |
---|
4810 | n/a | Decimal('111111110') |
---|
4811 | n/a | >>> ExtendedContext.logical_invert(Decimal('111111111')) |
---|
4812 | n/a | Decimal('0') |
---|
4813 | n/a | >>> ExtendedContext.logical_invert(Decimal('101010101')) |
---|
4814 | n/a | Decimal('10101010') |
---|
4815 | n/a | >>> ExtendedContext.logical_invert(1101) |
---|
4816 | n/a | Decimal('111110010') |
---|
4817 | n/a | """ |
---|
4818 | n/a | a = _convert_other(a, raiseit=True) |
---|
4819 | n/a | return a.logical_invert(context=self) |
---|
4820 | n/a | |
---|
4821 | n/a | def logical_or(self, a, b): |
---|
4822 | n/a | """Applies the logical operation 'or' between each operand's digits. |
---|
4823 | n/a | |
---|
4824 | n/a | The operands must be both logical numbers. |
---|
4825 | n/a | |
---|
4826 | n/a | >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0')) |
---|
4827 | n/a | Decimal('0') |
---|
4828 | n/a | >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1')) |
---|
4829 | n/a | Decimal('1') |
---|
4830 | n/a | >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0')) |
---|
4831 | n/a | Decimal('1') |
---|
4832 | n/a | >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1')) |
---|
4833 | n/a | Decimal('1') |
---|
4834 | n/a | >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010')) |
---|
4835 | n/a | Decimal('1110') |
---|
4836 | n/a | >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10')) |
---|
4837 | n/a | Decimal('1110') |
---|
4838 | n/a | >>> ExtendedContext.logical_or(110, 1101) |
---|
4839 | n/a | Decimal('1111') |
---|
4840 | n/a | >>> ExtendedContext.logical_or(Decimal(110), 1101) |
---|
4841 | n/a | Decimal('1111') |
---|
4842 | n/a | >>> ExtendedContext.logical_or(110, Decimal(1101)) |
---|
4843 | n/a | Decimal('1111') |
---|
4844 | n/a | """ |
---|
4845 | n/a | a = _convert_other(a, raiseit=True) |
---|
4846 | n/a | return a.logical_or(b, context=self) |
---|
4847 | n/a | |
---|
4848 | n/a | def logical_xor(self, a, b): |
---|
4849 | n/a | """Applies the logical operation 'xor' between each operand's digits. |
---|
4850 | n/a | |
---|
4851 | n/a | The operands must be both logical numbers. |
---|
4852 | n/a | |
---|
4853 | n/a | >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0')) |
---|
4854 | n/a | Decimal('0') |
---|
4855 | n/a | >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1')) |
---|
4856 | n/a | Decimal('1') |
---|
4857 | n/a | >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0')) |
---|
4858 | n/a | Decimal('1') |
---|
4859 | n/a | >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1')) |
---|
4860 | n/a | Decimal('0') |
---|
4861 | n/a | >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010')) |
---|
4862 | n/a | Decimal('110') |
---|
4863 | n/a | >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10')) |
---|
4864 | n/a | Decimal('1101') |
---|
4865 | n/a | >>> ExtendedContext.logical_xor(110, 1101) |
---|
4866 | n/a | Decimal('1011') |
---|
4867 | n/a | >>> ExtendedContext.logical_xor(Decimal(110), 1101) |
---|
4868 | n/a | Decimal('1011') |
---|
4869 | n/a | >>> ExtendedContext.logical_xor(110, Decimal(1101)) |
---|
4870 | n/a | Decimal('1011') |
---|
4871 | n/a | """ |
---|
4872 | n/a | a = _convert_other(a, raiseit=True) |
---|
4873 | n/a | return a.logical_xor(b, context=self) |
---|
4874 | n/a | |
---|
4875 | n/a | def max(self, a, b): |
---|
4876 | n/a | """max compares two values numerically and returns the maximum. |
---|
4877 | n/a | |
---|
4878 | n/a | If either operand is a NaN then the general rules apply. |
---|
4879 | n/a | Otherwise, the operands are compared as though by the compare |
---|
4880 | n/a | operation. If they are numerically equal then the left-hand operand |
---|
4881 | n/a | is chosen as the result. Otherwise the maximum (closer to positive |
---|
4882 | n/a | infinity) of the two operands is chosen as the result. |
---|
4883 | n/a | |
---|
4884 | n/a | >>> ExtendedContext.max(Decimal('3'), Decimal('2')) |
---|
4885 | n/a | Decimal('3') |
---|
4886 | n/a | >>> ExtendedContext.max(Decimal('-10'), Decimal('3')) |
---|
4887 | n/a | Decimal('3') |
---|
4888 | n/a | >>> ExtendedContext.max(Decimal('1.0'), Decimal('1')) |
---|
4889 | n/a | Decimal('1') |
---|
4890 | n/a | >>> ExtendedContext.max(Decimal('7'), Decimal('NaN')) |
---|
4891 | n/a | Decimal('7') |
---|
4892 | n/a | >>> ExtendedContext.max(1, 2) |
---|
4893 | n/a | Decimal('2') |
---|
4894 | n/a | >>> ExtendedContext.max(Decimal(1), 2) |
---|
4895 | n/a | Decimal('2') |
---|
4896 | n/a | >>> ExtendedContext.max(1, Decimal(2)) |
---|
4897 | n/a | Decimal('2') |
---|
4898 | n/a | """ |
---|
4899 | n/a | a = _convert_other(a, raiseit=True) |
---|
4900 | n/a | return a.max(b, context=self) |
---|
4901 | n/a | |
---|
4902 | n/a | def max_mag(self, a, b): |
---|
4903 | n/a | """Compares the values numerically with their sign ignored. |
---|
4904 | n/a | |
---|
4905 | n/a | >>> ExtendedContext.max_mag(Decimal('7'), Decimal('NaN')) |
---|
4906 | n/a | Decimal('7') |
---|
4907 | n/a | >>> ExtendedContext.max_mag(Decimal('7'), Decimal('-10')) |
---|
4908 | n/a | Decimal('-10') |
---|
4909 | n/a | >>> ExtendedContext.max_mag(1, -2) |
---|
4910 | n/a | Decimal('-2') |
---|
4911 | n/a | >>> ExtendedContext.max_mag(Decimal(1), -2) |
---|
4912 | n/a | Decimal('-2') |
---|
4913 | n/a | >>> ExtendedContext.max_mag(1, Decimal(-2)) |
---|
4914 | n/a | Decimal('-2') |
---|
4915 | n/a | """ |
---|
4916 | n/a | a = _convert_other(a, raiseit=True) |
---|
4917 | n/a | return a.max_mag(b, context=self) |
---|
4918 | n/a | |
---|
4919 | n/a | def min(self, a, b): |
---|
4920 | n/a | """min compares two values numerically and returns the minimum. |
---|
4921 | n/a | |
---|
4922 | n/a | If either operand is a NaN then the general rules apply. |
---|
4923 | n/a | Otherwise, the operands are compared as though by the compare |
---|
4924 | n/a | operation. If they are numerically equal then the left-hand operand |
---|
4925 | n/a | is chosen as the result. Otherwise the minimum (closer to negative |
---|
4926 | n/a | infinity) of the two operands is chosen as the result. |
---|
4927 | n/a | |
---|
4928 | n/a | >>> ExtendedContext.min(Decimal('3'), Decimal('2')) |
---|
4929 | n/a | Decimal('2') |
---|
4930 | n/a | >>> ExtendedContext.min(Decimal('-10'), Decimal('3')) |
---|
4931 | n/a | Decimal('-10') |
---|
4932 | n/a | >>> ExtendedContext.min(Decimal('1.0'), Decimal('1')) |
---|
4933 | n/a | Decimal('1.0') |
---|
4934 | n/a | >>> ExtendedContext.min(Decimal('7'), Decimal('NaN')) |
---|
4935 | n/a | Decimal('7') |
---|
4936 | n/a | >>> ExtendedContext.min(1, 2) |
---|
4937 | n/a | Decimal('1') |
---|
4938 | n/a | >>> ExtendedContext.min(Decimal(1), 2) |
---|
4939 | n/a | Decimal('1') |
---|
4940 | n/a | >>> ExtendedContext.min(1, Decimal(29)) |
---|
4941 | n/a | Decimal('1') |
---|
4942 | n/a | """ |
---|
4943 | n/a | a = _convert_other(a, raiseit=True) |
---|
4944 | n/a | return a.min(b, context=self) |
---|
4945 | n/a | |
---|
4946 | n/a | def min_mag(self, a, b): |
---|
4947 | n/a | """Compares the values numerically with their sign ignored. |
---|
4948 | n/a | |
---|
4949 | n/a | >>> ExtendedContext.min_mag(Decimal('3'), Decimal('-2')) |
---|
4950 | n/a | Decimal('-2') |
---|
4951 | n/a | >>> ExtendedContext.min_mag(Decimal('-3'), Decimal('NaN')) |
---|
4952 | n/a | Decimal('-3') |
---|
4953 | n/a | >>> ExtendedContext.min_mag(1, -2) |
---|
4954 | n/a | Decimal('1') |
---|
4955 | n/a | >>> ExtendedContext.min_mag(Decimal(1), -2) |
---|
4956 | n/a | Decimal('1') |
---|
4957 | n/a | >>> ExtendedContext.min_mag(1, Decimal(-2)) |
---|
4958 | n/a | Decimal('1') |
---|
4959 | n/a | """ |
---|
4960 | n/a | a = _convert_other(a, raiseit=True) |
---|
4961 | n/a | return a.min_mag(b, context=self) |
---|
4962 | n/a | |
---|
4963 | n/a | def minus(self, a): |
---|
4964 | n/a | """Minus corresponds to unary prefix minus in Python. |
---|
4965 | n/a | |
---|
4966 | n/a | The operation is evaluated using the same rules as subtract; the |
---|
4967 | n/a | operation minus(a) is calculated as subtract('0', a) where the '0' |
---|
4968 | n/a | has the same exponent as the operand. |
---|
4969 | n/a | |
---|
4970 | n/a | >>> ExtendedContext.minus(Decimal('1.3')) |
---|
4971 | n/a | Decimal('-1.3') |
---|
4972 | n/a | >>> ExtendedContext.minus(Decimal('-1.3')) |
---|
4973 | n/a | Decimal('1.3') |
---|
4974 | n/a | >>> ExtendedContext.minus(1) |
---|
4975 | n/a | Decimal('-1') |
---|
4976 | n/a | """ |
---|
4977 | n/a | a = _convert_other(a, raiseit=True) |
---|
4978 | n/a | return a.__neg__(context=self) |
---|
4979 | n/a | |
---|
4980 | n/a | def multiply(self, a, b): |
---|
4981 | n/a | """multiply multiplies two operands. |
---|
4982 | n/a | |
---|
4983 | n/a | If either operand is a special value then the general rules apply. |
---|
4984 | n/a | Otherwise, the operands are multiplied together |
---|
4985 | n/a | ('long multiplication'), resulting in a number which may be as long as |
---|
4986 | n/a | the sum of the lengths of the two operands. |
---|
4987 | n/a | |
---|
4988 | n/a | >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3')) |
---|
4989 | n/a | Decimal('3.60') |
---|
4990 | n/a | >>> ExtendedContext.multiply(Decimal('7'), Decimal('3')) |
---|
4991 | n/a | Decimal('21') |
---|
4992 | n/a | >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8')) |
---|
4993 | n/a | Decimal('0.72') |
---|
4994 | n/a | >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0')) |
---|
4995 | n/a | Decimal('-0.0') |
---|
4996 | n/a | >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321')) |
---|
4997 | n/a | Decimal('4.28135971E+11') |
---|
4998 | n/a | >>> ExtendedContext.multiply(7, 7) |
---|
4999 | n/a | Decimal('49') |
---|
5000 | n/a | >>> ExtendedContext.multiply(Decimal(7), 7) |
---|
5001 | n/a | Decimal('49') |
---|
5002 | n/a | >>> ExtendedContext.multiply(7, Decimal(7)) |
---|
5003 | n/a | Decimal('49') |
---|
5004 | n/a | """ |
---|
5005 | n/a | a = _convert_other(a, raiseit=True) |
---|
5006 | n/a | r = a.__mul__(b, context=self) |
---|
5007 | n/a | if r is NotImplemented: |
---|
5008 | n/a | raise TypeError("Unable to convert %s to Decimal" % b) |
---|
5009 | n/a | else: |
---|
5010 | n/a | return r |
---|
5011 | n/a | |
---|
5012 | n/a | def next_minus(self, a): |
---|
5013 | n/a | """Returns the largest representable number smaller than a. |
---|
5014 | n/a | |
---|
5015 | n/a | >>> c = ExtendedContext.copy() |
---|
5016 | n/a | >>> c.Emin = -999 |
---|
5017 | n/a | >>> c.Emax = 999 |
---|
5018 | n/a | >>> ExtendedContext.next_minus(Decimal('1')) |
---|
5019 | n/a | Decimal('0.999999999') |
---|
5020 | n/a | >>> c.next_minus(Decimal('1E-1007')) |
---|
5021 | n/a | Decimal('0E-1007') |
---|
5022 | n/a | >>> ExtendedContext.next_minus(Decimal('-1.00000003')) |
---|
5023 | n/a | Decimal('-1.00000004') |
---|
5024 | n/a | >>> c.next_minus(Decimal('Infinity')) |
---|
5025 | n/a | Decimal('9.99999999E+999') |
---|
5026 | n/a | >>> c.next_minus(1) |
---|
5027 | n/a | Decimal('0.999999999') |
---|
5028 | n/a | """ |
---|
5029 | n/a | a = _convert_other(a, raiseit=True) |
---|
5030 | n/a | return a.next_minus(context=self) |
---|
5031 | n/a | |
---|
5032 | n/a | def next_plus(self, a): |
---|
5033 | n/a | """Returns the smallest representable number larger than a. |
---|
5034 | n/a | |
---|
5035 | n/a | >>> c = ExtendedContext.copy() |
---|
5036 | n/a | >>> c.Emin = -999 |
---|
5037 | n/a | >>> c.Emax = 999 |
---|
5038 | n/a | >>> ExtendedContext.next_plus(Decimal('1')) |
---|
5039 | n/a | Decimal('1.00000001') |
---|
5040 | n/a | >>> c.next_plus(Decimal('-1E-1007')) |
---|
5041 | n/a | Decimal('-0E-1007') |
---|
5042 | n/a | >>> ExtendedContext.next_plus(Decimal('-1.00000003')) |
---|
5043 | n/a | Decimal('-1.00000002') |
---|
5044 | n/a | >>> c.next_plus(Decimal('-Infinity')) |
---|
5045 | n/a | Decimal('-9.99999999E+999') |
---|
5046 | n/a | >>> c.next_plus(1) |
---|
5047 | n/a | Decimal('1.00000001') |
---|
5048 | n/a | """ |
---|
5049 | n/a | a = _convert_other(a, raiseit=True) |
---|
5050 | n/a | return a.next_plus(context=self) |
---|
5051 | n/a | |
---|
5052 | n/a | def next_toward(self, a, b): |
---|
5053 | n/a | """Returns the number closest to a, in direction towards b. |
---|
5054 | n/a | |
---|
5055 | n/a | The result is the closest representable number from the first |
---|
5056 | n/a | operand (but not the first operand) that is in the direction |
---|
5057 | n/a | towards the second operand, unless the operands have the same |
---|
5058 | n/a | value. |
---|
5059 | n/a | |
---|
5060 | n/a | >>> c = ExtendedContext.copy() |
---|
5061 | n/a | >>> c.Emin = -999 |
---|
5062 | n/a | >>> c.Emax = 999 |
---|
5063 | n/a | >>> c.next_toward(Decimal('1'), Decimal('2')) |
---|
5064 | n/a | Decimal('1.00000001') |
---|
5065 | n/a | >>> c.next_toward(Decimal('-1E-1007'), Decimal('1')) |
---|
5066 | n/a | Decimal('-0E-1007') |
---|
5067 | n/a | >>> c.next_toward(Decimal('-1.00000003'), Decimal('0')) |
---|
5068 | n/a | Decimal('-1.00000002') |
---|
5069 | n/a | >>> c.next_toward(Decimal('1'), Decimal('0')) |
---|
5070 | n/a | Decimal('0.999999999') |
---|
5071 | n/a | >>> c.next_toward(Decimal('1E-1007'), Decimal('-100')) |
---|
5072 | n/a | Decimal('0E-1007') |
---|
5073 | n/a | >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10')) |
---|
5074 | n/a | Decimal('-1.00000004') |
---|
5075 | n/a | >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000')) |
---|
5076 | n/a | Decimal('-0.00') |
---|
5077 | n/a | >>> c.next_toward(0, 1) |
---|
5078 | n/a | Decimal('1E-1007') |
---|
5079 | n/a | >>> c.next_toward(Decimal(0), 1) |
---|
5080 | n/a | Decimal('1E-1007') |
---|
5081 | n/a | >>> c.next_toward(0, Decimal(1)) |
---|
5082 | n/a | Decimal('1E-1007') |
---|
5083 | n/a | """ |
---|
5084 | n/a | a = _convert_other(a, raiseit=True) |
---|
5085 | n/a | return a.next_toward(b, context=self) |
---|
5086 | n/a | |
---|
5087 | n/a | def normalize(self, a): |
---|
5088 | n/a | """normalize reduces an operand to its simplest form. |
---|
5089 | n/a | |
---|
5090 | n/a | Essentially a plus operation with all trailing zeros removed from the |
---|
5091 | n/a | result. |
---|
5092 | n/a | |
---|
5093 | n/a | >>> ExtendedContext.normalize(Decimal('2.1')) |
---|
5094 | n/a | Decimal('2.1') |
---|
5095 | n/a | >>> ExtendedContext.normalize(Decimal('-2.0')) |
---|
5096 | n/a | Decimal('-2') |
---|
5097 | n/a | >>> ExtendedContext.normalize(Decimal('1.200')) |
---|
5098 | n/a | Decimal('1.2') |
---|
5099 | n/a | >>> ExtendedContext.normalize(Decimal('-120')) |
---|
5100 | n/a | Decimal('-1.2E+2') |
---|
5101 | n/a | >>> ExtendedContext.normalize(Decimal('120.00')) |
---|
5102 | n/a | Decimal('1.2E+2') |
---|
5103 | n/a | >>> ExtendedContext.normalize(Decimal('0.00')) |
---|
5104 | n/a | Decimal('0') |
---|
5105 | n/a | >>> ExtendedContext.normalize(6) |
---|
5106 | n/a | Decimal('6') |
---|
5107 | n/a | """ |
---|
5108 | n/a | a = _convert_other(a, raiseit=True) |
---|
5109 | n/a | return a.normalize(context=self) |
---|
5110 | n/a | |
---|
5111 | n/a | def number_class(self, a): |
---|
5112 | n/a | """Returns an indication of the class of the operand. |
---|
5113 | n/a | |
---|
5114 | n/a | The class is one of the following strings: |
---|
5115 | n/a | -sNaN |
---|
5116 | n/a | -NaN |
---|
5117 | n/a | -Infinity |
---|
5118 | n/a | -Normal |
---|
5119 | n/a | -Subnormal |
---|
5120 | n/a | -Zero |
---|
5121 | n/a | +Zero |
---|
5122 | n/a | +Subnormal |
---|
5123 | n/a | +Normal |
---|
5124 | n/a | +Infinity |
---|
5125 | n/a | |
---|
5126 | n/a | >>> c = ExtendedContext.copy() |
---|
5127 | n/a | >>> c.Emin = -999 |
---|
5128 | n/a | >>> c.Emax = 999 |
---|
5129 | n/a | >>> c.number_class(Decimal('Infinity')) |
---|
5130 | n/a | '+Infinity' |
---|
5131 | n/a | >>> c.number_class(Decimal('1E-10')) |
---|
5132 | n/a | '+Normal' |
---|
5133 | n/a | >>> c.number_class(Decimal('2.50')) |
---|
5134 | n/a | '+Normal' |
---|
5135 | n/a | >>> c.number_class(Decimal('0.1E-999')) |
---|
5136 | n/a | '+Subnormal' |
---|
5137 | n/a | >>> c.number_class(Decimal('0')) |
---|
5138 | n/a | '+Zero' |
---|
5139 | n/a | >>> c.number_class(Decimal('-0')) |
---|
5140 | n/a | '-Zero' |
---|
5141 | n/a | >>> c.number_class(Decimal('-0.1E-999')) |
---|
5142 | n/a | '-Subnormal' |
---|
5143 | n/a | >>> c.number_class(Decimal('-1E-10')) |
---|
5144 | n/a | '-Normal' |
---|
5145 | n/a | >>> c.number_class(Decimal('-2.50')) |
---|
5146 | n/a | '-Normal' |
---|
5147 | n/a | >>> c.number_class(Decimal('-Infinity')) |
---|
5148 | n/a | '-Infinity' |
---|
5149 | n/a | >>> c.number_class(Decimal('NaN')) |
---|
5150 | n/a | 'NaN' |
---|
5151 | n/a | >>> c.number_class(Decimal('-NaN')) |
---|
5152 | n/a | 'NaN' |
---|
5153 | n/a | >>> c.number_class(Decimal('sNaN')) |
---|
5154 | n/a | 'sNaN' |
---|
5155 | n/a | >>> c.number_class(123) |
---|
5156 | n/a | '+Normal' |
---|
5157 | n/a | """ |
---|
5158 | n/a | a = _convert_other(a, raiseit=True) |
---|
5159 | n/a | return a.number_class(context=self) |
---|
5160 | n/a | |
---|
5161 | n/a | def plus(self, a): |
---|
5162 | n/a | """Plus corresponds to unary prefix plus in Python. |
---|
5163 | n/a | |
---|
5164 | n/a | The operation is evaluated using the same rules as add; the |
---|
5165 | n/a | operation plus(a) is calculated as add('0', a) where the '0' |
---|
5166 | n/a | has the same exponent as the operand. |
---|
5167 | n/a | |
---|
5168 | n/a | >>> ExtendedContext.plus(Decimal('1.3')) |
---|
5169 | n/a | Decimal('1.3') |
---|
5170 | n/a | >>> ExtendedContext.plus(Decimal('-1.3')) |
---|
5171 | n/a | Decimal('-1.3') |
---|
5172 | n/a | >>> ExtendedContext.plus(-1) |
---|
5173 | n/a | Decimal('-1') |
---|
5174 | n/a | """ |
---|
5175 | n/a | a = _convert_other(a, raiseit=True) |
---|
5176 | n/a | return a.__pos__(context=self) |
---|
5177 | n/a | |
---|
5178 | n/a | def power(self, a, b, modulo=None): |
---|
5179 | n/a | """Raises a to the power of b, to modulo if given. |
---|
5180 | n/a | |
---|
5181 | n/a | With two arguments, compute a**b. If a is negative then b |
---|
5182 | n/a | must be integral. The result will be inexact unless b is |
---|
5183 | n/a | integral and the result is finite and can be expressed exactly |
---|
5184 | n/a | in 'precision' digits. |
---|
5185 | n/a | |
---|
5186 | n/a | With three arguments, compute (a**b) % modulo. For the |
---|
5187 | n/a | three argument form, the following restrictions on the |
---|
5188 | n/a | arguments hold: |
---|
5189 | n/a | |
---|
5190 | n/a | - all three arguments must be integral |
---|
5191 | n/a | - b must be nonnegative |
---|
5192 | n/a | - at least one of a or b must be nonzero |
---|
5193 | n/a | - modulo must be nonzero and have at most 'precision' digits |
---|
5194 | n/a | |
---|
5195 | n/a | The result of pow(a, b, modulo) is identical to the result |
---|
5196 | n/a | that would be obtained by computing (a**b) % modulo with |
---|
5197 | n/a | unbounded precision, but is computed more efficiently. It is |
---|
5198 | n/a | always exact. |
---|
5199 | n/a | |
---|
5200 | n/a | >>> c = ExtendedContext.copy() |
---|
5201 | n/a | >>> c.Emin = -999 |
---|
5202 | n/a | >>> c.Emax = 999 |
---|
5203 | n/a | >>> c.power(Decimal('2'), Decimal('3')) |
---|
5204 | n/a | Decimal('8') |
---|
5205 | n/a | >>> c.power(Decimal('-2'), Decimal('3')) |
---|
5206 | n/a | Decimal('-8') |
---|
5207 | n/a | >>> c.power(Decimal('2'), Decimal('-3')) |
---|
5208 | n/a | Decimal('0.125') |
---|
5209 | n/a | >>> c.power(Decimal('1.7'), Decimal('8')) |
---|
5210 | n/a | Decimal('69.7575744') |
---|
5211 | n/a | >>> c.power(Decimal('10'), Decimal('0.301029996')) |
---|
5212 | n/a | Decimal('2.00000000') |
---|
5213 | n/a | >>> c.power(Decimal('Infinity'), Decimal('-1')) |
---|
5214 | n/a | Decimal('0') |
---|
5215 | n/a | >>> c.power(Decimal('Infinity'), Decimal('0')) |
---|
5216 | n/a | Decimal('1') |
---|
5217 | n/a | >>> c.power(Decimal('Infinity'), Decimal('1')) |
---|
5218 | n/a | Decimal('Infinity') |
---|
5219 | n/a | >>> c.power(Decimal('-Infinity'), Decimal('-1')) |
---|
5220 | n/a | Decimal('-0') |
---|
5221 | n/a | >>> c.power(Decimal('-Infinity'), Decimal('0')) |
---|
5222 | n/a | Decimal('1') |
---|
5223 | n/a | >>> c.power(Decimal('-Infinity'), Decimal('1')) |
---|
5224 | n/a | Decimal('-Infinity') |
---|
5225 | n/a | >>> c.power(Decimal('-Infinity'), Decimal('2')) |
---|
5226 | n/a | Decimal('Infinity') |
---|
5227 | n/a | >>> c.power(Decimal('0'), Decimal('0')) |
---|
5228 | n/a | Decimal('NaN') |
---|
5229 | n/a | |
---|
5230 | n/a | >>> c.power(Decimal('3'), Decimal('7'), Decimal('16')) |
---|
5231 | n/a | Decimal('11') |
---|
5232 | n/a | >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16')) |
---|
5233 | n/a | Decimal('-11') |
---|
5234 | n/a | >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16')) |
---|
5235 | n/a | Decimal('1') |
---|
5236 | n/a | >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16')) |
---|
5237 | n/a | Decimal('11') |
---|
5238 | n/a | >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789')) |
---|
5239 | n/a | Decimal('11729830') |
---|
5240 | n/a | >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729')) |
---|
5241 | n/a | Decimal('-0') |
---|
5242 | n/a | >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537')) |
---|
5243 | n/a | Decimal('1') |
---|
5244 | n/a | >>> ExtendedContext.power(7, 7) |
---|
5245 | n/a | Decimal('823543') |
---|
5246 | n/a | >>> ExtendedContext.power(Decimal(7), 7) |
---|
5247 | n/a | Decimal('823543') |
---|
5248 | n/a | >>> ExtendedContext.power(7, Decimal(7), 2) |
---|
5249 | n/a | Decimal('1') |
---|
5250 | n/a | """ |
---|
5251 | n/a | a = _convert_other(a, raiseit=True) |
---|
5252 | n/a | r = a.__pow__(b, modulo, context=self) |
---|
5253 | n/a | if r is NotImplemented: |
---|
5254 | n/a | raise TypeError("Unable to convert %s to Decimal" % b) |
---|
5255 | n/a | else: |
---|
5256 | n/a | return r |
---|
5257 | n/a | |
---|
5258 | n/a | def quantize(self, a, b): |
---|
5259 | n/a | """Returns a value equal to 'a' (rounded), having the exponent of 'b'. |
---|
5260 | n/a | |
---|
5261 | n/a | The coefficient of the result is derived from that of the left-hand |
---|
5262 | n/a | operand. It may be rounded using the current rounding setting (if the |
---|
5263 | n/a | exponent is being increased), multiplied by a positive power of ten (if |
---|
5264 | n/a | the exponent is being decreased), or is unchanged (if the exponent is |
---|
5265 | n/a | already equal to that of the right-hand operand). |
---|
5266 | n/a | |
---|
5267 | n/a | Unlike other operations, if the length of the coefficient after the |
---|
5268 | n/a | quantize operation would be greater than precision then an Invalid |
---|
5269 | n/a | operation condition is raised. This guarantees that, unless there is |
---|
5270 | n/a | an error condition, the exponent of the result of a quantize is always |
---|
5271 | n/a | equal to that of the right-hand operand. |
---|
5272 | n/a | |
---|
5273 | n/a | Also unlike other operations, quantize will never raise Underflow, even |
---|
5274 | n/a | if the result is subnormal and inexact. |
---|
5275 | n/a | |
---|
5276 | n/a | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001')) |
---|
5277 | n/a | Decimal('2.170') |
---|
5278 | n/a | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01')) |
---|
5279 | n/a | Decimal('2.17') |
---|
5280 | n/a | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1')) |
---|
5281 | n/a | Decimal('2.2') |
---|
5282 | n/a | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0')) |
---|
5283 | n/a | Decimal('2') |
---|
5284 | n/a | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1')) |
---|
5285 | n/a | Decimal('0E+1') |
---|
5286 | n/a | >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity')) |
---|
5287 | n/a | Decimal('-Infinity') |
---|
5288 | n/a | >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity')) |
---|
5289 | n/a | Decimal('NaN') |
---|
5290 | n/a | >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1')) |
---|
5291 | n/a | Decimal('-0') |
---|
5292 | n/a | >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5')) |
---|
5293 | n/a | Decimal('-0E+5') |
---|
5294 | n/a | >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2')) |
---|
5295 | n/a | Decimal('NaN') |
---|
5296 | n/a | >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2')) |
---|
5297 | n/a | Decimal('NaN') |
---|
5298 | n/a | >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1')) |
---|
5299 | n/a | Decimal('217.0') |
---|
5300 | n/a | >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0')) |
---|
5301 | n/a | Decimal('217') |
---|
5302 | n/a | >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1')) |
---|
5303 | n/a | Decimal('2.2E+2') |
---|
5304 | n/a | >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2')) |
---|
5305 | n/a | Decimal('2E+2') |
---|
5306 | n/a | >>> ExtendedContext.quantize(1, 2) |
---|
5307 | n/a | Decimal('1') |
---|
5308 | n/a | >>> ExtendedContext.quantize(Decimal(1), 2) |
---|
5309 | n/a | Decimal('1') |
---|
5310 | n/a | >>> ExtendedContext.quantize(1, Decimal(2)) |
---|
5311 | n/a | Decimal('1') |
---|
5312 | n/a | """ |
---|
5313 | n/a | a = _convert_other(a, raiseit=True) |
---|
5314 | n/a | return a.quantize(b, context=self) |
---|
5315 | n/a | |
---|
5316 | n/a | def radix(self): |
---|
5317 | n/a | """Just returns 10, as this is Decimal, :) |
---|
5318 | n/a | |
---|
5319 | n/a | >>> ExtendedContext.radix() |
---|
5320 | n/a | Decimal('10') |
---|
5321 | n/a | """ |
---|
5322 | n/a | return Decimal(10) |
---|
5323 | n/a | |
---|
5324 | n/a | def remainder(self, a, b): |
---|
5325 | n/a | """Returns the remainder from integer division. |
---|
5326 | n/a | |
---|
5327 | n/a | The result is the residue of the dividend after the operation of |
---|
5328 | n/a | calculating integer division as described for divide-integer, rounded |
---|
5329 | n/a | to precision digits if necessary. The sign of the result, if |
---|
5330 | n/a | non-zero, is the same as that of the original dividend. |
---|
5331 | n/a | |
---|
5332 | n/a | This operation will fail under the same conditions as integer division |
---|
5333 | n/a | (that is, if integer division on the same two operands would fail, the |
---|
5334 | n/a | remainder cannot be calculated). |
---|
5335 | n/a | |
---|
5336 | n/a | >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3')) |
---|
5337 | n/a | Decimal('2.1') |
---|
5338 | n/a | >>> ExtendedContext.remainder(Decimal('10'), Decimal('3')) |
---|
5339 | n/a | Decimal('1') |
---|
5340 | n/a | >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3')) |
---|
5341 | n/a | Decimal('-1') |
---|
5342 | n/a | >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1')) |
---|
5343 | n/a | Decimal('0.2') |
---|
5344 | n/a | >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3')) |
---|
5345 | n/a | Decimal('0.1') |
---|
5346 | n/a | >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3')) |
---|
5347 | n/a | Decimal('1.0') |
---|
5348 | n/a | >>> ExtendedContext.remainder(22, 6) |
---|
5349 | n/a | Decimal('4') |
---|
5350 | n/a | >>> ExtendedContext.remainder(Decimal(22), 6) |
---|
5351 | n/a | Decimal('4') |
---|
5352 | n/a | >>> ExtendedContext.remainder(22, Decimal(6)) |
---|
5353 | n/a | Decimal('4') |
---|
5354 | n/a | """ |
---|
5355 | n/a | a = _convert_other(a, raiseit=True) |
---|
5356 | n/a | r = a.__mod__(b, context=self) |
---|
5357 | n/a | if r is NotImplemented: |
---|
5358 | n/a | raise TypeError("Unable to convert %s to Decimal" % b) |
---|
5359 | n/a | else: |
---|
5360 | n/a | return r |
---|
5361 | n/a | |
---|
5362 | n/a | def remainder_near(self, a, b): |
---|
5363 | n/a | """Returns to be "a - b * n", where n is the integer nearest the exact |
---|
5364 | n/a | value of "x / b" (if two integers are equally near then the even one |
---|
5365 | n/a | is chosen). If the result is equal to 0 then its sign will be the |
---|
5366 | n/a | sign of a. |
---|
5367 | n/a | |
---|
5368 | n/a | This operation will fail under the same conditions as integer division |
---|
5369 | n/a | (that is, if integer division on the same two operands would fail, the |
---|
5370 | n/a | remainder cannot be calculated). |
---|
5371 | n/a | |
---|
5372 | n/a | >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3')) |
---|
5373 | n/a | Decimal('-0.9') |
---|
5374 | n/a | >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6')) |
---|
5375 | n/a | Decimal('-2') |
---|
5376 | n/a | >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3')) |
---|
5377 | n/a | Decimal('1') |
---|
5378 | n/a | >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3')) |
---|
5379 | n/a | Decimal('-1') |
---|
5380 | n/a | >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1')) |
---|
5381 | n/a | Decimal('0.2') |
---|
5382 | n/a | >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3')) |
---|
5383 | n/a | Decimal('0.1') |
---|
5384 | n/a | >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3')) |
---|
5385 | n/a | Decimal('-0.3') |
---|
5386 | n/a | >>> ExtendedContext.remainder_near(3, 11) |
---|
5387 | n/a | Decimal('3') |
---|
5388 | n/a | >>> ExtendedContext.remainder_near(Decimal(3), 11) |
---|
5389 | n/a | Decimal('3') |
---|
5390 | n/a | >>> ExtendedContext.remainder_near(3, Decimal(11)) |
---|
5391 | n/a | Decimal('3') |
---|
5392 | n/a | """ |
---|
5393 | n/a | a = _convert_other(a, raiseit=True) |
---|
5394 | n/a | return a.remainder_near(b, context=self) |
---|
5395 | n/a | |
---|
5396 | n/a | def rotate(self, a, b): |
---|
5397 | n/a | """Returns a rotated copy of a, b times. |
---|
5398 | n/a | |
---|
5399 | n/a | The coefficient of the result is a rotated copy of the digits in |
---|
5400 | n/a | the coefficient of the first operand. The number of places of |
---|
5401 | n/a | rotation is taken from the absolute value of the second operand, |
---|
5402 | n/a | with the rotation being to the left if the second operand is |
---|
5403 | n/a | positive or to the right otherwise. |
---|
5404 | n/a | |
---|
5405 | n/a | >>> ExtendedContext.rotate(Decimal('34'), Decimal('8')) |
---|
5406 | n/a | Decimal('400000003') |
---|
5407 | n/a | >>> ExtendedContext.rotate(Decimal('12'), Decimal('9')) |
---|
5408 | n/a | Decimal('12') |
---|
5409 | n/a | >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2')) |
---|
5410 | n/a | Decimal('891234567') |
---|
5411 | n/a | >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0')) |
---|
5412 | n/a | Decimal('123456789') |
---|
5413 | n/a | >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2')) |
---|
5414 | n/a | Decimal('345678912') |
---|
5415 | n/a | >>> ExtendedContext.rotate(1333333, 1) |
---|
5416 | n/a | Decimal('13333330') |
---|
5417 | n/a | >>> ExtendedContext.rotate(Decimal(1333333), 1) |
---|
5418 | n/a | Decimal('13333330') |
---|
5419 | n/a | >>> ExtendedContext.rotate(1333333, Decimal(1)) |
---|
5420 | n/a | Decimal('13333330') |
---|
5421 | n/a | """ |
---|
5422 | n/a | a = _convert_other(a, raiseit=True) |
---|
5423 | n/a | return a.rotate(b, context=self) |
---|
5424 | n/a | |
---|
5425 | n/a | def same_quantum(self, a, b): |
---|
5426 | n/a | """Returns True if the two operands have the same exponent. |
---|
5427 | n/a | |
---|
5428 | n/a | The result is never affected by either the sign or the coefficient of |
---|
5429 | n/a | either operand. |
---|
5430 | n/a | |
---|
5431 | n/a | >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001')) |
---|
5432 | n/a | False |
---|
5433 | n/a | >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01')) |
---|
5434 | n/a | True |
---|
5435 | n/a | >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1')) |
---|
5436 | n/a | False |
---|
5437 | n/a | >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf')) |
---|
5438 | n/a | True |
---|
5439 | n/a | >>> ExtendedContext.same_quantum(10000, -1) |
---|
5440 | n/a | True |
---|
5441 | n/a | >>> ExtendedContext.same_quantum(Decimal(10000), -1) |
---|
5442 | n/a | True |
---|
5443 | n/a | >>> ExtendedContext.same_quantum(10000, Decimal(-1)) |
---|
5444 | n/a | True |
---|
5445 | n/a | """ |
---|
5446 | n/a | a = _convert_other(a, raiseit=True) |
---|
5447 | n/a | return a.same_quantum(b) |
---|
5448 | n/a | |
---|
5449 | n/a | def scaleb (self, a, b): |
---|
5450 | n/a | """Returns the first operand after adding the second value its exp. |
---|
5451 | n/a | |
---|
5452 | n/a | >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2')) |
---|
5453 | n/a | Decimal('0.0750') |
---|
5454 | n/a | >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0')) |
---|
5455 | n/a | Decimal('7.50') |
---|
5456 | n/a | >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3')) |
---|
5457 | n/a | Decimal('7.50E+3') |
---|
5458 | n/a | >>> ExtendedContext.scaleb(1, 4) |
---|
5459 | n/a | Decimal('1E+4') |
---|
5460 | n/a | >>> ExtendedContext.scaleb(Decimal(1), 4) |
---|
5461 | n/a | Decimal('1E+4') |
---|
5462 | n/a | >>> ExtendedContext.scaleb(1, Decimal(4)) |
---|
5463 | n/a | Decimal('1E+4') |
---|
5464 | n/a | """ |
---|
5465 | n/a | a = _convert_other(a, raiseit=True) |
---|
5466 | n/a | return a.scaleb(b, context=self) |
---|
5467 | n/a | |
---|
5468 | n/a | def shift(self, a, b): |
---|
5469 | n/a | """Returns a shifted copy of a, b times. |
---|
5470 | n/a | |
---|
5471 | n/a | The coefficient of the result is a shifted copy of the digits |
---|
5472 | n/a | in the coefficient of the first operand. The number of places |
---|
5473 | n/a | to shift is taken from the absolute value of the second operand, |
---|
5474 | n/a | with the shift being to the left if the second operand is |
---|
5475 | n/a | positive or to the right otherwise. Digits shifted into the |
---|
5476 | n/a | coefficient are zeros. |
---|
5477 | n/a | |
---|
5478 | n/a | >>> ExtendedContext.shift(Decimal('34'), Decimal('8')) |
---|
5479 | n/a | Decimal('400000000') |
---|
5480 | n/a | >>> ExtendedContext.shift(Decimal('12'), Decimal('9')) |
---|
5481 | n/a | Decimal('0') |
---|
5482 | n/a | >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2')) |
---|
5483 | n/a | Decimal('1234567') |
---|
5484 | n/a | >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0')) |
---|
5485 | n/a | Decimal('123456789') |
---|
5486 | n/a | >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2')) |
---|
5487 | n/a | Decimal('345678900') |
---|
5488 | n/a | >>> ExtendedContext.shift(88888888, 2) |
---|
5489 | n/a | Decimal('888888800') |
---|
5490 | n/a | >>> ExtendedContext.shift(Decimal(88888888), 2) |
---|
5491 | n/a | Decimal('888888800') |
---|
5492 | n/a | >>> ExtendedContext.shift(88888888, Decimal(2)) |
---|
5493 | n/a | Decimal('888888800') |
---|
5494 | n/a | """ |
---|
5495 | n/a | a = _convert_other(a, raiseit=True) |
---|
5496 | n/a | return a.shift(b, context=self) |
---|
5497 | n/a | |
---|
5498 | n/a | def sqrt(self, a): |
---|
5499 | n/a | """Square root of a non-negative number to context precision. |
---|
5500 | n/a | |
---|
5501 | n/a | If the result must be inexact, it is rounded using the round-half-even |
---|
5502 | n/a | algorithm. |
---|
5503 | n/a | |
---|
5504 | n/a | >>> ExtendedContext.sqrt(Decimal('0')) |
---|
5505 | n/a | Decimal('0') |
---|
5506 | n/a | >>> ExtendedContext.sqrt(Decimal('-0')) |
---|
5507 | n/a | Decimal('-0') |
---|
5508 | n/a | >>> ExtendedContext.sqrt(Decimal('0.39')) |
---|
5509 | n/a | Decimal('0.624499800') |
---|
5510 | n/a | >>> ExtendedContext.sqrt(Decimal('100')) |
---|
5511 | n/a | Decimal('10') |
---|
5512 | n/a | >>> ExtendedContext.sqrt(Decimal('1')) |
---|
5513 | n/a | Decimal('1') |
---|
5514 | n/a | >>> ExtendedContext.sqrt(Decimal('1.0')) |
---|
5515 | n/a | Decimal('1.0') |
---|
5516 | n/a | >>> ExtendedContext.sqrt(Decimal('1.00')) |
---|
5517 | n/a | Decimal('1.0') |
---|
5518 | n/a | >>> ExtendedContext.sqrt(Decimal('7')) |
---|
5519 | n/a | Decimal('2.64575131') |
---|
5520 | n/a | >>> ExtendedContext.sqrt(Decimal('10')) |
---|
5521 | n/a | Decimal('3.16227766') |
---|
5522 | n/a | >>> ExtendedContext.sqrt(2) |
---|
5523 | n/a | Decimal('1.41421356') |
---|
5524 | n/a | >>> ExtendedContext.prec |
---|
5525 | n/a | 9 |
---|
5526 | n/a | """ |
---|
5527 | n/a | a = _convert_other(a, raiseit=True) |
---|
5528 | n/a | return a.sqrt(context=self) |
---|
5529 | n/a | |
---|
5530 | n/a | def subtract(self, a, b): |
---|
5531 | n/a | """Return the difference between the two operands. |
---|
5532 | n/a | |
---|
5533 | n/a | >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07')) |
---|
5534 | n/a | Decimal('0.23') |
---|
5535 | n/a | >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30')) |
---|
5536 | n/a | Decimal('0.00') |
---|
5537 | n/a | >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07')) |
---|
5538 | n/a | Decimal('-0.77') |
---|
5539 | n/a | >>> ExtendedContext.subtract(8, 5) |
---|
5540 | n/a | Decimal('3') |
---|
5541 | n/a | >>> ExtendedContext.subtract(Decimal(8), 5) |
---|
5542 | n/a | Decimal('3') |
---|
5543 | n/a | >>> ExtendedContext.subtract(8, Decimal(5)) |
---|
5544 | n/a | Decimal('3') |
---|
5545 | n/a | """ |
---|
5546 | n/a | a = _convert_other(a, raiseit=True) |
---|
5547 | n/a | r = a.__sub__(b, context=self) |
---|
5548 | n/a | if r is NotImplemented: |
---|
5549 | n/a | raise TypeError("Unable to convert %s to Decimal" % b) |
---|
5550 | n/a | else: |
---|
5551 | n/a | return r |
---|
5552 | n/a | |
---|
5553 | n/a | def to_eng_string(self, a): |
---|
5554 | n/a | """Convert to a string, using engineering notation if an exponent is needed. |
---|
5555 | n/a | |
---|
5556 | n/a | Engineering notation has an exponent which is a multiple of 3. This |
---|
5557 | n/a | can leave up to 3 digits to the left of the decimal place and may |
---|
5558 | n/a | require the addition of either one or two trailing zeros. |
---|
5559 | n/a | |
---|
5560 | n/a | The operation is not affected by the context. |
---|
5561 | n/a | |
---|
5562 | n/a | >>> ExtendedContext.to_eng_string(Decimal('123E+1')) |
---|
5563 | n/a | '1.23E+3' |
---|
5564 | n/a | >>> ExtendedContext.to_eng_string(Decimal('123E+3')) |
---|
5565 | n/a | '123E+3' |
---|
5566 | n/a | >>> ExtendedContext.to_eng_string(Decimal('123E-10')) |
---|
5567 | n/a | '12.3E-9' |
---|
5568 | n/a | >>> ExtendedContext.to_eng_string(Decimal('-123E-12')) |
---|
5569 | n/a | '-123E-12' |
---|
5570 | n/a | >>> ExtendedContext.to_eng_string(Decimal('7E-7')) |
---|
5571 | n/a | '700E-9' |
---|
5572 | n/a | >>> ExtendedContext.to_eng_string(Decimal('7E+1')) |
---|
5573 | n/a | '70' |
---|
5574 | n/a | >>> ExtendedContext.to_eng_string(Decimal('0E+1')) |
---|
5575 | n/a | '0.00E+3' |
---|
5576 | n/a | |
---|
5577 | n/a | """ |
---|
5578 | n/a | a = _convert_other(a, raiseit=True) |
---|
5579 | n/a | return a.to_eng_string(context=self) |
---|
5580 | n/a | |
---|
5581 | n/a | def to_sci_string(self, a): |
---|
5582 | n/a | """Converts a number to a string, using scientific notation. |
---|
5583 | n/a | |
---|
5584 | n/a | The operation is not affected by the context. |
---|
5585 | n/a | """ |
---|
5586 | n/a | a = _convert_other(a, raiseit=True) |
---|
5587 | n/a | return a.__str__(context=self) |
---|
5588 | n/a | |
---|
5589 | n/a | def to_integral_exact(self, a): |
---|
5590 | n/a | """Rounds to an integer. |
---|
5591 | n/a | |
---|
5592 | n/a | When the operand has a negative exponent, the result is the same |
---|
5593 | n/a | as using the quantize() operation using the given operand as the |
---|
5594 | n/a | left-hand-operand, 1E+0 as the right-hand-operand, and the precision |
---|
5595 | n/a | of the operand as the precision setting; Inexact and Rounded flags |
---|
5596 | n/a | are allowed in this operation. The rounding mode is taken from the |
---|
5597 | n/a | context. |
---|
5598 | n/a | |
---|
5599 | n/a | >>> ExtendedContext.to_integral_exact(Decimal('2.1')) |
---|
5600 | n/a | Decimal('2') |
---|
5601 | n/a | >>> ExtendedContext.to_integral_exact(Decimal('100')) |
---|
5602 | n/a | Decimal('100') |
---|
5603 | n/a | >>> ExtendedContext.to_integral_exact(Decimal('100.0')) |
---|
5604 | n/a | Decimal('100') |
---|
5605 | n/a | >>> ExtendedContext.to_integral_exact(Decimal('101.5')) |
---|
5606 | n/a | Decimal('102') |
---|
5607 | n/a | >>> ExtendedContext.to_integral_exact(Decimal('-101.5')) |
---|
5608 | n/a | Decimal('-102') |
---|
5609 | n/a | >>> ExtendedContext.to_integral_exact(Decimal('10E+5')) |
---|
5610 | n/a | Decimal('1.0E+6') |
---|
5611 | n/a | >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77')) |
---|
5612 | n/a | Decimal('7.89E+77') |
---|
5613 | n/a | >>> ExtendedContext.to_integral_exact(Decimal('-Inf')) |
---|
5614 | n/a | Decimal('-Infinity') |
---|
5615 | n/a | """ |
---|
5616 | n/a | a = _convert_other(a, raiseit=True) |
---|
5617 | n/a | return a.to_integral_exact(context=self) |
---|
5618 | n/a | |
---|
5619 | n/a | def to_integral_value(self, a): |
---|
5620 | n/a | """Rounds to an integer. |
---|
5621 | n/a | |
---|
5622 | n/a | When the operand has a negative exponent, the result is the same |
---|
5623 | n/a | as using the quantize() operation using the given operand as the |
---|
5624 | n/a | left-hand-operand, 1E+0 as the right-hand-operand, and the precision |
---|
5625 | n/a | of the operand as the precision setting, except that no flags will |
---|
5626 | n/a | be set. The rounding mode is taken from the context. |
---|
5627 | n/a | |
---|
5628 | n/a | >>> ExtendedContext.to_integral_value(Decimal('2.1')) |
---|
5629 | n/a | Decimal('2') |
---|
5630 | n/a | >>> ExtendedContext.to_integral_value(Decimal('100')) |
---|
5631 | n/a | Decimal('100') |
---|
5632 | n/a | >>> ExtendedContext.to_integral_value(Decimal('100.0')) |
---|
5633 | n/a | Decimal('100') |
---|
5634 | n/a | >>> ExtendedContext.to_integral_value(Decimal('101.5')) |
---|
5635 | n/a | Decimal('102') |
---|
5636 | n/a | >>> ExtendedContext.to_integral_value(Decimal('-101.5')) |
---|
5637 | n/a | Decimal('-102') |
---|
5638 | n/a | >>> ExtendedContext.to_integral_value(Decimal('10E+5')) |
---|
5639 | n/a | Decimal('1.0E+6') |
---|
5640 | n/a | >>> ExtendedContext.to_integral_value(Decimal('7.89E+77')) |
---|
5641 | n/a | Decimal('7.89E+77') |
---|
5642 | n/a | >>> ExtendedContext.to_integral_value(Decimal('-Inf')) |
---|
5643 | n/a | Decimal('-Infinity') |
---|
5644 | n/a | """ |
---|
5645 | n/a | a = _convert_other(a, raiseit=True) |
---|
5646 | n/a | return a.to_integral_value(context=self) |
---|
5647 | n/a | |
---|
5648 | n/a | # the method name changed, but we provide also the old one, for compatibility |
---|
5649 | n/a | to_integral = to_integral_value |
---|
5650 | n/a | |
---|
5651 | n/a | class _WorkRep(object): |
---|
5652 | n/a | __slots__ = ('sign','int','exp') |
---|
5653 | n/a | # sign: 0 or 1 |
---|
5654 | n/a | # int: int |
---|
5655 | n/a | # exp: None, int, or string |
---|
5656 | n/a | |
---|
5657 | n/a | def __init__(self, value=None): |
---|
5658 | n/a | if value is None: |
---|
5659 | n/a | self.sign = None |
---|
5660 | n/a | self.int = 0 |
---|
5661 | n/a | self.exp = None |
---|
5662 | n/a | elif isinstance(value, Decimal): |
---|
5663 | n/a | self.sign = value._sign |
---|
5664 | n/a | self.int = int(value._int) |
---|
5665 | n/a | self.exp = value._exp |
---|
5666 | n/a | else: |
---|
5667 | n/a | # assert isinstance(value, tuple) |
---|
5668 | n/a | self.sign = value[0] |
---|
5669 | n/a | self.int = value[1] |
---|
5670 | n/a | self.exp = value[2] |
---|
5671 | n/a | |
---|
5672 | n/a | def __repr__(self): |
---|
5673 | n/a | return "(%r, %r, %r)" % (self.sign, self.int, self.exp) |
---|
5674 | n/a | |
---|
5675 | n/a | __str__ = __repr__ |
---|
5676 | n/a | |
---|
5677 | n/a | |
---|
5678 | n/a | |
---|
5679 | n/a | def _normalize(op1, op2, prec = 0): |
---|
5680 | n/a | """Normalizes op1, op2 to have the same exp and length of coefficient. |
---|
5681 | n/a | |
---|
5682 | n/a | Done during addition. |
---|
5683 | n/a | """ |
---|
5684 | n/a | if op1.exp < op2.exp: |
---|
5685 | n/a | tmp = op2 |
---|
5686 | n/a | other = op1 |
---|
5687 | n/a | else: |
---|
5688 | n/a | tmp = op1 |
---|
5689 | n/a | other = op2 |
---|
5690 | n/a | |
---|
5691 | n/a | # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1). |
---|
5692 | n/a | # Then adding 10**exp to tmp has the same effect (after rounding) |
---|
5693 | n/a | # as adding any positive quantity smaller than 10**exp; similarly |
---|
5694 | n/a | # for subtraction. So if other is smaller than 10**exp we replace |
---|
5695 | n/a | # it with 10**exp. This avoids tmp.exp - other.exp getting too large. |
---|
5696 | n/a | tmp_len = len(str(tmp.int)) |
---|
5697 | n/a | other_len = len(str(other.int)) |
---|
5698 | n/a | exp = tmp.exp + min(-1, tmp_len - prec - 2) |
---|
5699 | n/a | if other_len + other.exp - 1 < exp: |
---|
5700 | n/a | other.int = 1 |
---|
5701 | n/a | other.exp = exp |
---|
5702 | n/a | |
---|
5703 | n/a | tmp.int *= 10 ** (tmp.exp - other.exp) |
---|
5704 | n/a | tmp.exp = other.exp |
---|
5705 | n/a | return op1, op2 |
---|
5706 | n/a | |
---|
5707 | n/a | ##### Integer arithmetic functions used by ln, log10, exp and __pow__ ##### |
---|
5708 | n/a | |
---|
5709 | n/a | _nbits = int.bit_length |
---|
5710 | n/a | |
---|
5711 | n/a | def _decimal_lshift_exact(n, e): |
---|
5712 | n/a | """ Given integers n and e, return n * 10**e if it's an integer, else None. |
---|
5713 | n/a | |
---|
5714 | n/a | The computation is designed to avoid computing large powers of 10 |
---|
5715 | n/a | unnecessarily. |
---|
5716 | n/a | |
---|
5717 | n/a | >>> _decimal_lshift_exact(3, 4) |
---|
5718 | n/a | 30000 |
---|
5719 | n/a | >>> _decimal_lshift_exact(300, -999999999) # returns None |
---|
5720 | n/a | |
---|
5721 | n/a | """ |
---|
5722 | n/a | if n == 0: |
---|
5723 | n/a | return 0 |
---|
5724 | n/a | elif e >= 0: |
---|
5725 | n/a | return n * 10**e |
---|
5726 | n/a | else: |
---|
5727 | n/a | # val_n = largest power of 10 dividing n. |
---|
5728 | n/a | str_n = str(abs(n)) |
---|
5729 | n/a | val_n = len(str_n) - len(str_n.rstrip('0')) |
---|
5730 | n/a | return None if val_n < -e else n // 10**-e |
---|
5731 | n/a | |
---|
5732 | n/a | def _sqrt_nearest(n, a): |
---|
5733 | n/a | """Closest integer to the square root of the positive integer n. a is |
---|
5734 | n/a | an initial approximation to the square root. Any positive integer |
---|
5735 | n/a | will do for a, but the closer a is to the square root of n the |
---|
5736 | n/a | faster convergence will be. |
---|
5737 | n/a | |
---|
5738 | n/a | """ |
---|
5739 | n/a | if n <= 0 or a <= 0: |
---|
5740 | n/a | raise ValueError("Both arguments to _sqrt_nearest should be positive.") |
---|
5741 | n/a | |
---|
5742 | n/a | b=0 |
---|
5743 | n/a | while a != b: |
---|
5744 | n/a | b, a = a, a--n//a>>1 |
---|
5745 | n/a | return a |
---|
5746 | n/a | |
---|
5747 | n/a | def _rshift_nearest(x, shift): |
---|
5748 | n/a | """Given an integer x and a nonnegative integer shift, return closest |
---|
5749 | n/a | integer to x / 2**shift; use round-to-even in case of a tie. |
---|
5750 | n/a | |
---|
5751 | n/a | """ |
---|
5752 | n/a | b, q = 1 << shift, x >> shift |
---|
5753 | n/a | return q + (2*(x & (b-1)) + (q&1) > b) |
---|
5754 | n/a | |
---|
5755 | n/a | def _div_nearest(a, b): |
---|
5756 | n/a | """Closest integer to a/b, a and b positive integers; rounds to even |
---|
5757 | n/a | in the case of a tie. |
---|
5758 | n/a | |
---|
5759 | n/a | """ |
---|
5760 | n/a | q, r = divmod(a, b) |
---|
5761 | n/a | return q + (2*r + (q&1) > b) |
---|
5762 | n/a | |
---|
5763 | n/a | def _ilog(x, M, L = 8): |
---|
5764 | n/a | """Integer approximation to M*log(x/M), with absolute error boundable |
---|
5765 | n/a | in terms only of x/M. |
---|
5766 | n/a | |
---|
5767 | n/a | Given positive integers x and M, return an integer approximation to |
---|
5768 | n/a | M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference |
---|
5769 | n/a | between the approximation and the exact result is at most 22. For |
---|
5770 | n/a | L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In |
---|
5771 | n/a | both cases these are upper bounds on the error; it will usually be |
---|
5772 | n/a | much smaller.""" |
---|
5773 | n/a | |
---|
5774 | n/a | # The basic algorithm is the following: let log1p be the function |
---|
5775 | n/a | # log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use |
---|
5776 | n/a | # the reduction |
---|
5777 | n/a | # |
---|
5778 | n/a | # log1p(y) = 2*log1p(y/(1+sqrt(1+y))) |
---|
5779 | n/a | # |
---|
5780 | n/a | # repeatedly until the argument to log1p is small (< 2**-L in |
---|
5781 | n/a | # absolute value). For small y we can use the Taylor series |
---|
5782 | n/a | # expansion |
---|
5783 | n/a | # |
---|
5784 | n/a | # log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T |
---|
5785 | n/a | # |
---|
5786 | n/a | # truncating at T such that y**T is small enough. The whole |
---|
5787 | n/a | # computation is carried out in a form of fixed-point arithmetic, |
---|
5788 | n/a | # with a real number z being represented by an integer |
---|
5789 | n/a | # approximation to z*M. To avoid loss of precision, the y below |
---|
5790 | n/a | # is actually an integer approximation to 2**R*y*M, where R is the |
---|
5791 | n/a | # number of reductions performed so far. |
---|
5792 | n/a | |
---|
5793 | n/a | y = x-M |
---|
5794 | n/a | # argument reduction; R = number of reductions performed |
---|
5795 | n/a | R = 0 |
---|
5796 | n/a | while (R <= L and abs(y) << L-R >= M or |
---|
5797 | n/a | R > L and abs(y) >> R-L >= M): |
---|
5798 | n/a | y = _div_nearest((M*y) << 1, |
---|
5799 | n/a | M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M)) |
---|
5800 | n/a | R += 1 |
---|
5801 | n/a | |
---|
5802 | n/a | # Taylor series with T terms |
---|
5803 | n/a | T = -int(-10*len(str(M))//(3*L)) |
---|
5804 | n/a | yshift = _rshift_nearest(y, R) |
---|
5805 | n/a | w = _div_nearest(M, T) |
---|
5806 | n/a | for k in range(T-1, 0, -1): |
---|
5807 | n/a | w = _div_nearest(M, k) - _div_nearest(yshift*w, M) |
---|
5808 | n/a | |
---|
5809 | n/a | return _div_nearest(w*y, M) |
---|
5810 | n/a | |
---|
5811 | n/a | def _dlog10(c, e, p): |
---|
5812 | n/a | """Given integers c, e and p with c > 0, p >= 0, compute an integer |
---|
5813 | n/a | approximation to 10**p * log10(c*10**e), with an absolute error of |
---|
5814 | n/a | at most 1. Assumes that c*10**e is not exactly 1.""" |
---|
5815 | n/a | |
---|
5816 | n/a | # increase precision by 2; compensate for this by dividing |
---|
5817 | n/a | # final result by 100 |
---|
5818 | n/a | p += 2 |
---|
5819 | n/a | |
---|
5820 | n/a | # write c*10**e as d*10**f with either: |
---|
5821 | n/a | # f >= 0 and 1 <= d <= 10, or |
---|
5822 | n/a | # f <= 0 and 0.1 <= d <= 1. |
---|
5823 | n/a | # Thus for c*10**e close to 1, f = 0 |
---|
5824 | n/a | l = len(str(c)) |
---|
5825 | n/a | f = e+l - (e+l >= 1) |
---|
5826 | n/a | |
---|
5827 | n/a | if p > 0: |
---|
5828 | n/a | M = 10**p |
---|
5829 | n/a | k = e+p-f |
---|
5830 | n/a | if k >= 0: |
---|
5831 | n/a | c *= 10**k |
---|
5832 | n/a | else: |
---|
5833 | n/a | c = _div_nearest(c, 10**-k) |
---|
5834 | n/a | |
---|
5835 | n/a | log_d = _ilog(c, M) # error < 5 + 22 = 27 |
---|
5836 | n/a | log_10 = _log10_digits(p) # error < 1 |
---|
5837 | n/a | log_d = _div_nearest(log_d*M, log_10) |
---|
5838 | n/a | log_tenpower = f*M # exact |
---|
5839 | n/a | else: |
---|
5840 | n/a | log_d = 0 # error < 2.31 |
---|
5841 | n/a | log_tenpower = _div_nearest(f, 10**-p) # error < 0.5 |
---|
5842 | n/a | |
---|
5843 | n/a | return _div_nearest(log_tenpower+log_d, 100) |
---|
5844 | n/a | |
---|
5845 | n/a | def _dlog(c, e, p): |
---|
5846 | n/a | """Given integers c, e and p with c > 0, compute an integer |
---|
5847 | n/a | approximation to 10**p * log(c*10**e), with an absolute error of |
---|
5848 | n/a | at most 1. Assumes that c*10**e is not exactly 1.""" |
---|
5849 | n/a | |
---|
5850 | n/a | # Increase precision by 2. The precision increase is compensated |
---|
5851 | n/a | # for at the end with a division by 100. |
---|
5852 | n/a | p += 2 |
---|
5853 | n/a | |
---|
5854 | n/a | # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10, |
---|
5855 | n/a | # or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e) |
---|
5856 | n/a | # as 10**p * log(d) + 10**p*f * log(10). |
---|
5857 | n/a | l = len(str(c)) |
---|
5858 | n/a | f = e+l - (e+l >= 1) |
---|
5859 | n/a | |
---|
5860 | n/a | # compute approximation to 10**p*log(d), with error < 27 |
---|
5861 | n/a | if p > 0: |
---|
5862 | n/a | k = e+p-f |
---|
5863 | n/a | if k >= 0: |
---|
5864 | n/a | c *= 10**k |
---|
5865 | n/a | else: |
---|
5866 | n/a | c = _div_nearest(c, 10**-k) # error of <= 0.5 in c |
---|
5867 | n/a | |
---|
5868 | n/a | # _ilog magnifies existing error in c by a factor of at most 10 |
---|
5869 | n/a | log_d = _ilog(c, 10**p) # error < 5 + 22 = 27 |
---|
5870 | n/a | else: |
---|
5871 | n/a | # p <= 0: just approximate the whole thing by 0; error < 2.31 |
---|
5872 | n/a | log_d = 0 |
---|
5873 | n/a | |
---|
5874 | n/a | # compute approximation to f*10**p*log(10), with error < 11. |
---|
5875 | n/a | if f: |
---|
5876 | n/a | extra = len(str(abs(f)))-1 |
---|
5877 | n/a | if p + extra >= 0: |
---|
5878 | n/a | # error in f * _log10_digits(p+extra) < |f| * 1 = |f| |
---|
5879 | n/a | # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11 |
---|
5880 | n/a | f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra) |
---|
5881 | n/a | else: |
---|
5882 | n/a | f_log_ten = 0 |
---|
5883 | n/a | else: |
---|
5884 | n/a | f_log_ten = 0 |
---|
5885 | n/a | |
---|
5886 | n/a | # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1 |
---|
5887 | n/a | return _div_nearest(f_log_ten + log_d, 100) |
---|
5888 | n/a | |
---|
5889 | n/a | class _Log10Memoize(object): |
---|
5890 | n/a | """Class to compute, store, and allow retrieval of, digits of the |
---|
5891 | n/a | constant log(10) = 2.302585.... This constant is needed by |
---|
5892 | n/a | Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__.""" |
---|
5893 | n/a | def __init__(self): |
---|
5894 | n/a | self.digits = "23025850929940456840179914546843642076011014886" |
---|
5895 | n/a | |
---|
5896 | n/a | def getdigits(self, p): |
---|
5897 | n/a | """Given an integer p >= 0, return floor(10**p)*log(10). |
---|
5898 | n/a | |
---|
5899 | n/a | For example, self.getdigits(3) returns 2302. |
---|
5900 | n/a | """ |
---|
5901 | n/a | # digits are stored as a string, for quick conversion to |
---|
5902 | n/a | # integer in the case that we've already computed enough |
---|
5903 | n/a | # digits; the stored digits should always be correct |
---|
5904 | n/a | # (truncated, not rounded to nearest). |
---|
5905 | n/a | if p < 0: |
---|
5906 | n/a | raise ValueError("p should be nonnegative") |
---|
5907 | n/a | |
---|
5908 | n/a | if p >= len(self.digits): |
---|
5909 | n/a | # compute p+3, p+6, p+9, ... digits; continue until at |
---|
5910 | n/a | # least one of the extra digits is nonzero |
---|
5911 | n/a | extra = 3 |
---|
5912 | n/a | while True: |
---|
5913 | n/a | # compute p+extra digits, correct to within 1ulp |
---|
5914 | n/a | M = 10**(p+extra+2) |
---|
5915 | n/a | digits = str(_div_nearest(_ilog(10*M, M), 100)) |
---|
5916 | n/a | if digits[-extra:] != '0'*extra: |
---|
5917 | n/a | break |
---|
5918 | n/a | extra += 3 |
---|
5919 | n/a | # keep all reliable digits so far; remove trailing zeros |
---|
5920 | n/a | # and next nonzero digit |
---|
5921 | n/a | self.digits = digits.rstrip('0')[:-1] |
---|
5922 | n/a | return int(self.digits[:p+1]) |
---|
5923 | n/a | |
---|
5924 | n/a | _log10_digits = _Log10Memoize().getdigits |
---|
5925 | n/a | |
---|
5926 | n/a | def _iexp(x, M, L=8): |
---|
5927 | n/a | """Given integers x and M, M > 0, such that x/M is small in absolute |
---|
5928 | n/a | value, compute an integer approximation to M*exp(x/M). For 0 <= |
---|
5929 | n/a | x/M <= 2.4, the absolute error in the result is bounded by 60 (and |
---|
5930 | n/a | is usually much smaller).""" |
---|
5931 | n/a | |
---|
5932 | n/a | # Algorithm: to compute exp(z) for a real number z, first divide z |
---|
5933 | n/a | # by a suitable power R of 2 so that |z/2**R| < 2**-L. Then |
---|
5934 | n/a | # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor |
---|
5935 | n/a | # series |
---|
5936 | n/a | # |
---|
5937 | n/a | # expm1(x) = x + x**2/2! + x**3/3! + ... |
---|
5938 | n/a | # |
---|
5939 | n/a | # Now use the identity |
---|
5940 | n/a | # |
---|
5941 | n/a | # expm1(2x) = expm1(x)*(expm1(x)+2) |
---|
5942 | n/a | # |
---|
5943 | n/a | # R times to compute the sequence expm1(z/2**R), |
---|
5944 | n/a | # expm1(z/2**(R-1)), ... , exp(z/2), exp(z). |
---|
5945 | n/a | |
---|
5946 | n/a | # Find R such that x/2**R/M <= 2**-L |
---|
5947 | n/a | R = _nbits((x<<L)//M) |
---|
5948 | n/a | |
---|
5949 | n/a | # Taylor series. (2**L)**T > M |
---|
5950 | n/a | T = -int(-10*len(str(M))//(3*L)) |
---|
5951 | n/a | y = _div_nearest(x, T) |
---|
5952 | n/a | Mshift = M<<R |
---|
5953 | n/a | for i in range(T-1, 0, -1): |
---|
5954 | n/a | y = _div_nearest(x*(Mshift + y), Mshift * i) |
---|
5955 | n/a | |
---|
5956 | n/a | # Expansion |
---|
5957 | n/a | for k in range(R-1, -1, -1): |
---|
5958 | n/a | Mshift = M<<(k+2) |
---|
5959 | n/a | y = _div_nearest(y*(y+Mshift), Mshift) |
---|
5960 | n/a | |
---|
5961 | n/a | return M+y |
---|
5962 | n/a | |
---|
5963 | n/a | def _dexp(c, e, p): |
---|
5964 | n/a | """Compute an approximation to exp(c*10**e), with p decimal places of |
---|
5965 | n/a | precision. |
---|
5966 | n/a | |
---|
5967 | n/a | Returns integers d, f such that: |
---|
5968 | n/a | |
---|
5969 | n/a | 10**(p-1) <= d <= 10**p, and |
---|
5970 | n/a | (d-1)*10**f < exp(c*10**e) < (d+1)*10**f |
---|
5971 | n/a | |
---|
5972 | n/a | In other words, d*10**f is an approximation to exp(c*10**e) with p |
---|
5973 | n/a | digits of precision, and with an error in d of at most 1. This is |
---|
5974 | n/a | almost, but not quite, the same as the error being < 1ulp: when d |
---|
5975 | n/a | = 10**(p-1) the error could be up to 10 ulp.""" |
---|
5976 | n/a | |
---|
5977 | n/a | # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision |
---|
5978 | n/a | p += 2 |
---|
5979 | n/a | |
---|
5980 | n/a | # compute log(10) with extra precision = adjusted exponent of c*10**e |
---|
5981 | n/a | extra = max(0, e + len(str(c)) - 1) |
---|
5982 | n/a | q = p + extra |
---|
5983 | n/a | |
---|
5984 | n/a | # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q), |
---|
5985 | n/a | # rounding down |
---|
5986 | n/a | shift = e+q |
---|
5987 | n/a | if shift >= 0: |
---|
5988 | n/a | cshift = c*10**shift |
---|
5989 | n/a | else: |
---|
5990 | n/a | cshift = c//10**-shift |
---|
5991 | n/a | quot, rem = divmod(cshift, _log10_digits(q)) |
---|
5992 | n/a | |
---|
5993 | n/a | # reduce remainder back to original precision |
---|
5994 | n/a | rem = _div_nearest(rem, 10**extra) |
---|
5995 | n/a | |
---|
5996 | n/a | # error in result of _iexp < 120; error after division < 0.62 |
---|
5997 | n/a | return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3 |
---|
5998 | n/a | |
---|
5999 | n/a | def _dpower(xc, xe, yc, ye, p): |
---|
6000 | n/a | """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and |
---|
6001 | n/a | y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that: |
---|
6002 | n/a | |
---|
6003 | n/a | 10**(p-1) <= c <= 10**p, and |
---|
6004 | n/a | (c-1)*10**e < x**y < (c+1)*10**e |
---|
6005 | n/a | |
---|
6006 | n/a | in other words, c*10**e is an approximation to x**y with p digits |
---|
6007 | n/a | of precision, and with an error in c of at most 1. (This is |
---|
6008 | n/a | almost, but not quite, the same as the error being < 1ulp: when c |
---|
6009 | n/a | == 10**(p-1) we can only guarantee error < 10ulp.) |
---|
6010 | n/a | |
---|
6011 | n/a | We assume that: x is positive and not equal to 1, and y is nonzero. |
---|
6012 | n/a | """ |
---|
6013 | n/a | |
---|
6014 | n/a | # Find b such that 10**(b-1) <= |y| <= 10**b |
---|
6015 | n/a | b = len(str(abs(yc))) + ye |
---|
6016 | n/a | |
---|
6017 | n/a | # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point |
---|
6018 | n/a | lxc = _dlog(xc, xe, p+b+1) |
---|
6019 | n/a | |
---|
6020 | n/a | # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1) |
---|
6021 | n/a | shift = ye-b |
---|
6022 | n/a | if shift >= 0: |
---|
6023 | n/a | pc = lxc*yc*10**shift |
---|
6024 | n/a | else: |
---|
6025 | n/a | pc = _div_nearest(lxc*yc, 10**-shift) |
---|
6026 | n/a | |
---|
6027 | n/a | if pc == 0: |
---|
6028 | n/a | # we prefer a result that isn't exactly 1; this makes it |
---|
6029 | n/a | # easier to compute a correctly rounded result in __pow__ |
---|
6030 | n/a | if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1: |
---|
6031 | n/a | coeff, exp = 10**(p-1)+1, 1-p |
---|
6032 | n/a | else: |
---|
6033 | n/a | coeff, exp = 10**p-1, -p |
---|
6034 | n/a | else: |
---|
6035 | n/a | coeff, exp = _dexp(pc, -(p+1), p+1) |
---|
6036 | n/a | coeff = _div_nearest(coeff, 10) |
---|
6037 | n/a | exp += 1 |
---|
6038 | n/a | |
---|
6039 | n/a | return coeff, exp |
---|
6040 | n/a | |
---|
6041 | n/a | def _log10_lb(c, correction = { |
---|
6042 | n/a | '1': 100, '2': 70, '3': 53, '4': 40, '5': 31, |
---|
6043 | n/a | '6': 23, '7': 16, '8': 10, '9': 5}): |
---|
6044 | n/a | """Compute a lower bound for 100*log10(c) for a positive integer c.""" |
---|
6045 | n/a | if c <= 0: |
---|
6046 | n/a | raise ValueError("The argument to _log10_lb should be nonnegative.") |
---|
6047 | n/a | str_c = str(c) |
---|
6048 | n/a | return 100*len(str_c) - correction[str_c[0]] |
---|
6049 | n/a | |
---|
6050 | n/a | ##### Helper Functions #################################################### |
---|
6051 | n/a | |
---|
6052 | n/a | def _convert_other(other, raiseit=False, allow_float=False): |
---|
6053 | n/a | """Convert other to Decimal. |
---|
6054 | n/a | |
---|
6055 | n/a | Verifies that it's ok to use in an implicit construction. |
---|
6056 | n/a | If allow_float is true, allow conversion from float; this |
---|
6057 | n/a | is used in the comparison methods (__eq__ and friends). |
---|
6058 | n/a | |
---|
6059 | n/a | """ |
---|
6060 | n/a | if isinstance(other, Decimal): |
---|
6061 | n/a | return other |
---|
6062 | n/a | if isinstance(other, int): |
---|
6063 | n/a | return Decimal(other) |
---|
6064 | n/a | if allow_float and isinstance(other, float): |
---|
6065 | n/a | return Decimal.from_float(other) |
---|
6066 | n/a | |
---|
6067 | n/a | if raiseit: |
---|
6068 | n/a | raise TypeError("Unable to convert %s to Decimal" % other) |
---|
6069 | n/a | return NotImplemented |
---|
6070 | n/a | |
---|
6071 | n/a | def _convert_for_comparison(self, other, equality_op=False): |
---|
6072 | n/a | """Given a Decimal instance self and a Python object other, return |
---|
6073 | n/a | a pair (s, o) of Decimal instances such that "s op o" is |
---|
6074 | n/a | equivalent to "self op other" for any of the 6 comparison |
---|
6075 | n/a | operators "op". |
---|
6076 | n/a | |
---|
6077 | n/a | """ |
---|
6078 | n/a | if isinstance(other, Decimal): |
---|
6079 | n/a | return self, other |
---|
6080 | n/a | |
---|
6081 | n/a | # Comparison with a Rational instance (also includes integers): |
---|
6082 | n/a | # self op n/d <=> self*d op n (for n and d integers, d positive). |
---|
6083 | n/a | # A NaN or infinity can be left unchanged without affecting the |
---|
6084 | n/a | # comparison result. |
---|
6085 | n/a | if isinstance(other, _numbers.Rational): |
---|
6086 | n/a | if not self._is_special: |
---|
6087 | n/a | self = _dec_from_triple(self._sign, |
---|
6088 | n/a | str(int(self._int) * other.denominator), |
---|
6089 | n/a | self._exp) |
---|
6090 | n/a | return self, Decimal(other.numerator) |
---|
6091 | n/a | |
---|
6092 | n/a | # Comparisons with float and complex types. == and != comparisons |
---|
6093 | n/a | # with complex numbers should succeed, returning either True or False |
---|
6094 | n/a | # as appropriate. Other comparisons return NotImplemented. |
---|
6095 | n/a | if equality_op and isinstance(other, _numbers.Complex) and other.imag == 0: |
---|
6096 | n/a | other = other.real |
---|
6097 | n/a | if isinstance(other, float): |
---|
6098 | n/a | context = getcontext() |
---|
6099 | n/a | if equality_op: |
---|
6100 | n/a | context.flags[FloatOperation] = 1 |
---|
6101 | n/a | else: |
---|
6102 | n/a | context._raise_error(FloatOperation, |
---|
6103 | n/a | "strict semantics for mixing floats and Decimals are enabled") |
---|
6104 | n/a | return self, Decimal.from_float(other) |
---|
6105 | n/a | return NotImplemented, NotImplemented |
---|
6106 | n/a | |
---|
6107 | n/a | |
---|
6108 | n/a | ##### Setup Specific Contexts ############################################ |
---|
6109 | n/a | |
---|
6110 | n/a | # The default context prototype used by Context() |
---|
6111 | n/a | # Is mutable, so that new contexts can have different default values |
---|
6112 | n/a | |
---|
6113 | n/a | DefaultContext = Context( |
---|
6114 | n/a | prec=28, rounding=ROUND_HALF_EVEN, |
---|
6115 | n/a | traps=[DivisionByZero, Overflow, InvalidOperation], |
---|
6116 | n/a | flags=[], |
---|
6117 | n/a | Emax=999999, |
---|
6118 | n/a | Emin=-999999, |
---|
6119 | n/a | capitals=1, |
---|
6120 | n/a | clamp=0 |
---|
6121 | n/a | ) |
---|
6122 | n/a | |
---|
6123 | n/a | # Pre-made alternate contexts offered by the specification |
---|
6124 | n/a | # Don't change these; the user should be able to select these |
---|
6125 | n/a | # contexts and be able to reproduce results from other implementations |
---|
6126 | n/a | # of the spec. |
---|
6127 | n/a | |
---|
6128 | n/a | BasicContext = Context( |
---|
6129 | n/a | prec=9, rounding=ROUND_HALF_UP, |
---|
6130 | n/a | traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow], |
---|
6131 | n/a | flags=[], |
---|
6132 | n/a | ) |
---|
6133 | n/a | |
---|
6134 | n/a | ExtendedContext = Context( |
---|
6135 | n/a | prec=9, rounding=ROUND_HALF_EVEN, |
---|
6136 | n/a | traps=[], |
---|
6137 | n/a | flags=[], |
---|
6138 | n/a | ) |
---|
6139 | n/a | |
---|
6140 | n/a | |
---|
6141 | n/a | ##### crud for parsing strings ############################################# |
---|
6142 | n/a | # |
---|
6143 | n/a | # Regular expression used for parsing numeric strings. Additional |
---|
6144 | n/a | # comments: |
---|
6145 | n/a | # |
---|
6146 | n/a | # 1. Uncomment the two '\s*' lines to allow leading and/or trailing |
---|
6147 | n/a | # whitespace. But note that the specification disallows whitespace in |
---|
6148 | n/a | # a numeric string. |
---|
6149 | n/a | # |
---|
6150 | n/a | # 2. For finite numbers (not infinities and NaNs) the body of the |
---|
6151 | n/a | # number between the optional sign and the optional exponent must have |
---|
6152 | n/a | # at least one decimal digit, possibly after the decimal point. The |
---|
6153 | n/a | # lookahead expression '(?=\d|\.\d)' checks this. |
---|
6154 | n/a | |
---|
6155 | n/a | import re |
---|
6156 | n/a | _parser = re.compile(r""" # A numeric string consists of: |
---|
6157 | n/a | # \s* |
---|
6158 | n/a | (?P<sign>[-+])? # an optional sign, followed by either... |
---|
6159 | n/a | ( |
---|
6160 | n/a | (?=\d|\.\d) # ...a number (with at least one digit) |
---|
6161 | n/a | (?P<int>\d*) # having a (possibly empty) integer part |
---|
6162 | n/a | (\.(?P<frac>\d*))? # followed by an optional fractional part |
---|
6163 | n/a | (E(?P<exp>[-+]?\d+))? # followed by an optional exponent, or... |
---|
6164 | n/a | | |
---|
6165 | n/a | Inf(inity)? # ...an infinity, or... |
---|
6166 | n/a | | |
---|
6167 | n/a | (?P<signal>s)? # ...an (optionally signaling) |
---|
6168 | n/a | NaN # NaN |
---|
6169 | n/a | (?P<diag>\d*) # with (possibly empty) diagnostic info. |
---|
6170 | n/a | ) |
---|
6171 | n/a | # \s* |
---|
6172 | n/a | \Z |
---|
6173 | n/a | """, re.VERBOSE | re.IGNORECASE).match |
---|
6174 | n/a | |
---|
6175 | n/a | _all_zeros = re.compile('0*$').match |
---|
6176 | n/a | _exact_half = re.compile('50*$').match |
---|
6177 | n/a | |
---|
6178 | n/a | ##### PEP3101 support functions ############################################## |
---|
6179 | n/a | # The functions in this section have little to do with the Decimal |
---|
6180 | n/a | # class, and could potentially be reused or adapted for other pure |
---|
6181 | n/a | # Python numeric classes that want to implement __format__ |
---|
6182 | n/a | # |
---|
6183 | n/a | # A format specifier for Decimal looks like: |
---|
6184 | n/a | # |
---|
6185 | n/a | # [[fill]align][sign][#][0][minimumwidth][,][.precision][type] |
---|
6186 | n/a | |
---|
6187 | n/a | _parse_format_specifier_regex = re.compile(r"""\A |
---|
6188 | n/a | (?: |
---|
6189 | n/a | (?P<fill>.)? |
---|
6190 | n/a | (?P<align>[<>=^]) |
---|
6191 | n/a | )? |
---|
6192 | n/a | (?P<sign>[-+ ])? |
---|
6193 | n/a | (?P<alt>\#)? |
---|
6194 | n/a | (?P<zeropad>0)? |
---|
6195 | n/a | (?P<minimumwidth>(?!0)\d+)? |
---|
6196 | n/a | (?P<thousands_sep>,)? |
---|
6197 | n/a | (?:\.(?P<precision>0|(?!0)\d+))? |
---|
6198 | n/a | (?P<type>[eEfFgGn%])? |
---|
6199 | n/a | \Z |
---|
6200 | n/a | """, re.VERBOSE|re.DOTALL) |
---|
6201 | n/a | |
---|
6202 | n/a | del re |
---|
6203 | n/a | |
---|
6204 | n/a | # The locale module is only needed for the 'n' format specifier. The |
---|
6205 | n/a | # rest of the PEP 3101 code functions quite happily without it, so we |
---|
6206 | n/a | # don't care too much if locale isn't present. |
---|
6207 | n/a | try: |
---|
6208 | n/a | import locale as _locale |
---|
6209 | n/a | except ImportError: |
---|
6210 | n/a | pass |
---|
6211 | n/a | |
---|
6212 | n/a | def _parse_format_specifier(format_spec, _localeconv=None): |
---|
6213 | n/a | """Parse and validate a format specifier. |
---|
6214 | n/a | |
---|
6215 | n/a | Turns a standard numeric format specifier into a dict, with the |
---|
6216 | n/a | following entries: |
---|
6217 | n/a | |
---|
6218 | n/a | fill: fill character to pad field to minimum width |
---|
6219 | n/a | align: alignment type, either '<', '>', '=' or '^' |
---|
6220 | n/a | sign: either '+', '-' or ' ' |
---|
6221 | n/a | minimumwidth: nonnegative integer giving minimum width |
---|
6222 | n/a | zeropad: boolean, indicating whether to pad with zeros |
---|
6223 | n/a | thousands_sep: string to use as thousands separator, or '' |
---|
6224 | n/a | grouping: grouping for thousands separators, in format |
---|
6225 | n/a | used by localeconv |
---|
6226 | n/a | decimal_point: string to use for decimal point |
---|
6227 | n/a | precision: nonnegative integer giving precision, or None |
---|
6228 | n/a | type: one of the characters 'eEfFgG%', or None |
---|
6229 | n/a | |
---|
6230 | n/a | """ |
---|
6231 | n/a | m = _parse_format_specifier_regex.match(format_spec) |
---|
6232 | n/a | if m is None: |
---|
6233 | n/a | raise ValueError("Invalid format specifier: " + format_spec) |
---|
6234 | n/a | |
---|
6235 | n/a | # get the dictionary |
---|
6236 | n/a | format_dict = m.groupdict() |
---|
6237 | n/a | |
---|
6238 | n/a | # zeropad; defaults for fill and alignment. If zero padding |
---|
6239 | n/a | # is requested, the fill and align fields should be absent. |
---|
6240 | n/a | fill = format_dict['fill'] |
---|
6241 | n/a | align = format_dict['align'] |
---|
6242 | n/a | format_dict['zeropad'] = (format_dict['zeropad'] is not None) |
---|
6243 | n/a | if format_dict['zeropad']: |
---|
6244 | n/a | if fill is not None: |
---|
6245 | n/a | raise ValueError("Fill character conflicts with '0'" |
---|
6246 | n/a | " in format specifier: " + format_spec) |
---|
6247 | n/a | if align is not None: |
---|
6248 | n/a | raise ValueError("Alignment conflicts with '0' in " |
---|
6249 | n/a | "format specifier: " + format_spec) |
---|
6250 | n/a | format_dict['fill'] = fill or ' ' |
---|
6251 | n/a | # PEP 3101 originally specified that the default alignment should |
---|
6252 | n/a | # be left; it was later agreed that right-aligned makes more sense |
---|
6253 | n/a | # for numeric types. See http://bugs.python.org/issue6857. |
---|
6254 | n/a | format_dict['align'] = align or '>' |
---|
6255 | n/a | |
---|
6256 | n/a | # default sign handling: '-' for negative, '' for positive |
---|
6257 | n/a | if format_dict['sign'] is None: |
---|
6258 | n/a | format_dict['sign'] = '-' |
---|
6259 | n/a | |
---|
6260 | n/a | # minimumwidth defaults to 0; precision remains None if not given |
---|
6261 | n/a | format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0') |
---|
6262 | n/a | if format_dict['precision'] is not None: |
---|
6263 | n/a | format_dict['precision'] = int(format_dict['precision']) |
---|
6264 | n/a | |
---|
6265 | n/a | # if format type is 'g' or 'G' then a precision of 0 makes little |
---|
6266 | n/a | # sense; convert it to 1. Same if format type is unspecified. |
---|
6267 | n/a | if format_dict['precision'] == 0: |
---|
6268 | n/a | if format_dict['type'] is None or format_dict['type'] in 'gGn': |
---|
6269 | n/a | format_dict['precision'] = 1 |
---|
6270 | n/a | |
---|
6271 | n/a | # determine thousands separator, grouping, and decimal separator, and |
---|
6272 | n/a | # add appropriate entries to format_dict |
---|
6273 | n/a | if format_dict['type'] == 'n': |
---|
6274 | n/a | # apart from separators, 'n' behaves just like 'g' |
---|
6275 | n/a | format_dict['type'] = 'g' |
---|
6276 | n/a | if _localeconv is None: |
---|
6277 | n/a | _localeconv = _locale.localeconv() |
---|
6278 | n/a | if format_dict['thousands_sep'] is not None: |
---|
6279 | n/a | raise ValueError("Explicit thousands separator conflicts with " |
---|
6280 | n/a | "'n' type in format specifier: " + format_spec) |
---|
6281 | n/a | format_dict['thousands_sep'] = _localeconv['thousands_sep'] |
---|
6282 | n/a | format_dict['grouping'] = _localeconv['grouping'] |
---|
6283 | n/a | format_dict['decimal_point'] = _localeconv['decimal_point'] |
---|
6284 | n/a | else: |
---|
6285 | n/a | if format_dict['thousands_sep'] is None: |
---|
6286 | n/a | format_dict['thousands_sep'] = '' |
---|
6287 | n/a | format_dict['grouping'] = [3, 0] |
---|
6288 | n/a | format_dict['decimal_point'] = '.' |
---|
6289 | n/a | |
---|
6290 | n/a | return format_dict |
---|
6291 | n/a | |
---|
6292 | n/a | def _format_align(sign, body, spec): |
---|
6293 | n/a | """Given an unpadded, non-aligned numeric string 'body' and sign |
---|
6294 | n/a | string 'sign', add padding and alignment conforming to the given |
---|
6295 | n/a | format specifier dictionary 'spec' (as produced by |
---|
6296 | n/a | parse_format_specifier). |
---|
6297 | n/a | |
---|
6298 | n/a | """ |
---|
6299 | n/a | # how much extra space do we have to play with? |
---|
6300 | n/a | minimumwidth = spec['minimumwidth'] |
---|
6301 | n/a | fill = spec['fill'] |
---|
6302 | n/a | padding = fill*(minimumwidth - len(sign) - len(body)) |
---|
6303 | n/a | |
---|
6304 | n/a | align = spec['align'] |
---|
6305 | n/a | if align == '<': |
---|
6306 | n/a | result = sign + body + padding |
---|
6307 | n/a | elif align == '>': |
---|
6308 | n/a | result = padding + sign + body |
---|
6309 | n/a | elif align == '=': |
---|
6310 | n/a | result = sign + padding + body |
---|
6311 | n/a | elif align == '^': |
---|
6312 | n/a | half = len(padding)//2 |
---|
6313 | n/a | result = padding[:half] + sign + body + padding[half:] |
---|
6314 | n/a | else: |
---|
6315 | n/a | raise ValueError('Unrecognised alignment field') |
---|
6316 | n/a | |
---|
6317 | n/a | return result |
---|
6318 | n/a | |
---|
6319 | n/a | def _group_lengths(grouping): |
---|
6320 | n/a | """Convert a localeconv-style grouping into a (possibly infinite) |
---|
6321 | n/a | iterable of integers representing group lengths. |
---|
6322 | n/a | |
---|
6323 | n/a | """ |
---|
6324 | n/a | # The result from localeconv()['grouping'], and the input to this |
---|
6325 | n/a | # function, should be a list of integers in one of the |
---|
6326 | n/a | # following three forms: |
---|
6327 | n/a | # |
---|
6328 | n/a | # (1) an empty list, or |
---|
6329 | n/a | # (2) nonempty list of positive integers + [0] |
---|
6330 | n/a | # (3) list of positive integers + [locale.CHAR_MAX], or |
---|
6331 | n/a | |
---|
6332 | n/a | from itertools import chain, repeat |
---|
6333 | n/a | if not grouping: |
---|
6334 | n/a | return [] |
---|
6335 | n/a | elif grouping[-1] == 0 and len(grouping) >= 2: |
---|
6336 | n/a | return chain(grouping[:-1], repeat(grouping[-2])) |
---|
6337 | n/a | elif grouping[-1] == _locale.CHAR_MAX: |
---|
6338 | n/a | return grouping[:-1] |
---|
6339 | n/a | else: |
---|
6340 | n/a | raise ValueError('unrecognised format for grouping') |
---|
6341 | n/a | |
---|
6342 | n/a | def _insert_thousands_sep(digits, spec, min_width=1): |
---|
6343 | n/a | """Insert thousands separators into a digit string. |
---|
6344 | n/a | |
---|
6345 | n/a | spec is a dictionary whose keys should include 'thousands_sep' and |
---|
6346 | n/a | 'grouping'; typically it's the result of parsing the format |
---|
6347 | n/a | specifier using _parse_format_specifier. |
---|
6348 | n/a | |
---|
6349 | n/a | The min_width keyword argument gives the minimum length of the |
---|
6350 | n/a | result, which will be padded on the left with zeros if necessary. |
---|
6351 | n/a | |
---|
6352 | n/a | If necessary, the zero padding adds an extra '0' on the left to |
---|
6353 | n/a | avoid a leading thousands separator. For example, inserting |
---|
6354 | n/a | commas every three digits in '123456', with min_width=8, gives |
---|
6355 | n/a | '0,123,456', even though that has length 9. |
---|
6356 | n/a | |
---|
6357 | n/a | """ |
---|
6358 | n/a | |
---|
6359 | n/a | sep = spec['thousands_sep'] |
---|
6360 | n/a | grouping = spec['grouping'] |
---|
6361 | n/a | |
---|
6362 | n/a | groups = [] |
---|
6363 | n/a | for l in _group_lengths(grouping): |
---|
6364 | n/a | if l <= 0: |
---|
6365 | n/a | raise ValueError("group length should be positive") |
---|
6366 | n/a | # max(..., 1) forces at least 1 digit to the left of a separator |
---|
6367 | n/a | l = min(max(len(digits), min_width, 1), l) |
---|
6368 | n/a | groups.append('0'*(l - len(digits)) + digits[-l:]) |
---|
6369 | n/a | digits = digits[:-l] |
---|
6370 | n/a | min_width -= l |
---|
6371 | n/a | if not digits and min_width <= 0: |
---|
6372 | n/a | break |
---|
6373 | n/a | min_width -= len(sep) |
---|
6374 | n/a | else: |
---|
6375 | n/a | l = max(len(digits), min_width, 1) |
---|
6376 | n/a | groups.append('0'*(l - len(digits)) + digits[-l:]) |
---|
6377 | n/a | return sep.join(reversed(groups)) |
---|
6378 | n/a | |
---|
6379 | n/a | def _format_sign(is_negative, spec): |
---|
6380 | n/a | """Determine sign character.""" |
---|
6381 | n/a | |
---|
6382 | n/a | if is_negative: |
---|
6383 | n/a | return '-' |
---|
6384 | n/a | elif spec['sign'] in ' +': |
---|
6385 | n/a | return spec['sign'] |
---|
6386 | n/a | else: |
---|
6387 | n/a | return '' |
---|
6388 | n/a | |
---|
6389 | n/a | def _format_number(is_negative, intpart, fracpart, exp, spec): |
---|
6390 | n/a | """Format a number, given the following data: |
---|
6391 | n/a | |
---|
6392 | n/a | is_negative: true if the number is negative, else false |
---|
6393 | n/a | intpart: string of digits that must appear before the decimal point |
---|
6394 | n/a | fracpart: string of digits that must come after the point |
---|
6395 | n/a | exp: exponent, as an integer |
---|
6396 | n/a | spec: dictionary resulting from parsing the format specifier |
---|
6397 | n/a | |
---|
6398 | n/a | This function uses the information in spec to: |
---|
6399 | n/a | insert separators (decimal separator and thousands separators) |
---|
6400 | n/a | format the sign |
---|
6401 | n/a | format the exponent |
---|
6402 | n/a | add trailing '%' for the '%' type |
---|
6403 | n/a | zero-pad if necessary |
---|
6404 | n/a | fill and align if necessary |
---|
6405 | n/a | """ |
---|
6406 | n/a | |
---|
6407 | n/a | sign = _format_sign(is_negative, spec) |
---|
6408 | n/a | |
---|
6409 | n/a | if fracpart or spec['alt']: |
---|
6410 | n/a | fracpart = spec['decimal_point'] + fracpart |
---|
6411 | n/a | |
---|
6412 | n/a | if exp != 0 or spec['type'] in 'eE': |
---|
6413 | n/a | echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']] |
---|
6414 | n/a | fracpart += "{0}{1:+}".format(echar, exp) |
---|
6415 | n/a | if spec['type'] == '%': |
---|
6416 | n/a | fracpart += '%' |
---|
6417 | n/a | |
---|
6418 | n/a | if spec['zeropad']: |
---|
6419 | n/a | min_width = spec['minimumwidth'] - len(fracpart) - len(sign) |
---|
6420 | n/a | else: |
---|
6421 | n/a | min_width = 0 |
---|
6422 | n/a | intpart = _insert_thousands_sep(intpart, spec, min_width) |
---|
6423 | n/a | |
---|
6424 | n/a | return _format_align(sign, intpart+fracpart, spec) |
---|
6425 | n/a | |
---|
6426 | n/a | |
---|
6427 | n/a | ##### Useful Constants (internal use only) ################################ |
---|
6428 | n/a | |
---|
6429 | n/a | # Reusable defaults |
---|
6430 | n/a | _Infinity = Decimal('Inf') |
---|
6431 | n/a | _NegativeInfinity = Decimal('-Inf') |
---|
6432 | n/a | _NaN = Decimal('NaN') |
---|
6433 | n/a | _Zero = Decimal(0) |
---|
6434 | n/a | _One = Decimal(1) |
---|
6435 | n/a | _NegativeOne = Decimal(-1) |
---|
6436 | n/a | |
---|
6437 | n/a | # _SignedInfinity[sign] is infinity w/ that sign |
---|
6438 | n/a | _SignedInfinity = (_Infinity, _NegativeInfinity) |
---|
6439 | n/a | |
---|
6440 | n/a | # Constants related to the hash implementation; hash(x) is based |
---|
6441 | n/a | # on the reduction of x modulo _PyHASH_MODULUS |
---|
6442 | n/a | _PyHASH_MODULUS = sys.hash_info.modulus |
---|
6443 | n/a | # hash values to use for positive and negative infinities, and nans |
---|
6444 | n/a | _PyHASH_INF = sys.hash_info.inf |
---|
6445 | n/a | _PyHASH_NAN = sys.hash_info.nan |
---|
6446 | n/a | |
---|
6447 | n/a | # _PyHASH_10INV is the inverse of 10 modulo the prime _PyHASH_MODULUS |
---|
6448 | n/a | _PyHASH_10INV = pow(10, _PyHASH_MODULUS - 2, _PyHASH_MODULUS) |
---|
6449 | n/a | del sys |
---|